Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T04:02:37.371Z Has data issue: false hasContentIssue false

14 - Plasma, Neutral Atmosphere, and Energetic Radiation Environments of Planetary Rings

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

J. F. Cooper
Affiliation:
NASA Goddard Space Flight Center Greenbelt, Maryland, USA
R. E. Johnson
Affiliation:
University of Virginia Charlottesville, Virginia, USA
P. Kollmann
Affiliation:
Johns Hopkins University Applied Physics Laboratory Laurel, Maryland, USA
E. Roussos
Affiliation:
Max Planck Institute for Solar System Studies Göttingen, GERMANY
E. C. Sittler
Affiliation:
NASA Goddard Space Flight Center Greenbelt, Maryland, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

INTRODUCTION

Ring systems around magnetized planets are expected to have varied interactions with the magnetic fields, hot plasma, and energetic particles of the associated magnetospheres. In our solar system all the giant planets, Jupiter to Neptune, have magnetospheres with embedded rings. Each ring system and its associated moons have strong interactions with their radiation environments (the most intense of which is at Jupiter). Such interactions both erode diffuse rings (such as the E ring of Saturn) and supply plasma and energetic particles to the magnetosphere and its radiation belts. Compositional and structural measurements of rings are enabled by these interactions, such as the information obtained by detection of the secondary neutron and gamma-ray emissions produced by galactic cosmic ray (GCR) interactions with the rings. It is also notable that Earth has both a magnetosphere with radiation belts, and an artificial ring system of satellites and debris, that continuously interact. Konradi (1988) even projected that the high energy trapped protons of the inner Van Allen Belt should now be experiencing significant depletion by this interaction, and we will later discuss the possible evidence for this. Magnetized exoplanets with rings would have similar interactions.

The ring systems of Jupiter and Saturn have been explored by multiple spacecraft. The Jovian ring environment was first explored in situ in 1974 by Pioneer 11, which subsequently flew under Saturn's main rings in 1979. After passing through the Saturn ring plane near the G ring in 1981, Voyager 2 encountered Uranus in 1986 and then Neptune in 1989, but in neither case were the rings and arcs of these two ice giant planets traversed. The Galileo Probe passed across the Jovian ring in December 1995 en route to the first direct penetration into Jupiter's atmosphere. The Cassini Orbiter crossed over the Saturn A and B rings in mid-2004 (Figure 14.1) as part of the Saturn Orbital Insertion (SOI). Cassini will again traverse the main rings during its Grand Finale orbit phase many times, crossing the ring plane just inwards of the D ring, prior to final atmospheric entry in 2017. With the exception of the Cassini Plasma Spectrometer (CAPS) instrument, turned off in 2012 due to electrical problems, Cassini will continue to operate through the final observations.

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 363 - 398
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Fuke, H., Hairo, S. et al. (2016). Measurements of cosmic-ray proton and helium spectra from the BESS-polar long-duration balloon flights over Antarctica. Astrophysical Journal, 822, 65 (16 pp.).CrossRefGoogle Scholar
Acuna, M. H. and Ness, N. F. (1976a). The main magnetic field of Jupiter. Journal of Geophysical Research, 81, 2917—2922, doi: 10. 1029/JA081i016p02917.CrossRefGoogle Scholar
Acuna, M. H. and Ness, N. F. (1976b). Results from the GSFC fluxgate magnetometer on Pioneer 11. In Jupiter, ed. T. Gehrels. Tucson: University of Arizona Press, pp. 830—847.
