Skip to main content Accessibility help
×
  • Cited by 35
Publisher:
Cambridge University Press
Online publication date:
November 2015
Print publication year:
2015
Online ISBN:
9781316286425

Book description

Imre Lakatos's Proofs and Refutations is an enduring classic, which has never lost its relevance. Taking the form of a dialogue between a teacher and some students, the book considers various solutions to mathematical problems and, in the process, raises important questions about the nature of mathematical discovery and methodology. Lakatos shows that mathematics grows through a process of improvement by attempts at proofs and critiques of these attempts, and his work continues to inspire mathematicians and philosophers aspiring to develop a philosophy of mathematics that accounts for both the static and the dynamic complexity of mathematical practice. With a specially commissioned Preface written by Paolo Mancosu, this book has been revived for a new generation of readers.

Reviews

'For anyone interested in mathematics who has not encountered the work of the late Imre Lakatos before, this book is a treasure; and those who know well the famous dialogue, first published in 1963–4 in the British Journal for the Philosophy of Science, that forms the greater part of this book, will be eager to read the supplementary material … the book, as it stands, is rich and stimulating, and, unlike most writings on the philosophy of mathematics, succeeds in making excellent use of detailed observations about mathematics as it is actually practised.'

Michael Dummett Source: Nature

'The whole book, as well as being a delightful read, is of immense value to anyone concerned with mathematical education at any level.'

C. W. Kilmister Source: The Times Higher Education Supplement

'In this book the late Imre Lakatos explores 'the logic of discovery' and 'the logic of justification' as applied to mathematics … The arguments presented are deep … but the author's lucid literary style greatly facilitates their comprehension … The book is destined to become a classic. It should be read by all those who would understand more about the nature of mathematics, of how it is created and how it might best be taught.'

Source: Education

‘How is mathematics really done, and - once done - how should it be presented? Imre Lakatos had some very strong opinions about this. The current book, based on his PhD work under George Polya, is a classic book on the subject. It is often characterized as a work in the philosophy of mathematics, and it is that - and more. The argument, presented in several forms, is that mathematical philosophy should address the way that mathematics is done, not just the way it is often packaged for delivery.’

William J. Satzer Source: MAA Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Abel, N. H. [1825] ‘Letter to Holmboë’, in Lie, S. and Sylow, L. (eds.): Oeuvres Complètes, vol. 2. Christiana: Grøndahl, 1881 Google Scholar, pp. 257–8.
Abel, N. H. [1826a] ‘Letter to Hansteen’, in Lie, S. and Sylow, L. (eds.): Oeuvres Complètes, vol. 2. Christiania: Grøndahl, 1881 Google Scholar, pp. 263–5.
Abel, N. H. [1826b] ‘Untersuchungen über die Reihe 1+m1x+m.(m−1)2x2+m.(m−1)(m−2)2.3x3…’, Journal für die Reine und Angewandte Mathematik, 1 Google Scholar, pp. 311–39.
Abel, N. H. [1881] ‘Sur les Séries’, in Lie, S. and Sylow, L. (eds.): Oeuvres Complètes, vol. 2. Christiania Google Scholar: Grøndahl, pp. 197–205.
Aetius [c. 150] Placita, in Diels, H. (ed.): Doxographi Graeci. Berolini: Reimeri, 1879 Google Scholar.
Aleksandrov, A. D. [1956] ‘A General View of Mathematics’, in Aleksandrov, A. D., Kolmogorov, A. N. and Lavrent'ev, M. A. (eds.): Mathematics: its Content, Methods and Meaning. (English translation by S. H. Gould, K. A. Hirsch and T. Bartha. Cambridge, Massachusetts: M.I.T. Press, 1963 Google Scholar).
Ambrose, A. [1959] ‘Proof and the Theorem Proved’, Mind, 68 Google Scholar, pp. 435–45.
Arber, A. [1954] The Mind and the Eye. Cambridge Google Scholar: Cambridge University Press.
Arnauld, A. and Nicole, P. [1724] La Logique, ou L'Art de Penser. Lille Google Scholar: Publications de la Faculté des Lettres et Sciences Humaines de L'Université de Lille, 1964.
Bacon, F. [1620] Novum Organum. English translation in Ellis, R. L. and Spedding, J. (eds.): The Philosophical Works of Francis Bacon. London Google Scholar: Routledge, 1905, pp. 241–387.
Baltzer, R. [1862] Die Elemente der Mathematik, vol. 2. Leipzig Google Scholar: Hirzel.
Bartley, W. W. [1962] Retreat to Commitment. New York Google Scholar: Alfred A. Knopf
Becker, J. C. [1869a] ‘Über Polyeder’, Zeitschrift für Mathematik und Physik, 14 Google Scholar, pp. 65–76.
