Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T16:14:17.507Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 November 2015

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Proofs and Refutations
The Logic of Mathematical Discovery
, pp. 164 - 174
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N. H. [1825] ‘Letter to Holmboë’, in Lie, S. and Sylow, L. (eds.): Oeuvres Complètes, vol. 2. Christiana: Grøndahl, 1881, pp. 257–8.Google Scholar
Abel, N. H. [1826a] ‘Letter to Hansteen’, in Lie, S. and Sylow, L. (eds.): Oeuvres Complètes, vol. 2. Christiania: Grøndahl, 1881, pp. 263–5.Google Scholar
Abel, N. H. [1826b] ‘Untersuchungen über die Reihe 1+m1x+m.(m−1)2x2+m.(m−1)(m−2)2.3x3…’, Journal für die Reine und Angewandte Mathematik, 1, pp. 311–39.Google Scholar
Abel, N. H. [1881] ‘Sur les Séries’, in Lie, S. and Sylow, L. (eds.): Oeuvres Complètes, vol. 2. Christiania: Grøndahl, pp. 197–205.Google Scholar
Aetius [c. 150] Placita, in Diels, H. (ed.): Doxographi Graeci. Berolini: Reimeri, 1879.
Aleksandrov, A. D. [1956] ‘A General View of Mathematics’, in Aleksandrov, A. D., Kolmogorov, A. N. and Lavrent'ev, M. A. (eds.): Mathematics: its Content, Methods and Meaning. (English translation by S. H. Gould, K. A. Hirsch and T. Bartha. Cambridge, Massachusetts: M.I.T. Press, 1963).Google Scholar
Ambrose, A. [1959] ‘Proof and the Theorem Proved’, Mind, 68, pp. 435–45.Google Scholar
Arber, A. [1954] The Mind and the Eye. Cambridge: Cambridge University Press.Google Scholar
Arnauld, A. and Nicole, P. [1724] La Logique, ou L'Art de Penser. Lille: Publications de la Faculté des Lettres et Sciences Humaines de L'Université de Lille, 1964.Google Scholar
Bacon, F. [1620] Novum Organum. English translation in Ellis, R. L. and Spedding, J. (eds.): The Philosophical Works of Francis Bacon. London: Routledge, 1905, pp. 241–387.Google Scholar
Baltzer, R. [1862] Die Elemente der Mathematik, vol. 2. Leipzig: Hirzel.Google Scholar
Bartley, W. W. [1962] Retreat to Commitment. New York: Alfred A. KnopfGoogle Scholar
Becker, J. C. [1869a] ‘Über Polyeder’, Zeitschrift für Mathematik und Physik, 14, pp. 65–76.Google Scholar
Becker, J. C. [1869b] ‘Nachtrag zu dem Aufsätze über Polyeder’, Zeitschrift für Mathematik und Physik, 14, pp. 337–343.Google Scholar
Becker, J. C. [1874] ‘Neuer Beweis und Erweiterung eines Fundamentalsatzes über Polyederflächen’, Zeitschrift für Mathematik und Physik, 19, pp. 459-60.Google Scholar
Bell, E. T. [1945] The Development of Mathematics. Second edition. New York: McGraw-Hill.Google Scholar
Bérard, J. B. [1818–19] ‘Sur le Nombre des Racines Imaginaires des Équations; en Réponse aux Articles de MM. Tédenat et Servois’, Annales de Mathématiques, Pures et Appliquées, 9, pp. 345–72.Google Scholar
Bernays, P. [1947] Review of Pólya [1945], Dialectica 1, pp. 178–88.Google Scholar
Bolzano, B. [1837] Wissenschaftslehre. Leipzig: Meiner, 1914–31.Google Scholar
Bourbaki, N. [1949] Topologie Général. Paris: Hermann.Google Scholar
Bourbaki, N. [1960] Éléments d'Histoire des Mathématiques. Paris: Hermann.Google Scholar
Boyer, C. [1939] The Concepts of the Calculus. New York: Dover, 1949.Google Scholar
Braithwaite, R. B. [1953] Scientific Explanation. Cambridge: Cambridge University Press.Google Scholar
Brouwer, L. E. J. [1952] ‘Historical background, Principles and Methods of Intuitionism’, South African Journal of Science, 49, pp. 139–46.Google Scholar
Carnap, R. [1937] The Logical Syntax of Language. New York and London: Kegan Paul. (Revised translation of Logische Syntax der Sprache, Vienna: Springer, 1934.)Google Scholar
Carslaw, H. S. [1930] Introduction to the Theory of Fourier's Series and Integrals. Third edition. New York: Dover, 1950.Google Scholar
