from I - Monetary institutions and policy
Published online by Cambridge University Press: 05 September 2013
Introduction
This chapter contains two examples of static, symmetric, positive-sum games with two strategic players and a play by nature: (1) a microeconomic game between duopolists with joint costs facing uncertain demands for differentiated goods and (2) a macroeconomic game between two countries with inflation-bias preferences confronting uncertain demands for money. In both games, each player can choose either of two variables as an instrument. In our terminology, both are linear-reaction-function games because reaction functions are linear in the chosen instruments.
More than a century ago, it was discovered that there are both Cournot (1838) and Bertrand (1883) equilibria for duopoly games with no uncertainty. There are many examples of multiple (Nash) equilibria in linear-reaction-function games with no uncertainty. In the standard differentiated duopoly game with linear demands and independent, quadratic costs, there are four equilibria if each duopolist can choose either price or quantity as an instrument. That is, there are as many equilibria as there are possible pairs of instrument choices. Likewise, in two-player macroeconomic games with quadratic utilities and linear economies there are as many equilibria as there are possible pairs of instrument choices.
The explanation of the existence of multiple equilibria in linear-reaction-function games with no uncertainty is the same as the explanation of a familiar result. Poole (1970) and Weitzman (1974) show that with no uncertainty a single controller is indifferent among instruments. Likewise, with no uncertainty if one player chooses his instrument and sets a value for it, the other is indifferent among instruments.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.