Becker, J. C. [1869b] ‘Nachtrag zu dem Aufsätze über Polyeder’, Zeitschrift für Mathematik und Physik, 14 Google Scholar, pp. 337–343.
Becker, J. C. [1874] ‘Neuer Beweis und Erweiterung eines Fundamentalsatzes über Polyederflächen’, Zeitschrift für Mathematik und Physik, 19 Google Scholar, pp. 459-60.
Bell, E. T. [1945] The Development of Mathematics. Second edition. New York Google Scholar: McGraw-Hill.
Bérard, J. B. [1818–19] ‘Sur le Nombre des Racines Imaginaires des Équations; en Réponse aux Articles de MM. Tédenat et Servois’, Annales de Mathématiques, Pures et Appliquées, 9 Google Scholar, pp. 345–72.
Bernays, P. [1947] Review of Pólya [1945], Dialectica 1 Google Scholar, pp. 178–88.
Bolzano, B. [1837] Wissenschaftslehre. Leipzig Google Scholar: Meiner, 1914–31.
Bourbaki, N. [1949] Topologie Général. Paris Google Scholar: Hermann.
Bourbaki, N. [1960] Éléments d'Histoire des Mathématiques. Paris Google Scholar: Hermann.
Boyer, C. [1939] The Concepts of the Calculus. New York: Dover, 1949 Google Scholar.
Braithwaite, R. B. [1953] Scientific Explanation. Cambridge Google Scholar: Cambridge University Press.
Brouwer, L. E. J. [1952] ‘Historical background, Principles and Methods of Intuitionism’, South African Journal of Science, 49 Google Scholar, pp. 139–46.
Carnap, R. [1937] The Logical Syntax of Language. New York and London Google Scholar: Kegan Paul. (Revised translation of Logische Syntax der Sprache, Vienna: Springer, 1934.)
Carslaw, H. S. [1930] Introduction to the Theory of Fourier's Series and Integrals. Third edition. New York: Dover, 1950 Google Scholar.
Cauchy, A. L. [1813a] ‘Recherches sur les Polyèdres’, Journal de L'École Polytechnique, 9 Google Scholar, pp. 68–86. (Read in February 1811.)
Cauchy, A. L. [1813b] ‘Sur les Polygones et les Polyèdres’, Journal de L'École Polytechnique, 9 Google Scholar, pp. 87–98. (Read in January 1812.)
Cauchy, A. L. [1821] Cours d'Analyse de L'École Royale Polytechnique. Paris Google Scholar: de Bure.
Cauchy, A. L. [1826] ‘Mémoire sur les Développements des Functions en Séries Périodiques’, Mémoires de L'Académie des Sciences 6 Google Scholar, pp. 603–12.
Cauchy, A. L. [1853] ‘Note sur les Séries Convergentes dont les Divers Terms sont des Fonctions Continues d'une Variable Réelle ou Imaginaire entre des Limites Données’, Comptes Rendus Hebdomadaires des Séances de L'Académie des Sciences, 37 Google Scholar, pp. 454–9.
Cayley, A. [1859] ‘On Poinsot's Four New Regular Solids’, The Landon, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th Series, 17 Google Scholar, pp. 123–8.
Cayley, A. [1861] ‘On the Partitions of a Close’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th Series, 21 CrossRef | Google Scholar, pp. 424–8.
Church, A. [1956] Introduction to Mathematical Logic, vol. 1. Princeton Google Scholar: Princeton University Press.
Clairaut, A. C. [1741] Elements de Géométrie. Paris Google Scholar: Gauthier-Villars.
Copi, I. M. [1949] ‘Modern Logic and the Synthetic A Priori’, The Journal of Philosophy, 46 CrossRef | Google Scholar, pp. 243–5.
Copi, I. M. [1950] ‘Gödel and the Synthetic A Priori: a Rejoinder’, The Journal of Philosophy, 47 CrossRef | Google Scholar, pp. 633–6.
Crelle, A. L. [1826–7] Lehrbuch der Elemente der Geometrie, vols. 1 and 2, Berlin Google Scholar: Reimer.
Curry, H. B. [1951] Outlines of a Formalist Philosophy of Mathematics. Amsterdam Google Scholar: North Holland.
Darboux, G. [1874a] ‘Lettre à Houel, 12 Janvier’. (Quoted in Rostand, F.: Souci d'exactitude et Scrupules des Mathématiciens. Paris: Librairie Philosophique J. Vrin, 1960 Google Scholar, p. 11.)
Darboux, G. [1874b] ‘Lettre à Houel, 19 Fèvrier’. (Quoted in Rostand, F.: Souci d'exactitude et Scrupules des Mathématiciens. Paris: Librairie Philosophique J. Vrin, 1960 Google Scholar, p. 194.)
Darboux, G. [1875 Google Scholar] ‘Mémoire sur les Fonctions Discontinues’, Annales Scientifiques de L'École Normale Supérieure, second series 4, pp. 57–112.