Cauchy, A. L. [1813a] ‘Recherches sur les Polyèdres’, Journal de L'École Polytechnique, 9, pp. 68–86. (Read in February 1811.)Google Scholar
Cauchy, A. L. [1813b] ‘Sur les Polygones et les Polyèdres’, Journal de L'École Polytechnique, 9, pp. 87–98. (Read in January 1812.)Google Scholar
Cauchy, A. L. [1821] Cours d'Analyse de L'École Royale Polytechnique. Paris: de Bure.Google Scholar
Cauchy, A. L. [1826] ‘Mémoire sur les Développements des Functions en Séries Périodiques’, Mémoires de L'Académie des Sciences 6, pp. 603–12.Google Scholar
Cauchy, A. L. [1853] ‘Note sur les Séries Convergentes dont les Divers Terms sont des Fonctions Continues d'une Variable Réelle ou Imaginaire entre des Limites Données’, Comptes Rendus Hebdomadaires des Séances de L'Académie des Sciences, 37, pp. 454–9.Google Scholar
Cayley, A. [1859] ‘On Poinsot's Four New Regular Solids’, The Landon, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th Series, 17, pp. 123–8.Google Scholar
Cayley, A. [1861] ‘On the Partitions of a Close’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th Series, 21, pp. 424–8.CrossRefGoogle Scholar
Church, A. [1956] Introduction to Mathematical Logic, vol. 1. Princeton: Princeton University Press.Google Scholar
Clairaut, A. C. [1741] Elements de Géométrie. Paris: Gauthier-Villars.Google Scholar
Copi, I. M. [1949] ‘Modern Logic and the Synthetic A Priori’, The Journal of Philosophy, 46, pp. 243–5.CrossRefGoogle Scholar
Copi, I. M. [1950] ‘Gödel and the Synthetic A Priori: a Rejoinder’, The Journal of Philosophy, 47, pp. 633–6.CrossRefGoogle Scholar
Crelle, A. L. [1826–7] Lehrbuch der Elemente der Geometrie, vols. 1 and 2, Berlin: Reimer.Google Scholar
Curry, H. B. [1951] Outlines of a Formalist Philosophy of Mathematics. Amsterdam: North Holland.Google Scholar
Darboux, G. [1874a] ‘Lettre à Houel, 12 Janvier’. (Quoted in Rostand, F.: Souci d'exactitude et Scrupules des Mathématiciens. Paris: Librairie Philosophique J. Vrin, 1960, p. 11.)Google Scholar
Darboux, G. [1874b] ‘Lettre à Houel, 19 Fèvrier’. (Quoted in Rostand, F.: Souci d'exactitude et Scrupules des Mathématiciens. Paris: Librairie Philosophique J. Vrin, 1960, p. 194.)Google Scholar
Darboux, G. [1875] ‘Mémoire sur les Fonctions Discontinues’, Annales Scientifiques de L'École Normale Supérieure, second series 4, pp. 57–112.
Darboux, G. [1883] ‘Lettre à Houel, 2 Septembre’. (Quoted in Rostand, F.: Souci d'exactitude et Scrupules des Mathématiciens. Paris: Librairie Philosophique J. Vrin, 1960, p. 261.)Google Scholar
Denjoy, A. [1919] ‘L'Orientation Actuelle des Mathématiques’, Revue du Mois, 20, pp. 18–28.Google Scholar
Descartes, R. [1628] Rules for the Direction of the Mind. English translation in Haldane, E. S. and Ross, G. R. T. (eds.): Descartes’ Philosophical Works, vol. 1, Cambridge: Cambridge University Press, 1911.Google Scholar
Descartes, R. [1639] De Solidorum Elementis. (First published in Foucher de Careil: Oeuvres Inédites de Descartes, vol. 2, Paris: August Durand, 1860, pp. 214–34. For a considerably improved text see C. Adam and P. Tannery (eds.): Oeuvres de Descartes, vol. 10, pp. 257–78, Paris: Cerf, 1908.)Google Scholar
Dieudonné, J. [1939] ‘Les Méthodes Axiomatiques Modernes et les Fondements des Mathématiques’, Revue Scientifique, 77, pp. 224–32.Google Scholar
Diogenes Laertius [c. 200] Vitae Philosophorus. With an English translation by Hicks, R. D.. Vol. 2, London: Heinemann, 1925.Google Scholar
Dirichlet, P. L. [1829] ‘Sur la Convergence des Séries Trigonométriques que servent à représenter une Fonction Arbitraire entre des Limites Données’, Journal für die Reine und Angewandte Mathematik, 4, pp. 157–69.Google Scholar