Agostinelli, S. et al. (2003). Geant -a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A, 506, 250-303.CrossRefGoogle Scholar
Allison, J. et al. (2006). Geant developments and applications. IEEE Transactions in Nuclear Science, 53 270—278.CrossRefGoogle Scholar
Andre, N., Persoon, A. M., Goldstein J. et al. (2007). Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere. Geophysical Research Letters, 34, L14108, doi: 10. 1029/2007GL030374.CrossRefGoogle Scholar
Andriopoulou, M., Roussos, E., Krupp, N. et al. (2012). A noon-to-midnight electric field and nightside dynamics in Saturn's inner magnetosphere, using microsignature observations. Icarus, 220, 503-513, doi: 10. 1016/j. icarus. 2012. 05. 010.CrossRefGoogle Scholar
Andriopoulou, M., Roussos, E., Krupp, N. et al. (2014). Spatial and Temporal dependence of the convective electric field in Saturn's inner magnetosphere. Icarus, 229, 57-90, doi: 10. 1016/j. icarus. 2013. 10. 028.CrossRefGoogle Scholar
Archinal, B. A., A'Hearn, M. E., Boswell, E. et al. (2011). Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celestial Mechanics and Dynamical Astronomy, 109, 101-135, doi: 10. 1007M0569-010-9320-4.CrossRefGoogle Scholar
Armstrong, T. P., Taherion, S., Manweiler, J. et al. (2009). Energetic ions trapped in Saturn's inner magnetosphere. Planetary and Space Science, 57, 1723-1731, doi: 10. 1016/j. pss. 2009. 03. 008.CrossRefGoogle Scholar
Blake, J. B., Hilton, H. H. and Margolis, S. H. (1983). On the injection of cosmic ray secondaries into the inner Saturnian magnetosphere. I -Protons from the CRAND process. Journal of Geophysical Research, 88, 803—807, doi: 10. 1029/JA088iA02p00803.CrossRefGoogle Scholar
Bouhram, M., Johnson, R. E., Berthelier, J. -J., et al. (2006). A test-particle model of the atmosphere/ionosphere system of Saturn's main rings. Geophysical Research Letters, 33, L05106, doi: 10. 1029/2005GL025011.CrossRefGoogle Scholar
Bridge, H. S., Belcher, J. W., Lazarus, A. J. et al. (1981). Plasma observations near Saturn -Initial results from Voyager 1. Science, 212, 217-224, doi: 10. 1126/science. 212. 4491. 217.CrossRefGoogle ScholarPubMed
Bridge, H. S., Bagenal, E., Belcher, J. W. et al. (1982). Plasma observations near Saturn —Initial results from Voyager 2. Science, 215, 563-570, doi: 10. 1126/science. 215. 4532. 563.CrossRefGoogle ScholarPubMed
Brown, W. L., Lanzerotti, L. J. and Johnson, R. E. (1982). Fast ion bombardment of ices and its astrophysical implications. Science, 218, 525-531, doi: 10. 1126/science. 218. 4572. 525.CrossRefGoogle ScholarPubMed
Brun, R., Hagelberg, R., Hansroul, M. and Lassalle, J. C.(1978). Simulation program for particle physics experiments, GEANT: user guide and reference manual. CERN-DD-78-2, CERN, Geneva, Switzerland.