Darboux, G. [1883] ‘Lettre à Houel, 2 Septembre’. (Quoted in Rostand, F.: Souci d'exactitude et Scrupules des Mathématiciens. Paris Google Scholar: Librairie Philosophique J. Vrin, 1960, p. 261.)
Denjoy, A. [1919] ‘L'Orientation Actuelle des Mathématiques’, Revue du Mois, 20 Google Scholar, pp. 18–28.
Descartes, R. [1628] Rules for the Direction of the Mind. English translation in Haldane, E. S. and Ross, G. R. T. (eds.): Descartes’ Philosophical Works, vol. 1, Cambridge Google Scholar: Cambridge University Press, 1911.
Descartes, R. [1639] De Solidorum Elementis. (First published in Foucher de Careil: Oeuvres Inédites de Descartes, vol. 2, Paris Google Scholar: August Durand, 1860, pp. 214–34. For a considerably improved text see C. Adam and P. Tannery (eds.): Oeuvres de Descartes, vol. 10, pp. 257–78, Paris: Cerf, 1908.)
Dieudonné, J. [1939] ‘Les Méthodes Axiomatiques Modernes et les Fondements des Mathématiques’, Revue Scientifique, 77 Google Scholar, pp. 224–32.
Diogenes Laertius [c. 200] Vitae Philosophorus. With an English translation by Hicks, R. D.. Vol. 2, London: Heinemann, 1925 Google Scholar.
Dirichlet, P. L. [1829] ‘Sur la Convergence des Séries Trigonométriques que servent à représenter une Fonction Arbitraire entre des Limites Données’, Journal für die Reine und Angewandte Mathematik, 4 Google Scholar, pp. 157–69.
Dirichlet, P. L. [1837] ‘Über die Darstellung Ganz Willkürlicher Functionen durch Sinus- und Cosinusreihen’, in Dove, H. W. and Moser, L. (eds.): Repertorium der Physik, 1 Google Scholar, pp. 152–74.
Dirichlet, P. L. [1853] ‘Letter to Gauss, 20 February, 1853’, in Kronecker, L. (ed.): Werke, vol. 2. Berlin Google Scholar: Reiner, 1897, pp. 385–7.
du Bois-Reymond, P. D. G. [1875] ‘Beweis, das die Coefficienten der Trigono-metrischen Reihe f(x)=∑p=0p=∞(apcospx+bpsinpx) die werte a0=12π displaystyle=“true” ∫−π+πdαf(α),ap=1π displaystyle=“true” ∫−π+πdαf(α)cospα,bp=1π displaystyle=“true” ∫−π+πdαf(α)sinpα haben, jedesmal wenn diese Integrale Endlich und Bestimmt sind’, Abhandlungen der Königlich-Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalischen Classe, 12 Google Scholar, 1, pp. 117–66.
du Bois-Reymond, P. D. G. [1876] ‘Untersuchungen über die Convergenz und Divergenz der Fourier'schen Darstellungsformeln’, Abhandlungen der Königlich–Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalischen Classe, 12 Google Scholar, 2, pp. i–xxiv and 1–102.
du Bois-Reymond, P. D. G. [1879] ‘Erläuterungen zu den Anfangsgründen der Variationrechnung’, Mathematische Annalen, 15 Google Scholar, pp. 282–315, 564–76.
du Bois-Reymond, P. D. G. [1885] Über den Begriff der Länge einer Curve’, Acta Mathematica, 6 Google Scholar, pp. 167–8.
Dyck, W. [1888] ‘Beiträge zur Analysis Situs’, Mathematische Annalen, 32 CrossRef | Google Scholar, pp. 457–512.
Einstein, A. [1953] ‘Letter to P. A. Schilpp’. Published in P. A. Schilpp: ‘The Abdication of Philosophy’, Kant Studien, 51 Google Scholar, pp. 490–1, 1959–60.
Euler, L. [1756–7] ‘Specimen de usu Observationum in Mathesi Pura’, Novi Commentarii Academiae Scientiarum Petropolitanae, 6 Google Scholar, pp. 185–230. Editorial summary, pp. 19–21.
Euler, L. [1758a] ‘Elementa Doctrinae Solidorum’, Novi Commentarii Academiae Scientiarum Petropolitanae, 4 Google Scholar. pp. 109–40. (Read in November 1750.)
Euler, L. [1758b] ‘Demonstratio Nonnullarum lnsignium Proprietatus Quibus Solida Hedris Planis Inclusa sunt Praedita’, Novi Commentarii Academiae Scientiarum Petropolitanae, 4 Google Scholar, pp. 140–60. (Read in September 1751.)
Eves, H. and Newsom, C. V. [1958] An Introduction to the Foundations and Fundamental Concepts of Mathematics. New York Google Scholar: Rinehart.