Dirichlet, P. L. [1837] ‘Über die Darstellung Ganz Willkürlicher Functionen durch Sinus- und Cosinusreihen’, in Dove, H. W. and Moser, L. (eds.): Repertorium der Physik, 1, pp. 152–74.Google Scholar
Dirichlet, P. L. [1853] ‘Letter to Gauss, 20 February, 1853’, in Kronecker, L. (ed.): Werke, vol. 2. Berlin: Reiner, 1897, pp. 385–7.Google Scholar
du Bois-Reymond, P. D. G. [1875] ‘Beweis, das die Coefficienten der Trigono-metrischen Reihe f(x)=∑p=0p=∞(apcospx+bpsinpx) die werte a0=12π displaystyle=“true” ∫−π+πdαf(α),ap=1π displaystyle=“true” ∫−π+πdαf(α)cospα,bp=1π displaystyle=“true” ∫−π+πdαf(α)sinpα haben, jedesmal wenn diese Integrale Endlich und Bestimmt sind’, Abhandlungen der Königlich-Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalischen Classe, 12, 1, pp. 117–66.Google Scholar
du Bois-Reymond, P. D. G. [1876] ‘Untersuchungen über die Convergenz und Divergenz der Fourier'schen Darstellungsformeln’, Abhandlungen der Königlich–Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalischen Classe, 12, 2, pp. i–xxiv and 1–102.Google Scholar
du Bois-Reymond, P. D. G. [1879] ‘Erläuterungen zu den Anfangsgründen der Variationrechnung’, Mathematische Annalen, 15, pp. 282–315, 564–76.Google Scholar
du Bois-Reymond, P. D. G. [1885] Über den Begriff der Länge einer Curve’, Acta Mathematica, 6, pp. 167–8.Google Scholar
Dyck, W. [1888] ‘Beiträge zur Analysis Situs’, Mathematische Annalen, 32, pp. 457–512.CrossRefGoogle Scholar
Einstein, A. [1953] ‘Letter to P. A. Schilpp’. Published in P. A. Schilpp: ‘The Abdication of Philosophy’, Kant Studien, 51, pp. 490–1, 1959–60.Google Scholar
Euler, L. [1756–7] ‘Specimen de usu Observationum in Mathesi Pura’, Novi Commentarii Academiae Scientiarum Petropolitanae, 6, pp. 185–230. Editorial summary, pp. 19–21.Google Scholar
Euler, L. [1758a] ‘Elementa Doctrinae Solidorum’, Novi Commentarii Academiae Scientiarum Petropolitanae, 4. pp. 109–40. (Read in November 1750.)Google Scholar
Euler, L. [1758b] ‘Demonstratio Nonnullarum lnsignium Proprietatus Quibus Solida Hedris Planis Inclusa sunt Praedita’, Novi Commentarii Academiae Scientiarum Petropolitanae, 4, pp. 140–60. (Read in September 1751.)Google Scholar
Eves, H. and Newsom, C. V. [1958] An Introduction to the Foundations and Fundamental Concepts of Mathematics. New York: Rinehart.Google Scholar
Félix, L. [1957] L'Aspect Moderne des Mathématiques. (English translation by J. H. Hlavaty and F. H. Hlavaty: The Modern Aspect of Mathematics, New York: Basic Books, 1960.)Google Scholar
Forder, H. G. [1927] The Foundations of Euclidean Geometry. New York: Dover, 1958.Google Scholar
Fourier, J. [1808] ‘Mémoire sur la Propagation de la Chaleur dans les Corpe Solides (Extrait)’, Nouveau Bulletin des Sciences, par la Société Philomathique de Paris, I, pp. 112–16.Google Scholar
Fréchet, M. [1928] Les Éspaces Abstraits. Paris: Gauthier-Villars.Google Scholar
Fréchet, M. [1938] ‘L'Analyse Générale et la Question des Fondements’, in Gonseth, F. (ed.): Les Entretiens de Zurich, sur les Fondements et la Méthode des Sciences Mathématiques, Zürich: Leemans Frères et Cie, 1941, pp. 53–73.Google Scholar
Frege, G. [1893] Grundgesetze der Arithmetik, vol. 1, Hildesheim: George Olms, 1962.Google Scholar
Gamow, G. [1953] One, Two, Three … Infinity. New York: The Viking Press.Google Scholar
Gauss, C. F. [1813] ‘Disquisitiones Generales Circa Seriem Infinitam 1+αβ1.γ.x+α(α+1)β(β+1)1.2.γ(γ+1)x.x+α(α+1)(α+2)β(β+1)(β+2)1.2.3.γ(γ+1)(γ+2).x3+etc.’, in Werke, vol. 3, pp. 123–62. Leipzig: Teubner.Google Scholar
Gergonne, J. D. [1818] ‘Essai sur la Théorie des Definitions’, Annales de Mathématiques, Pures et Appliquées, 9, pp. 1–35.Google Scholar
Goldschmidt, R. [1933] ‘Some Aspects of Evolution’, Science, 78, pp. 539–47.CrossRefGoogle Scholar