Bunce, E. J., Cowley, S. W. H., Wright, D. M. et al. (2005). In situ observations of a solar wind compression-induced hot plasma injection in Saturn's tail. Geophysical Research Letters, 32, L20S04, doi: 10. 1029/2005GL022888.CrossRefGoogle Scholar
Burns, J. A., Simonelli, D. P., Showalter, M. R. et al. (2004). Jupiter's ring-moon system. In Jupiter: The Planet, Satellites and Magnetosphere, ed. F., Bagenal., T. E., Dowling., and W B., McK-innon.. Cambridge, UK: Cambridge University Press, pp. 241-262.Google Scholar
Burton, M. E., Dougherty, M. K. and Russell, C. T. (2010). Saturn's internal planetary magnetic field. Geophysics Research Letters, 37, L24105, doi:10. 1029/2010GL045148.CrossRefGoogle Scholar
Carbary, J. E., Mitchell, D. G., Brandt, P., Roelof, E. C. and Krim-igis, S. M. (2008). Statistical morphology of ENA emissions at Saturn. Journal of Geophysical Research: Space Physics, 113, A05210, doi: 10. 1029/2007JA012873.CrossRefGoogle Scholar
Carlson, R. W (1980). Photo-sputtering of ice and hydrogen around Saturn's rings. Nature, 283, 461, doi: 10. 1038/28346laO.CrossRefGoogle Scholar
Carlson, R. W., Anderson, M. S., Johnson, R. E.et al. (1999). Hydrogen peroxide on the surface of Europa. Science, 283, 2062—2064, doi: 10. 1126/science. 283. 5410. 2062.CrossRefGoogle ScholarPubMed
Cassidy, T. A. and Johnson, R. E. (2010). Collisional spreading of Enceladus' neutral cloud. Icarus, 209, 696-703, doi: 10. 1016/j. icarus. 2010. 04. 010.CrossRefGoogle Scholar
Chenette, D. L., Cooper, J. F. Eraker J, H. Pyle K, R. and Simpson J. A. (1980). High-energy trapped radiation penetrating the rings of Saturn. Journal of Geophysical Research, 85, 5785-5792, doi:10. 1029/JA085iAllp05785.CrossRefGoogle Scholar
Charnoz, S., Dones, L., Esposito, L. W., Estrada, P. R. and Hedman, M. M. (2009). Origin and evolution of Saturn's ring system. In Saturn from Cassini-Huygens, eds. M. K., Dougherty, L. W., Esposito and S. M., Krimigis. Heidelberg, Germany: Springer, pp. 537-575, doi:10. 1007/978-l-4020-9217-6_17.Google Scholar
Christon, S. P., Hamilton, D. C., Difabio, R. D. et al. (2013). Saturn suprathermal O-and mass-28+ molecular ions: Long-term seasonal and solar variation. Journal of Geophysical Research: Space Physics, 118, 3446-3463, doi: 10. 1002/jgra. 50383.Google Scholar
Christon, S. P., Hamilton, D. C., Mitchell, D. G., DiFabio, R. D. and Krimigis, S. M. (2014). Suprathermal magnetospheric minor ions heavier than water at Saturn: Discovery of 28M+ seasonal variations. Journal of Geophysical Research: Space Physics, 119, 5662-5673, doi: 10. 1002/2014JA020010.Google Scholar
Coates, A. J., McAndrews, H. J., Rymer, A. M. et al. (2005). Plasma electrons above Saturn's main rings: CAPS observations. Geophysical Research Letters, 32, 14, doi: 10. 1029/2005GL022694.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R. and McClintock, W. E.(2007). Self-gravity wakes and radial structure of Saturn's Bring. Icarus, 190, 127-144, doi: 10. 1016/j. icarus. 2007. 03. 018.CrossRefGoogle Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S. et al. (2009). The structure of Saturn's rings. In: Saturn from Cassini-Huygens, eds. M. K., Dougherty, L. W., Esposito, and S. M., Krimigis. New York, NY: Springer Science+Business Media B. V., pp. 375-412.Google Scholar
Connerney, J. E. P. (1993). Magnetic fields of the outer planets. Journal of Geophysical Research, 98, 18659-18 679, doi: 10. 1029/93JE00980.CrossRefGoogle Scholar
