Book contents
- Frontmatter
- Contents
- Contributors
- Introduction
- I Critical Concepts
- II Therapeutic Areas
- 10 Oncologic Drugs
- 11 Pharmacogenetics and Pharmacogenomics of Cardiovascular Disease
- 12 Statin-Induced Muscle Toxicity
- 13 Genomics of the Drug-Induced Long-QT Syndrome
- 14 Pharmacogenetics of Diabetes
- 15 Pharmacogenetics – Therapeutic Area – Respiratory
- 16 Pharmacogenomics Associated with Therapy for Acid-Related Disorders
- 17 Pharmacogenetics of Rheumatology: Focus on Rheumatoid Arthritis
- 18 Pharmacogenetics of Obstetric Therapeutics
- 19 Pharmacogenomics of Psychiatric Drugs
- 20 Pain and Anesthesia
- 21 HIV and Antiretroviral Therapy
- 22 Application of Pharmacogenetics and Pharmacogenomics in Pediatrics: What Makes Children Different?
- References
14 - Pharmacogenetics of Diabetes
from II - Therapeutic Areas
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Contributors
- Introduction
- I Critical Concepts
- II Therapeutic Areas
- 10 Oncologic Drugs
- 11 Pharmacogenetics and Pharmacogenomics of Cardiovascular Disease
- 12 Statin-Induced Muscle Toxicity
- 13 Genomics of the Drug-Induced Long-QT Syndrome
- 14 Pharmacogenetics of Diabetes
- 15 Pharmacogenetics – Therapeutic Area – Respiratory
- 16 Pharmacogenomics Associated with Therapy for Acid-Related Disorders
- 17 Pharmacogenetics of Rheumatology: Focus on Rheumatoid Arthritis
- 18 Pharmacogenetics of Obstetric Therapeutics
- 19 Pharmacogenomics of Psychiatric Drugs
- 20 Pain and Anesthesia
- 21 HIV and Antiretroviral Therapy
- 22 Application of Pharmacogenetics and Pharmacogenomics in Pediatrics: What Makes Children Different?
- References
Summary
Health Impact
Diabetes mellitus has become a major public health epidemic, affecting more than 250 million individuals worldwide in 2008, increasing to 380 million in 2025. Each year 3.8 million deaths are attributable to diabetes. An even greater number die of cardiovascular disease made worse by diabetes-related lipid disorders and hypertension (1).
Type 2 diabetes is much more common than type 1 diabetes, and accounts for approximately 90 percent of all diabetes worldwide (2). Type 1 diabetes is characterized by a lack of production of insulin in the body, whereas type 2 diabetes is due to the body's diminished insulin secretion from pancreatic β-cells and the resistance of tissues to insulin (3).
- Type
- Chapter
- Information
- Principles of Pharmacogenetics and Pharmacogenomics , pp. 145 - 153Publisher: Cambridge University PressPrint publication year: 2012