Grunert, J. A. [1827] ‘Einfacher Beweis der von Cauchy und Euler Gefundenen Sätze von Figurennetzen und Polyedern’, Journal für die Reine und Angewandte Mathematik, 2, p. 367.CrossRefGoogle Scholar
Halmos, P. [1950] Measure Theory. New York and London: Van Nostrand Reinhold.CrossRefGoogle Scholar
Hankel, H. [1882] ‘Untersuchungen über die Unendlich oft Oscillierenden und Unstetigen Functionen’, Mathematische Annalen, 20, pp. 63–112.CrossRefGoogle Scholar
Hardy, G. H. [1918] ‘Sir George Stokes and the Concept of Uniform Convergence’, Proceedings of the Cambridge Philosophical Society, 19, pp. 148–56.Google Scholar
Hardy, G. H. [1928] ‘Mathematical Proof’, Mind, 38, pp. 1–25.Google Scholar
Haussner, R. (ed.) [1906] Abhandlungen über die Regelmassigen Sternkörper. Ostwald's Klassiker der Exacten Wissenschaften, No. 151, Leipzig: Engelmann.Google Scholar
Heath, T. L. [1925] The Thirteen Books of Euclid's Elements. Second edition. Cambridge: Cambridge University Press.Google Scholar
Hempel, C. G. [1945] ‘Studies in the Logic of Confirmation, 1 and 2’, Mind, 54, pp. 1–26 and 97–121.Google Scholar
Hermite, C. [1893] ‘Lettre à Stieltjes, 20 Mai 1893’, in Baillaud, B. and Bourget, H. (eds.): Correspondence d'Hermite et de Stieltjes, vol. 2. Paris: Gautheirs-Villars, 1905, pp. 317–19.Google Scholar
Hessel, J. F. [1832] ‘Nachtrag zu dem Euler'schen Lehrsatze von Polyedern’, Journal für die Reine und Angewandte Mathematik, 8, pp. 13–20.Google Scholar
Heyting, A. [1939] ‘Les Fondements des Mathématiques du Point de Vue lntuitionniste’, in Gonseth, F.: Philosophie Mathématique, Paris: Hermann, pp. 73–5.Google Scholar
Heyting, A. [1956] Intuitionism: An Introduction. Amsterdam: North Holland.Google Scholar
Hilbert, D. and Cohn-Vossen, S. [1932] Anschauliche Geometrie. Berlin: Springer. English translation by P. Nemenyi: Geometry and the Imagination. New York: Chelsea, 1956.CrossRefGoogle Scholar
Hobbes, T. [1651] Leviathan, in Molesworth, W. (ed.): The English Works of Thomas Hobbes, vol. 3, London: John Bohn, 1839.Google Scholar
Hobbes, T. [1656] The Questions Concerning Liberty, Necessity and Chance, in Molesworth, W. (ed.): The English Works of Thomas Hobbes, vol. 5, London: John Bohn, 1841.Google Scholar
Hölder, O. [1924] Die Mathematische Methode. Berlin: Springer.CrossRefGoogle Scholar
Hoppe, R. [1879] ‘Ergänzung des Eulerschen Satzes von den Polyedern’, Archiv der Mathematik und Physik, 63, pp. 100–3.Google Scholar
Husserl, E. [1900] Logische Untersuchungen, vol. 1. Tubingen: Niemeyer, 1968.Google Scholar
Jonquières, E. de [1890a] ‘Note sur un Point Fondamental de la Théorie des Polyèdres’, Comptes Rendus des Séances de L'Académie des Sciences, 110, pp. 110-15,Google Scholar
Jonquières, E. de [1890b] ‘Note sur le Théorème d'Euler dans la Théorie des Polyèdres’, Comptes Rendus des Séances de L'Académie des Sciences, 110, pp. 169–73.Google Scholar
Jordan, C. [1866a] ‘Recherches sur les Polyèdres’, Journal für die Reine und Angewandte Mathematik, 66, pp. 22–85.Google Scholar
Jordan, C. [1866b] ‘Résumé de Recherches sur la Symétrie des Polyèdres non Euleriens’, Jounal für die Reine und Angewandte Mathematik, 66, pp. 86–91.Google Scholar
Jordan, C. [1881] ‘Sur Ia Série de Fourier’, Comptes Rendus des Séances de L'Académie des Sciences, 92, pp. 228–33.Google Scholar
Jordan, C. [1887] Cours d'Analyse de L'École Polytechnique, vol 3, first edition. Paris: Gauthier-Villars.Google Scholar
Jordan, C. [1893] Cours d'Analyse de L'École Polytechnique, vol. 1, second edition. Paris: Gauthier-Villars.Google Scholar
Jourdain, P. E. B. [1912] ‘Note on Fourier's Influence on the Conceptions of Mathematics’, Proceedings of the Fifth International Congress of Mathematics, 2, pp. 526–7.Google Scholar
Kant, I. [1781] Critik der Reinen Verunft. First edition.