Connerney, J. E. P. and Waite, J. H. (1984). New model of Saturn's ionosphere with an influx of water from the rings. Nature, 312, 136-138, doi: 10. 1038/312136aO.CrossRefGoogle Scholar
Cooper, J. F. (1983). Nuclear cascades in Saturn's rings -Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. Journal of Geophysical Research, 88, 3945-3954, doi: 10. 1029/JA088iA05p03945.CrossRefGoogle Scholar
Cooper, J. F. (2008). Innermost Van Allen radiation belt for high energy protons at Saturn. Bulletin American Astronomical Society, 40, 460.Google Scholar
Cooper, J. F. and Simpson, J. A. (1980). Sources of high-energy protons in Saturn's magnetosphere. Journal of Geophysical Research, 85, 5793-5802, doi: 10. 1029/JA085iAllp05793.CrossRefGoogle Scholar
Cooper, J. F. and Stone, E. C. (1991). Electron signatures of satellite sweeping in the magnetosphere of Uranus. Journal of Geophysical Research, 96, 7803-7821, doi: 10. 1029/90JA02629.CrossRefGoogle Scholar
Cooper, J. E., Eraker, J. H. and Simpson J. A. (1985). The secondary radiation under Saturn's A—B—C rings produced by cosmic ray interactions. Journal of Geophysical Research, 90, 3415—3427, doi: 10. 1029/JA090iA04p03415.CrossRefGoogle Scholar
Cooper, J. E., Sittler, E. C., Maurice, S., Mauk, B. H. and Selesnick, R. S. (1998). Local time asymmetry of drift shells for energetic electrons in the middle magnetosphere of Saturn. Advances in Space Research, 21, 1479-1482, doi: 10. 1016/S0273-1177(98)00022-2.CrossRefGoogle Scholar
Cooper, J. E., Cooper, P. D., Sitter, E. C., Sturner, S. J. and Rymer, A. M. (2009). Old Faithful model for radiolytic gas-driver cryovolcan-ism at Enceladus. Planetary and Space Science. 57, 1607—1620, doi: 10. 1016/jpss. 2009. 08. 002.CrossRefGoogle Scholar
Cooper, J. E., Moore, M. H. and Hudson, R. L. (2010). O atom production in water ice: Implications for O2 formation on icy satellites. Journal of Geophysical Research, 115, E10013, doi: 10. 1029/2009 JE003 563.CrossRefGoogle Scholar
Cuzzi, J. N. and Burns, J. A. (1988). Charged particle depletion sur-rounding Saturn's F ring -Evidence for a moonlet belt? Icarus, 74, 284-324, doi: 10. 1016/0019-1035(88)90043-7.CrossRefGoogle Scholar
Cuzzi, J., Clark, R., Filacchione, G. et al. (2009). Ring particle composition and size distribution. In: Saturn from Cassini-Huygens, eds. M. K., Dougherty., L. W., Esposito., and S. M., Krimigis.. New York, NY: Springer, pp. 459-509.Google Scholar
Desorgher, L., Fliickiger, E. O., Gurtner, M., Moser, M. R. and Biitikofer, R. (2005). Atmocosmics: a GEANT 4 code for computing the interaction of cosmic rays with the Earth's atmosphere. International Journal of Modern Physics A, 20, 6802-6804.CrossRefGoogle Scholar
DiFabio, R. D., Hamilton, D. C., Krimigis, S. M. and Mitchell, D. G. (2011). Long term time variations of the suprathermal ions in Saturn's magnetosphere. Geophysical Research Letters, 38, L18103, doi: 10. 1029/2011GL048841.CrossRefGoogle Scholar
Dikarev, V. V. (1999). Dynamics of particles in Saturn's E ring: effects of charge variations and the plasma drag force. Astronomy and Astrophysics, 346, 1011-1019.Google Scholar
Dougherty, M. K., Khurana, K. K., Neubauer, F. M. et al. (2006). Identification of adynamic atmosphere at Enceladus with the Cassini Magnetometer. Science, 311 (5766), 1406-1409, doi: 10. 1126/science. 1120985.CrossRefGoogle Scholar
