Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Some elastodynamic theory
- 3 Wave motion in an unbounded elastic solid
- 4 Reciprocity in acoustics
- 5 Reciprocity in one-dimensional elastodynamics
- 6 Reciprocity in two- and three-dimensional elastodynamics
- 7 Wave motion guided by a carrier wave
- 8 Computation of surface waves by reciprocity considerations
- 9 Reciprocity considerations for an elastic layer
- 10 Forced motion of an elastic layer
- 11 Integral representations and integral equations
- 12 Scattering in waveguides and bounded bodies
- 13 Reciprocity for coupled acousto-elastic systems
- 14 Reciprocity for piezoelectric systems
- References
- Index of cited names
- Subject index
10 - Forced motion of an elastic layer
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Some elastodynamic theory
- 3 Wave motion in an unbounded elastic solid
- 4 Reciprocity in acoustics
- 5 Reciprocity in one-dimensional elastodynamics
- 6 Reciprocity in two- and three-dimensional elastodynamics
- 7 Wave motion guided by a carrier wave
- 8 Computation of surface waves by reciprocity considerations
- 9 Reciprocity considerations for an elastic layer
- 10 Forced motion of an elastic layer
- 11 Integral representations and integral equations
- 12 Scattering in waveguides and bounded bodies
- 13 Reciprocity for coupled acousto-elastic systems
- 14 Reciprocity for piezoelectric systems
- References
- Index of cited names
- Subject index
Summary
Introduction
As discussed in Chapter 9, the modes of wave propagation in an elastic layer are well known from Lamb's (1917) classical work. The Rayleigh–Lamb frequency equations, as well as the corresponding equations for horizontally polarized wave modes, have been analyzed in considerable detail; see Achenbach (1973) and Mindlin (1960). It appears, however, that a simple direct way of expressing wave fields due to the time-harmonic loading of a layer in terms of mode expansions, and a suitable method to obtain the coefficients in the expansions by reciprocity considerations, has so far not been recognized. Of course, wave modes have entered the solutions to problems of the forced wave motion of an elastic layer, at least in the case of surface forces applied normally to the faces of the layer, but via the more cumbersome method of integral transform techniques and the subsequent evaluation of Fourier integrals by contour integration and residue calculus. For examples, we refer to the work of Lyon (1955) for the plane-strain case, and that of Vasudevan and Mal (1985) for axial symmetry.
In this chapter the displacements excited by a time-harmonic point load of arbitrary direction, either applied internally or to one of the surfaces of the layer, are obtained directly as summations over symmetric and/or antisymmetric modes of wave propagation along the layer. This is possible by virtue of an application of the reciprocity relation between time-harmonic elastodynamic states.
- Type
- Chapter
- Information
- Reciprocity in Elastodynamics , pp. 157 - 174Publisher: Cambridge University PressPrint publication year: 2004