Kepler, I. [1619] Harmonice Mundi, in Caspar, M. and Dyck, W. von (eds.): Gesammelte Werke, vol. 6. Munich: C. H. Beck, 1940.Google Scholar
Knopp, K. [1928] Theory and Application of Infinite Series. (Translated by Young, R. C., London and Glasgow: Blackie, 1928.)Google Scholar
Lakatos, I. [1961] Essays in the Logic of Mathematical Discovery, unpublished Ph.D. Dissertation, Cambridge.Google Scholar
Lakatos, I. [1962] ‘Infinite Regress and the Foundations of Mathematics’, Aristotelian Society Supplementary Volumes, 36, pp. 155–84.Google Scholar
Lakatos, I. [1970] ‘Falsification and the Methodology of Scientific Research Programmes’, in Lakatos, I. and Musgrave, A. E. (eds.): Criticism and the Growth of Knowledge, Cambridge: Cambridge University Press, pp. 91–196.CrossRefGoogle Scholar
Landau, E. [1930] Grundlagen der Analysis. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Lebesgue, H. [1923] ‘Notice sur la Vie et les Travaux de Camille Jordan’, Mémoires de L'Académie de L'Institute de France, 58, pp. 34–66. Reprinted in H. Lebesgue, Notices d'Histoire des Mathématiques, Genève. pp. 40–65.Google Scholar
Lebesgue, H. [1928] Leçons sur L'Intégration et la Recherche des Fonctions Primitives. Paris: Gauthier-Villars. (Second, enlarged edition of the original 1905 version.)Google Scholar
Legendre, A.-M. [1809] Éléments de Géométrie. Eighth edition. Paris: Didot. The first edition appeared in 1794.Google Scholar
Leibniz, G. W. F. [1687] ‘Letter to Bayle’, in Gerhardt, C. I. (ed.): Philosophische Schriften, vol. 3, Hildesheim: George Olms (1965), p. 52.Google Scholar
Lhuilier, S. A. J. [1786] Exposition Élémentaire des Principes des Calculs Supérieurs. Berlin: G. J. Decker.Google Scholar
Lhuilier, S. A. J. [1812–13a] ‘Mémoire sur la Polyèdrométrie’, Annales de Mathématiques, Pures et Appliquées, 3, pp. 168–91.Google Scholar
Lhulier, S. A. J. [1812–13b] ‘Mémoire sur les Solides Réguliers’, Annales de Mathématiques, Pures et Appliquées, 3, pp. 233–7.Google Scholar
Listing, J. B. [1861] ‘Der Census Räumlicher Complexe’, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 10, pp. 97–182.Google Scholar
Loève, M. [1955] Probability Theory. New York: Van Nostrand.Google Scholar
Matthiessen, L. [1863] ‘Über die Scheinbaren Einschränkungen des Euler'schen Satzes von den Polyedern’, Zeitschrift für Mathematik und Physik, 8, pp. 449–50.Google Scholar
Meister, A. L. F. [1771] ‘Generalia de Genesi Figurarum Planarum et inde Pendentibus Earum Affectionibus’, Novi Commentarii Societatis Reglae Scientiarum Gottingensis, 1, pp. 144–80.Google Scholar
Menger, K. [1928] Dimensionstheorie. Berlin: Teubner.CrossRefGoogle Scholar
Möbius, A. F. [1827] Der Barycentrische Calcul. Hildesheim: George Olms, 1968.Google Scholar
Möbius, A. F. [1865] ‘Über die Bestimmung des Inhaltes eines Polyeders’, Berichte Königlich-Sächsischen Gesellschaft der Wissenschaften, Mathematisch–Physikalische Classe, 17, pp. 31–68.Google Scholar
Moigno, F. N. M. [1840–1] Leçons de Calcul Differentiel et de Calcul Intégral, 2 vols. Paris: Bachelier.Google Scholar