Félix, L. [1957] L'Aspect Moderne des Mathématiques. (English translation by J. H. Hlavaty and F. H. Hlavaty: The Modern Aspect of Mathematics, New York Google Scholar: Basic Books, 1960.)
Forder, H. G. [1927] The Foundations of Euclidean Geometry. New York Google Scholar: Dover, 1958.
Fourier, J. [1808] ‘Mémoire sur la Propagation de la Chaleur dans les Corpe Solides (Extrait)’, Nouveau Bulletin des Sciences, par la Société Philomathique de Paris, I Google Scholar, pp. 112–16.
Fréchet, M. [1928] Les Éspaces Abstraits. Paris Google Scholar: Gauthier-Villars.
Fréchet, M. [1938] ‘L'Analyse Générale et la Question des Fondements’, in Gonseth, F. (ed.): Les Entretiens de Zurich, sur les Fondements et la Méthode des Sciences Mathématiques, Zürich Google Scholar: Leemans Frères et Cie, 1941, pp. 53–73.
Frege, G. [1893] Grundgesetze der Arithmetik, vol. 1, Hildesheim Google Scholar: George Olms, 1962.
Gamow, G. [1953] One, Two, Three … Infinity. New York Google Scholar: The Viking Press.
Gauss, C. F. [1813] ‘Disquisitiones Generales Circa Seriem Infinitam 1+αβ1.γ.x+α(α+1)β(β+1)1.2.γ(γ+1)x.x+α(α+1)(α+2)β(β+1)(β+2)1.2.3.γ(γ+1)(γ+2).x3+etc.’, in Werke, vol. 3 Google Scholar, pp. 123–62. Leipzig: Teubner.
Gergonne, J. D. [1818] ‘Essai sur la Théorie des Definitions’, Annales de Mathématiques, Pures et Appliquées, 9 Google Scholar, pp. 1–35.
Goldschmidt, R. [1933] ‘Some Aspects of Evolution’, Science, 78 CrossRef | Google Scholar, pp. 539–47.
Grunert, J. A. [1827] ‘Einfacher Beweis der von Cauchy und Euler Gefundenen Sätze von Figurennetzen und Polyedern’, Journal für die Reine und Angewandte Mathematik, 2 CrossRef | Google Scholar, p. 367.
Halmos, P. [1950] Measure Theory. New York and London CrossRef | Google Scholar: Van Nostrand Reinhold.
Hankel, H. [1882] ‘Untersuchungen über die Unendlich oft Oscillierenden und Unstetigen Functionen’, Mathematische Annalen, 20 CrossRef | Google Scholar, pp. 63–112.
Hardy, G. H. [1918] ‘Sir George Stokes and the Concept of Uniform Convergence’, Proceedings of the Cambridge Philosophical Society, 19 Google Scholar, pp. 148–56.
Hardy, G. H. [1928] ‘Mathematical Proof’, Mind, 38 Google Scholar, pp. 1–25.
Haussner, R. (ed.) [1906] Abhandlungen über die Regelmassigen Sternkörper. Ostwald's Klassiker der Exacten Wissenschaften, No. 151, Leipzig Google Scholar: Engelmann.
Heath, T. L. [1925] The Thirteen Books of Euclid's Elements. Second edition. Cambridge Google Scholar: Cambridge University Press.
Hempel, C. G. [1945] ‘Studies in the Logic of Confirmation, 1 and 2’, Mind, 54 Google Scholar, pp. 1–26 and 97–121.
Hermite, C. [1893] ‘Lettre à Stieltjes, 20 Mai 1893’, in Baillaud, B. and Bourget, H. (eds.): Correspondence d'Hermite et de Stieltjes, vol. 2. Paris: Gautheirs-Villars, 1905 Google Scholar, pp. 317–19.
Hessel, J. F. [1832] ‘Nachtrag zu dem Euler'schen Lehrsatze von Polyedern’, Journal für die Reine und Angewandte Mathematik, 8 Google Scholar, pp. 13–20.
Heyting, A. [1939] ‘Les Fondements des Mathématiques du Point de Vue lntuitionniste’, in Gonseth, F.: Philosophie Mathématique, Paris Google Scholar: Hermann, pp. 73–5.
Heyting, A. [1956] Intuitionism: An Introduction. Amsterdam Google Scholar: North Holland.
Hilbert, D. and Cohn-Vossen, S. [1932] Anschauliche Geometrie. Berlin CrossRef | Google Scholar: Springer. English translation by P. Nemenyi: Geometry and the Imagination. New York: Chelsea, 1956.
Hobbes, T. [1651] Leviathan, in Molesworth, W. (ed.): The English Works of Thomas Hobbes, vol. 3, London: John Bohn, 1839 Google Scholar.
