Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Some elastodynamic theory
- 3 Wave motion in an unbounded elastic solid
- 4 Reciprocity in acoustics
- 5 Reciprocity in one-dimensional elastodynamics
- 6 Reciprocity in two- and three-dimensional elastodynamics
- 7 Wave motion guided by a carrier wave
- 8 Computation of surface waves by reciprocity considerations
- 9 Reciprocity considerations for an elastic layer
- 10 Forced motion of an elastic layer
- 11 Integral representations and integral equations
- 12 Scattering in waveguides and bounded bodies
- 13 Reciprocity for coupled acousto-elastic systems
- 14 Reciprocity for piezoelectric systems
- References
- Index of cited names
- Subject index
11 - Integral representations and integral equations
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Some elastodynamic theory
- 3 Wave motion in an unbounded elastic solid
- 4 Reciprocity in acoustics
- 5 Reciprocity in one-dimensional elastodynamics
- 6 Reciprocity in two- and three-dimensional elastodynamics
- 7 Wave motion guided by a carrier wave
- 8 Computation of surface waves by reciprocity considerations
- 9 Reciprocity considerations for an elastic layer
- 10 Forced motion of an elastic layer
- 11 Integral representations and integral equations
- 12 Scattering in waveguides and bounded bodies
- 13 Reciprocity for coupled acousto-elastic systems
- 14 Reciprocity for piezoelectric systems
- References
- Index of cited names
- Subject index
Summary
Introduction
An important application of the reciprocity relation is its use to generate integral representations. With the aid of the basic singular elastodynamic solution for an unbounded solid, an integral representation can be derived that provides the displacement field at a point of observation in terms of the displacements and tractions on the boundary of a body. In the limit as the point of observation approaches the boundary, a boundary integral equation is obtained. This equation can be solved numerically for the unknown displacements or tractions. The calculated boundary values are subsequently substituted in the original integral representation to yield the desired field variables at an arbitrary point of observation.
The boundary element method is often used for the numerical solution of boundary integral equations. The advantage of the boundary element method for solving boundary integral equations is that the dimensionality of the problem is reduced by one. Rather than calculations in a two- or three-dimensional discretized space, we have calculations for discretized curves or surfaces. For detailed discussions of boundary element methods in elastodynamics we refer to the review papers by Beskos (1987) and Kobayashi (1987). These papers contain numerous additional references. We also mention the book edited by Banerjee and Kobayashi (1992), and a recent book by Bonnet (1995) that has several sections on dynamic problems.
We start this chapter with an exposition of the basic ideas for the simpler, two-dimensional, case of anti-plane strain in Section 11.2.
- Type
- Chapter
- Information
- Reciprocity in Elastodynamics , pp. 175 - 198Publisher: Cambridge University PressPrint publication year: 2004