Moore, E. H. [1902] ‘On the Foundations of Mathematics’, Science, 17, pp. 401–16.Google Scholar
Morgan, A. de [1842] The Differential and Integral Calculus. London: Baldwin and Gadock.Google Scholar
Munroe, M. E. [1953] Introduction to Measure and Integration. Cambridge, Massachusetts: Addison-Wesley.Google Scholar
Neumann, J. von [1947] ‘The Mathematician’, in Heywood, R. B. (ed.): The Works of the Mind. Chicago: Chicago University Press.Google Scholar
Newton, I. [1717] Opticks. Second edition. London: Dover, 1952.Google Scholar
Olivier, L. [1826] ‘Bemerkungen über Figuren, die aus Behebigen, von Geraden Linien Umschlossenen Figuren Zusammengesetzt sind’, Journal für die Reine und Angewandt Mathematik, 1, pp. 227–31.Google Scholar
Pascal, B. [1659] Les Réflexions sur la Géométrie en Général (De L'Ésprit Géométrique et de L'Art de Persuader). In Chevalier, J. (ed.): Oeuvres Complètes, Paris: La Librairie Gallimard, 1954, pp. 575–604.Google Scholar
Peano, G. [1894] Notations de Logique Mathématique. Turin: Guadagnini.Google Scholar
Pierpont, J. [1905] The Theory of Functions of Real Variables, vol. 1. New York: Dover, 1959.Google Scholar
Poincaré, H. [1893] ‘Sur la Généralisation d'un Théorème d'Euler relatif aux Polyèdres’, Comptes Rendus Je Séances de L'Académie des Sciences, 117, p. 144.Google Scholar
Poincaré, H. [1899] ‘Complément à L'Analysis Situs’, Rendiconti del Circolo Matematico di Palermo, 13, pp. 285–343.Google Scholar
Poincaré, H. [1902] La Science et L'Hypothèse. Paris: Flammarion. Authorised English translation by G. B. Halsted: The Foundations of Science, Lancaster, Pennsylvania: The Science Press, 1913, pp. 27–197.Google Scholar
Poincaré, H. [1905] La Valeur de la Science. Paris: Flammarion. Authorised English translation by G. B. Halsted: The Foundations of Science, Lancaster, Pennsylvania: The Science Press, 1913, pp. 359–546.Google Scholar
Poincaré, H. [1908] Science et Méthode. Paris: Flammarion. Authorised English translation by G. B. Halsted: The Foundations of Science, Lancaster, Pennsylvania: The Science Press, pp. 546–854.Google Scholar
Poinsot, L. [1810] ‘Mémoire sur les Polygones et les Polyèdres’, Journal de L'École Polytéchnique, 4, pp. 16–48. (Read in July 1809.)Google Scholar
Poinsot, L. [1858] ‘Note sur la Théorie des Polyèdres’, Comptes Rendus de L'Académie des Sciences, 46, pp. 65–79.Google Scholar
Pólya, G. [1945] How to Solve It. Princeton: Princeton University Press.Google Scholar
Pólya, G. [1954] Mathematics and Plausible Reasoning, vols. 1 and 2. London: Oxford University Press.Google Scholar
Pólya, G. [1962a] Mathematical Discovery, vol. 1. New York: Wiley.Google Scholar
Pólya, G. [1962b] ‘The Teaching of Mathematics and the Biogenetic Law’, in Good, I. J. (ed.): The Scientist Speculates. London: Heinemann, pp. 352–6.Google Scholar
Pólya, G. and Szegö, G. [1927] Aufgaben und Lehrsätze aus der Analysis, vol. 1. Berlin: Springer.Google Scholar
Popper, K. R. [1934] Logik der Forschung. Vienna: Springer.Google Scholar
Popper, K. R. [1935] ‘Letter to the Editor’, Erkenntnis, 3, pp. 426–9. Republished in Appendix *i to Popper [1959], pp. 311–14.Google Scholar