Hobbes, T. [1656] The Questions Concerning Liberty, Necessity and Chance, in Molesworth, W. (ed.): The English Works of Thomas Hobbes, vol. 5, London: John Bohn, 1841 Google Scholar.
Hölder, O. [1924] Die Mathematische Methode. Berlin CrossRef | Google Scholar: Springer.
Hoppe, R. [1879] ‘Ergänzung des Eulerschen Satzes von den Polyedern’, Archiv der Mathematik und Physik, 63 Google Scholar, pp. 100–3.
Husserl, E. [1900] Logische Untersuchungen, vol. 1. Tubingen: Niemeyer, 1968 Google Scholar.
Jonquières, E. de [1890a] ‘Note sur un Point Fondamental de la Théorie des Polyèdres’, Comptes Rendus des Séances de L'Académie des Sciences, 110 Google Scholar, pp. 110-15,
Jonquières, E. de [1890b] ‘Note sur le Théorème d'Euler dans la Théorie des Polyèdres’, Comptes Rendus des Séances de L'Académie des Sciences, 110 Google Scholar, pp. 169–73.
Jordan, C. [1866a] ‘Recherches sur les Polyèdres’, Journal für die Reine und Angewandte Mathematik, 66 Google Scholar, pp. 22–85.
Jordan, C. [1866b] ‘Résumé de Recherches sur la Symétrie des Polyèdres non Euleriens’, Jounal für die Reine und Angewandte Mathematik, 66 Google Scholar, pp. 86–91.
Jordan, C. [1881] ‘Sur Ia Série de Fourier’, Comptes Rendus des Séances de L'Académie des Sciences, 92 Google Scholar, pp. 228–33.
Jordan, C. [1887] Cours d'Analyse de L'École Polytechnique, vol 3, first edition. Paris Google Scholar: Gauthier-Villars.
Jordan, C. [1893] Cours d'Analyse de L'École Polytechnique, vol. 1, second edition. Paris Google Scholar: Gauthier-Villars.
Jourdain, P. E. B. [1912] ‘Note on Fourier's Influence on the Conceptions of Mathematics’, Proceedings of the Fifth International Congress of Mathematics, 2 Google Scholar, pp. 526–7.
Kant, I. [1781 Google Scholar] Critik der Reinen Verunft. First edition.
Kepler, I. [1619] Harmonice Mundi, in Caspar, M. and Dyck, W. von (eds.): Gesammelte Werke, vol. 6. Munich: C. H. Beck, 1940 Google Scholar.
Knopp, K. [1928] Theory and Application of Infinite Series. (Translated by Young, R. C., London and Glasgow: Blackie, 1928 Google Scholar.)
Lakatos, I. [1961] Essays in the Logic of Mathematical Discovery, unpublished Ph.D. Dissertation, Cambridge Google Scholar.
Lakatos, I. [1962] ‘Infinite Regress and the Foundations of Mathematics’, Aristotelian Society Supplementary Volumes, 36 Google Scholar, pp. 155–84.
Lakatos, I. [1970] ‘Falsification and the Methodology of Scientific Research Programmes’, in Lakatos, I. and Musgrave, A. E. (eds.): Criticism and the Growth of Knowledge, Cambridge CrossRef | Google Scholar: Cambridge University Press, pp. 91–196.
Landau, E. [1930] Grundlagen der Analysis. Leipzig Google Scholar: Akademische Verlagsgesellschaft.
Lebesgue, H. [1923] ‘Notice sur la Vie et les Travaux de Camille Jordan’, Mémoires de L'Académie de L'Institute de France, 58 Google Scholar, pp. 34–66. Reprinted in H. Lebesgue, Notices d'Histoire des Mathématiques, Genève. pp. 40–65.
Lebesgue, H. [1928] Leçons sur L'Intégration et la Recherche des Fonctions Primitives. Paris Google Scholar: Gauthier-Villars. (Second, enlarged edition of the original 1905 version.)
Legendre, A.-M. [1809] Éléments de Géométrie. Eighth edition. Paris Google Scholar: Didot. The first edition appeared in 1794.
Leibniz, G. W. F. [1687] ‘Letter to Bayle’, in Gerhardt, C. I. (ed.): Philosophische Schriften, vol. 3, Hildesheim Google Scholar: George Olms (1965), p. 52.
Lhuilier, S. A. J. [1786] Exposition Élémentaire des Principes des Calculs Supérieurs. Berlin Google Scholar: G. J. Decker.
Lhuilier, S. A. J. [1812–13a] ‘Mémoire sur la Polyèdrométrie’, Annales de Mathématiques, Pures et Appliquées, 3 Google Scholar, pp. 168–91.
Lhulier, S. A. J. [1812–13b] ‘Mémoire sur les Solides Réguliers’, Annales de Mathématiques, Pures et Appliquées, 3 Google Scholar, pp. 233–7.
Listing, J. B. [1861] ‘Der Census Räumlicher Complexe’, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 10 Google Scholar, pp. 97–182.
Loève, M. [1955] Probability Theory. New York Google Scholar: Van Nostrand.
Matthiessen, L. [1863] ‘Über die Scheinbaren Einschränkungen des Euler'schen Satzes von den Polyedern’, Zeitschrift für Mathematik und Physik, 8 Google Scholar, pp. 449–50.
Meister, A. L. F. [1771] ‘Generalia de Genesi Figurarum Planarum et inde Pendentibus Earum Affectionibus’, Novi Commentarii Societatis Reglae Scientiarum Gottingensis, 1 Google Scholar, pp. 144–80.
Menger, K. [1928] Dimensionstheorie. Berlin CrossRef | Google Scholar: Teubner.
Möbius, A. F. [1827] Der Barycentrische Calcul. Hildesheim: George Olms, 1968 Google Scholar.
Möbius, A. F. [1865] ‘Über die Bestimmung des Inhaltes eines Polyeders’, Berichte Königlich-Sächsischen Gesellschaft der Wissenschaften, Mathematisch–Physikalische Classe, 17 Google Scholar, pp. 31–68.
Moigno, F. N. M. [1840–1] Leçons de Calcul Differentiel et de Calcul Intégral, 2 vols. Paris Google Scholar: Bachelier.
Moore, E. H. [1902] ‘On the Foundations of Mathematics’, Science, 17 Google Scholar, pp. 401–16.
Morgan, A. de [1842] The Differential and Integral Calculus. London Google Scholar: Baldwin and Gadock.
Munroe, M. E. [1953] Introduction to Measure and Integration. Cambridge, Massachusetts Google Scholar: Addison-Wesley.
Neumann, J. von [1947] ‘The Mathematician’, in Heywood, R. B. (ed.): The Works of the Mind. Chicago Google Scholar: Chicago University Press.
Newton, I. [1717] Opticks. Second edition. London: Dover, 1952 Google Scholar.
Olivier, L. [1826] ‘Bemerkungen über Figuren, die aus Behebigen, von Geraden Linien Umschlossenen Figuren Zusammengesetzt sind’, Journal für die Reine und Angewandt Mathematik, 1 Google Scholar, pp. 227–31.
Pascal, B. [1659] Les Réflexions sur la Géométrie en Général (De L'Ésprit Géométrique et de L'Art de Persuader). In Chevalier, J. (ed.): Oeuvres Complètes, Paris Google Scholar: La Librairie Gallimard, 1954, pp. 575–604.
Peano, G. [1894] Notations de Logique Mathématique. Turin Google Scholar: Guadagnini.
Pierpont, J. [1905] The Theory of Functions of Real Variables, vol. 1. New York Google Scholar: Dover, 1959.
Poincaré, H. [1893] ‘Sur la Généralisation d'un Théorème d'Euler relatif aux Polyèdres’, Comptes Rendus Je Séances de L'Académie des Sciences, 117 Google Scholar, p. 144.
Poincaré, H. [1899] ‘Complément à L'Analysis Situs’, Rendiconti del Circolo Matematico di Palermo, 13 Google Scholar, pp. 285–343.
Poincaré, H. [1902] La Science et L'Hypothèse. Paris Google Scholar: Flammarion. Authorised English translation by G. B. Halsted: The Foundations of Science, Lancaster, Pennsylvania: The Science Press, 1913, pp. 27–197.
Poincaré, H. [1905] La Valeur de la Science. Paris Google Scholar: Flammarion. Authorised English translation by G. B. Halsted: The Foundations of Science, Lancaster, Pennsylvania: The Science Press, 1913, pp. 359–546.
Poincaré, H. [1908] Science et Méthode. Paris Google Scholar: Flammarion. Authorised English translation by G. B. Halsted: The Foundations of Science, Lancaster, Pennsylvania: The Science Press, pp. 546–854.
Poinsot, L. [1810] ‘Mémoire sur les Polygones et les Polyèdres’, Journal de L'École Polytéchnique, 4 Google Scholar, pp. 16–48. (Read in July 1809.)
Poinsot, L. [1858] ‘Note sur la Théorie des Polyèdres’, Comptes Rendus de L'Académie des Sciences, 46 Google Scholar, pp. 65–79.
Pólya, G. [1945] How to Solve It. Princeton Google Scholar: Princeton University Press.
Pólya, G. [1954] Mathematics and Plausible Reasoning, vols. 1 and 2. London Google Scholar: Oxford University Press.
Pólya, G. [1962a] Mathematical Discovery, vol. 1. New York Google Scholar: Wiley.
Pólya, G. [1962b] ‘The Teaching of Mathematics and the Biogenetic Law’, in Good, I. J. (ed.): The Scientist Speculates. London Google Scholar: Heinemann, pp. 352–6.