Popper, K. R. [1945] The Open Society and its Enemies. 2 volumes, London: Routledge and Kegan Paul.Google Scholar
Popper, K. R. [1947] ‘Logic Without Assumptions’, Aristotelian Society Proceedings, 47, pp. 251–92.CrossRefGoogle Scholar
Popper, K. R. [1952] ‘The Nature of Philosophical Problems and their Roots in Science’, The British Journal for the Philosophy of Science, 3, pp. 124–56. Reprinted in Popper [1963a].Google Scholar
Popper, K. R. [1957] The Poverty of Historicism. London: Routledge and Kegan Paul.Google Scholar
Popper, K. R. [1959] The Logic of Scientific Discovery. English translation of [1934].London: Hutchinson.Google Scholar
Popper, K. R. [1963a] Conjectures and Refutations. London: Routledge and Kegan Paul.Google Scholar
Popper, K. R. [1963b] ‘Science: Problems, Aims, Responsibilities’, Federation of American Societies for Experimental Biology: Federation Proceedings, 22, pp. 961–72.Google ScholarPubMed
Popper, K. R. [1972] Objective Knowledge. Oxford: Oxford University Press.Google Scholar
Pringsheim, A. [1916] ‘Grundlagen der Allgemeinen Functionenlehre’, in Burkhardt, M., Wutinger, W. and Fricke, R. (eds.): Encyklopädie der Mathematischen Wissenschaften, vol. 2. Erste Teil, Erste Halbband, pp. 1–53. Leipzig: Teubner.Google Scholar
Quine, W. V. O. [1951] Mathematical Logic. Revised edition. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Ramsey, F. P. [1931] The Foundations of Mathematics and Other Essays. Edited by Braithwaite, R. B.. London: Kegan Paul.Google Scholar
Raschig, L. [1891] ‘Zum Eulerschen Theorem der Polyedrometrie’, Festschrift des Gymnasium Schneeberg.
Reichardt, H. [1941] ‘Losung der Aufgabe 274’, Jarhresberichte der Deutschen Mathematiker-Vereinigung, 51, p. 23.Google Scholar
Reichenbach, H. [1947] Elements of Symbolic Logic. New York: Macmillan.Google Scholar
Reiff, R. [1889] Geschichte der Unendlichen Reihen. Tubingen: H. Laupp'schen.Google Scholar
Reinhardt, C. [1885] ‘Zu Möbius Polyedertheorie. Vorgelegt von F. Klein’, Berichte über die Verhandlungen der Königlich-Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 37, pp. 106–25.Google Scholar
Riemann, B. [1851] Grundlagen der eine Allgemeine Theorie der Functionen einer Veranderlichen Complexen Grösse (inaugural dissertation). In Weber, M. and Dedekind, R. (eds.): Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass. Second edition. Leipzig: Teubner, 1892, pp. 3–48.Google Scholar
Riemann, B. [1868] ‘Über die Darstellbarkeit einer Function durch eine Trigonometrische Reihe’, Abhandlungen der Königlichen Gesellschafi der Wissenschaften zu Göttingen, 13, pp. 87–132.Google Scholar
Robinson, R. [1936] ‘Analysis in Greek Geometry’, Mind, 45, pp. 464–73.Google Scholar
Robinson, R. [1953] Plato's Earlier Dialectic. Oxford: Oxford University Press.Google Scholar
Rudin, W. [1953] Principles of Mathematical Analysis. First edition. New York: McGraw-Hill.Google Scholar
Russell, B. [1901] ‘Recent Work in the Philosophy of Mathematics’, The International Monthly, 3. Reprinted as ‘Mathematics and the Metaphysicians’, in his [1918], pp. 59–74.
Russell, B. [1903] Principles of Mathematics. London: Allen and Unwin.Google Scholar
Russell, B. [1918] Mysticism and Logic. London: Allen and Unwin.Google Scholar
Russell, B. [1959] My Philosophical Development. London: Allen and Unwin.Google Scholar
Russell, B. and Whitehead, A. N. [1910–13] Principia Mathematica. Vol. I, 1910; Vol. 2, 1912; Vol. 3, 1913. Cambridge: Cambridge University Press.Google Scholar
Saks, S. [1933] Théori de L'Intégrale. English translation by L. C. Young: Theory of the Integral. Second edition. New York: Hamer, 1937.Google Scholar
Schläfli, L. [1852] ‘Theorie der Vielfachen Kontinuität’. Published posthumously in Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft für die Gesamten Naturwissenschaften, 38, pp. 1–237. Zürich, 1901.Google Scholar
Schröder, E. [1862] ‘Über die Vielecke von Gebrochener Seitenzahl oder die Bedeutung der Stern-Polygone in der Geometrie’, Zeitschrift für Mathematik und Physik, 7, pp. 55–64.Google Scholar
Seidel, P. L. [1847] ‘Note über eine Eigenschaft der Reihen, welche Discontinuirliche Functionen Darstellen’, Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften, 5, pp. 381–93.Google Scholar
Sextus Empiricus [c. 190] Against the Logicians. Greek text with an English translation by Bury, R. G.. London: Heinemann, 1933.Google Scholar
Sommerville, D. M. Y. [1929] An Introduction to the Geometry of N Dimensions. London: Dover, 1958.Google Scholar
Steiner, J. [1826] ‘Leichter Beweis eines Stereometrischen Satzes von Euler’, Journal für die Reine und Angewandte Mathematik, 1, pp. 364–7.Google Scholar
Steinhaus, H. [1960] Mathematical Snapshots. Revised and enlarged edition. New York: Oxford University Press.Google Scholar
Steinitz, E. [1914–31] ‘Polyeder und Raumeinteilungen’, in Meyer, W. F. and Mohrmann, H. (eds.): Encyklopädie der Mathematischen Wissenschaften, vol. 3, AB. 12. Leipzig: Teubner.Google Scholar
Stokes, G. [1848] ‘On the Critical Values of the Sums of Periodic Series’, Transactions of the Cambridge Philosophical Society, 8, pp. 533–83.Google Scholar
Szabó, Á. [1958] ‘“Deiknymi” als Mathematischer Terminus fur “Beweisen”’, Maia, N.S. 10, pp. 1–26.Google Scholar
Szabó, Á. [1960] ‘Anfänge des Euklidischen Axiomensystems’, Archive for the History of Exact Sciences, 1, pp. 37–106.CrossRefGoogle Scholar
Szökefalvi-Nagy, B. [1954] Valós Függvények és Függvénysorok. Budapest: Tankönyvkiadó.Google Scholar
Tarski, A. [1930a] ‘Über einige Fundamentale Begriffe der Metamathematik’, Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, 23, Cl. III, pp. 22–9. Published in English in J. H. Woodger (ed.) [1956], pp. 30–7.Google Scholar
Tarski, A. [1930b] ‘Fundamentale Begriffe der Methodologie der Deduktiven Wissenschaften, 1’, Monatshefte für Mathematik und Physik, 37, pp. 361–404. Published in English in J. H. Woodger (ed.) [1956], pp. 60–109.Google Scholar
Tarski, A. [1935] ‘On the Concept of Logical Consequence’. Published in J. H. Woodger (ed.) [1956], pp. 409–20. This paper was read in Paris in 1935.
Tarski, A. [1941] Introduction to Logic and to the Methodology of Deductive Sciences. Second edition. New York: Oxford University Press, 1946. (This is a partially modified and extended version of On Mathematical Logic and Deductive Method, published in Polish in 1936 and in German translation in 1937.)Google Scholar
Turquette, A. [1950] ‘Gödel and the Synthetic A Priori’, The Journal of Philosophy, 47, pp. 125–9.CrossRefGoogle Scholar
Waerden, B. L. van der [1941] ‘Topologie und Uniformisierung der Riemannschen Flächen’, Berichte über die Verhandlungen der Königlich-Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 93, pp. 147–60.Google Scholar
Whewell, W. [1858] History of Scientific Ideas. Vol. 1. (Part one of the third edition of The Philosophy of the Inductive Sciences.)
Wilder, R. L. [1944] ‘The Nature of Mathematical Proof’, The American Mathematical Monthly, 52, pp. 309–23.Google Scholar
Woodger, J. H. (ed.) [1956] Logic, Semantics, Metamathematics. Oxford: Clarendon Press.Google Scholar
Young, W. H. [1903–4] ‘On Non-Uniform Convergence and Term-by-Term Integration of Series’, Proceedings of the London Mathematical Society, 1, second series, pp. 89–102.Google Scholar
Zacharias, M. [1914–31] ‘Elementargeometrie’, in Meyer, W. F. and Mohrmann, H. (eds.): Encyklopädie der Mathematischen Wissenschaften, 3, Erste Teil, Zweiter Halbband, pp. 862–1176. Leipzig: Teubner.Google Scholar
Zygmund, A. [1935] Trigonometrical Series. New York: Chelsea, 1952.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×