Pólya, G. and Szegö, G. [1927] Aufgaben und Lehrsätze aus der Analysis, vol. 1. Berlin Google Scholar: Springer.
Popper, K. R. [1934] Logik der Forschung. Vienna Google Scholar: Springer.
Popper, K. R. [1935] ‘Letter to the Editor’, Erkenntnis, 3 Google Scholar, pp. 426–9. Republished in Appendix *i to Popper [1959], pp. 311–14.
Popper, K. R. [1945] The Open Society and its Enemies. 2 volumes, London Google Scholar: Routledge and Kegan Paul.
Popper, K. R. [1947] ‘Logic Without Assumptions’, Aristotelian Society Proceedings, 47 CrossRef | Google Scholar, pp. 251–92.
Popper, K. R. [1952] ‘The Nature of Philosophical Problems and their Roots in Science’, The British Journal for the Philosophy of Science, 3 Google Scholar, pp. 124–56. Reprinted in Popper [1963a].
Popper, K. R. [1957] The Poverty of Historicism. London Google Scholar: Routledge and Kegan Paul.
Popper, K. R. [1959] The Logic of Scientific Discovery. English translation of [1934].London Google Scholar: Hutchinson.
Popper, K. R. [1963a] Conjectures and Refutations. London Google Scholar: Routledge and Kegan Paul.
Popper, K. R. [1963b] ‘Science: Problems, Aims, Responsibilities’, Federation of American Societies for Experimental Biology: Federation Proceedings, 22 Google Scholar | PubMed, pp. 961–72.
Popper, K. R. [1972] Objective Knowledge Google Scholar. Oxford: Oxford University Press.
Pringsheim, A. [1916] ‘Grundlagen der Allgemeinen Functionenlehre’, in Burkhardt, M., Wutinger, W. and Fricke, R. (eds.): Encyklopädie der Mathematischen Wissenschaften, vol. 2. Erste Teil, Erste Halbband, pp. 1–53. Leipzig Google Scholar: Teubner.
Quine, W. V. O. [1951] Mathematical Logic. Revised edition. Cambridge, Massachusetts Google Scholar: Harvard University Press.
Ramsey, F. P. [1931] The Foundations of Mathematics and Other Essays. Edited by Braithwaite, R. B.. London Google Scholar: Kegan Paul.
Raschig, L. [1891 Google Scholar] ‘Zum Eulerschen Theorem der Polyedrometrie’, Festschrift des Gymnasium Schneeberg.
Reichardt, H. [1941] ‘Losung der Aufgabe 274’, Jarhresberichte der Deutschen Mathematiker-Vereinigung, 51 Google Scholar, p. 23.
Reichenbach, H. [1947] Elements of Symbolic Logic. New York Google Scholar: Macmillan.
Reiff, R. [1889] Geschichte der Unendlichen Reihen. Tubingen Google Scholar: H. Laupp'schen.
Reinhardt, C. [1885] ‘Zu Möbius Polyedertheorie. Vorgelegt von F. Klein’, Berichte über die Verhandlungen der Königlich-Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 37 Google Scholar, pp. 106–25.
Riemann, B. [1851] Grundlagen der eine Allgemeine Theorie der Functionen einer Veranderlichen Complexen Grösse (inaugural dissertation). In Weber, M. and Dedekind, R. (eds.): Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass. Second edition. Leipzig: Teubner, 1892 Google Scholar, pp. 3–48.
Riemann, B. [1868] ‘Über die Darstellbarkeit einer Function durch eine Trigonometrische Reihe’, Abhandlungen der Königlichen Gesellschafi der Wissenschaften zu Göttingen, 13 Google Scholar, pp. 87–132.
Robinson, R. [1936] ‘Analysis in Greek Geometry’, Mind, 45 Google Scholar, pp. 464–73.
Robinson, R. [1953] Plato's Earlier Dialectic. Oxford Google Scholar: Oxford University Press.
Rudin, W. [1953] Principles of Mathematical Analysis. First edition. New York Google Scholar: McGraw-Hill.
Russell, B. [1901 Google Scholar] ‘Recent Work in the Philosophy of Mathematics’, The International Monthly, 3. Reprinted as ‘Mathematics and the Metaphysicians’, in his [1918], pp. 59–74.
Russell, B. [1903] Principles of Mathematics. London Google Scholar: Allen and Unwin.
Russell, B. [1918] Mysticism and Logic. London Google Scholar: Allen and Unwin.
Russell, B. [1959] My Philosophical Development. London Google Scholar: Allen and Unwin.
Russell, B. and Whitehead, A. N. [1910–13] Principia Mathematica Google Scholar. Vol. I, 1910; Vol. 2, 1912; Vol. 3, 1913. Cambridge: Cambridge University Press.
Saks, S. [1933] Théori de L'Intégrale. English translation by L. C. Young: Theory of the Integral. Second edition. New York Google Scholar: Hamer, 1937.
Schläfli, L. [1852] ‘Theorie der Vielfachen Kontinuität’. Published posthumously in Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft für die Gesamten Naturwissenschaften, 38, pp. 1–237. Zürich, 1901 Google Scholar.
Schröder, E. [1862] ‘Über die Vielecke von Gebrochener Seitenzahl oder die Bedeutung der Stern-Polygone in der Geometrie’, Zeitschrift für Mathematik und Physik, 7 Google Scholar, pp. 55–64.
Seidel, P. L. [1847] ‘Note über eine Eigenschaft der Reihen, welche Discontinuirliche Functionen Darstellen’, Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften, 5 Google Scholar, pp. 381–93.
Sextus Empiricus [c. 190] Against the Logicians. Greek text with an English translation by Bury, R. G.. London: Heinemann, 1933 Google Scholar.
Sommerville, D. M. Y. [1929] An Introduction to the Geometry of N Dimensions. London: Dover, 1958 Google Scholar.
Steiner, J. [1826] ‘Leichter Beweis eines Stereometrischen Satzes von Euler’, Journal für die Reine und Angewandte Mathematik, 1 Google Scholar, pp. 364–7.
Steinhaus, H. [1960] Mathematical Snapshots. Revised and enlarged edition. New York Google Scholar: Oxford University Press.
Steinitz, E. [1914–31] ‘Polyeder und Raumeinteilungen’, in Meyer, W. F. and Mohrmann, H. (eds.): Encyklopädie der Mathematischen Wissenschaften, vol. 3, AB. 12. Leipzig Google Scholar: Teubner.
Stokes, G. [1848] ‘On the Critical Values of the Sums of Periodic Series’, Transactions of the Cambridge Philosophical Society, 8 Google Scholar, pp. 533–83.
Szabó, Á. [1958] ‘“Deiknymi” als Mathematischer Terminus fur “Beweisen”’, Maia, N.S. 10 Google Scholar, pp. 1–26.
Szabó, Á. [1960] ‘Anfänge des Euklidischen Axiomensystems’, Archive for the History of Exact Sciences, 1 CrossRef | Google Scholar, pp. 37–106.
Szökefalvi-Nagy, B. [1954] Valós Függvények és Függvénysorok. Budapest Google Scholar: Tankönyvkiadó.
Tarski, A. [1930a] ‘Über einige Fundamentale Begriffe der Metamathematik’, Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, 23 Google Scholar, Cl. III, pp. 22–9. Published in English in J. H. Woodger (ed.) [1956], pp. 30–7.
Tarski, A. [1930b] ‘Fundamentale Begriffe der Methodologie der Deduktiven Wissenschaften, 1’, Monatshefte für Mathematik und Physik, 37 Google Scholar, pp. 361–404. Published in English in J. H. Woodger (ed.) [1956], pp. 60–109.
Tarski, A. [1935 Google Scholar] ‘On the Concept of Logical Consequence’. Published in J. H. Woodger (ed.) [1956], pp. 409–20. This paper was read in Paris in 1935.
Tarski, A. [1941] Introduction to Logic and to the Methodology of Deductive Sciences. Second edition. New York Google Scholar: Oxford University Press, 1946. (This is a partially modified and extended version of On Mathematical Logic and Deductive Method, published in Polish in 1936 and in German translation in 1937.)
Turquette, A. [1950] ‘Gödel and the Synthetic A Priori’, The Journal of Philosophy, 47 CrossRef | Google Scholar, pp. 125–9.
Waerden, B. L. van der [1941] ‘Topologie und Uniformisierung der Riemannschen Flächen’, Berichte über die Verhandlungen der Königlich-Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 93 Google Scholar, pp. 147–60.
Whewell, W. [1858 Google Scholar] History of Scientific Ideas. Vol. 1. (Part one of the third edition of The Philosophy of the Inductive Sciences.)
Wilder, R. L. [1944] ‘The Nature of Mathematical Proof’, The American Mathematical Monthly, 52 Google Scholar, pp. 309–23.
Woodger, J. H. (ed.) [1956] Logic, Semantics, Metamathematics. Oxford Google Scholar: Clarendon Press.
Young, W. H. [1903–4] ‘On Non-Uniform Convergence and Term-by-Term Integration of Series’, Proceedings of the London Mathematical Society, 1 Google Scholar, second series, pp. 89–102.
Zacharias, M. [1914–31] ‘Elementargeometrie’, in Meyer, W. F. and Mohrmann, H. (eds.): Encyklopädie der Mathematischen Wissenschaften, 3, Erste Teil, Zweiter Halbband, pp. 862–1176. Leipzig Google Scholar: Teubner.
Zygmund, A. [1935] Trigonometrical Series. New York Google Scholar: Chelsea, 1952.

Metrics

Usage data cannot currently be displayed.