Elrod, M. K., Tseng, W. -L., Wilson, R. J. and Johnson, R. E. (2012). Seasonal variations in Saturn's plasma between the main rings and Enceladus. Journal of Geophysical Research, 111, A03207, http://dx.doi.org/10.1029/2011JA017332.Google Scholar
Elrod, M. K., Tseng, W. -L., Woodson, A. K., and Johnson, R. E. (2014). Seasonal and radial trends in Saturn's thermal plasma between the main rings and Enceladus. Icarus, 242, 130—137, doi: 10. 1016/j. icarus. 2014. 07. 020.CrossRefGoogle Scholar
Esposito, L. W., Meinke, B. K., Colwell, J. E., Nicholson, P. D. and Hedman, M. M. (2008). Moonlets and clumps in Saturn's F ring. Icarus, 194, 278-289.CrossRefGoogle Scholar
Farrell, W. M., Kaiser, M. L., Gurnett, D. A. et al. (2008). Mass unloading along the inner edge of the Enceladus plasma torus. Geophysical Research Letters, 35, L02203, doi: 10. 1029/2007GL032306.CrossRefGoogle Scholar
Fillius, W. E. (1976). The trapped radiation belts of Jupiter. In: Jupiter, ed. T., Gehrels. Tucson: University of Arizona Press, pp. 896-927.Google Scholar
Fischer, H. M., Pehlke, E., Wibberenz, G., Lanzerotti, L. J. and Mihalov, J. D. (1996). High-energy charged particles in the innermost Jovian magnetosphere. Science, 272, 856-858, doi: 10. 1126/science. 272. 5263. 856.CrossRefGoogle ScholarPubMed
Fleshman, B. L., Delamere, P. A., Bagenal, F. and Cassidy, T. (2012). The roles of charge exchange and dissociation in spreading Saturn's neutral clouds. Journal of Geophysical Research, 117, E05007, doi: 10. 1029/2011JE003996.CrossRefGoogle Scholar
Frank, L. A., Burek, B. G., Ackerson, K. L., Wolfe, J. H. and Mihalov, J. D. (1980). Plasmas in Saturn's magnetosphere. Journal of Geophysical Research, 85, 5695—5708, doi: 10. 1029/JA085iAllp05695. GEANT-3 (1993). GEANT -Detector description and simulation tool. CERN, Geneva, Switzerland. Manual: http://hep.fi.infn.it/geant.pdf; Software: https://root.cern.ch/download-vmc.CrossRefGoogle Scholar
Glocer, A., Gombosi, T. I., Toth, G. et al. (2007). Polar wind outflow model: Saturn results. Journal of Geophysical Research: Space Physics, 112, A01304, doi: 10. 1029/2006JA011755.CrossRefGoogle Scholar
Gustafsson, G. and Wahlund, J. -E. (2010). Electron temperatures in Saturn's plasma disc. Planetary and Space Science, 58, 1018—1025, doi: 10. 1016/j. pss. 2010. 03. 007.CrossRefGoogle Scholar
Hall, D. T., Strobel, D. E., Feldman, P. D., McGrath, M. A. and Weaver, H. A. (1995). Detection of an oxygen atmosphere on Jupiter's moon Europa. Nature, 373, 677—679, doi: 10. 1038/373677a0.CrossRefGoogle ScholarPubMed
Hamilton, D. C., Brown, D. C., Gloeckler, G. and Axford, W. I.(1983). Energetic atomic and molecular ions in Saturn's magnetosphere. Journal of Geophysical Research, 88, 8905-8922.CrossRefGoogle Scholar
Hamilton, D. P., Skrutskie, M. E., Verbiscer, A. J. and Masci, F. J. (2015). Small particles dominate Saturn's Phoebe ring to surprisingly large distances. Nature, 522, 185-187, doi:10. 1038/naturel4476.CrossRefGoogle ScholarPubMed
Hand, K. P. and Carlson, R. W.(2011). H2O2 production by high-energy electrons on icy satellites as a function of surface temperature and electron flux. Icarus, 215, 226—233, doi: 10. 1016/j. icarus. 2011. 06. 031.CrossRefGoogle Scholar
Hansen, C. J., Esposito, L., Stewart, A. I. F. et al. (2006). Enceladus' water vapor plume. Science, 311, 1422—1425, doi: 10. 1126/science. 1121254.CrossRefGoogle ScholarPubMed
Hayakawa, S. (1969). Cosmic Ray Physics. New York: Wiley-Interscience.Google Scholar
Hedman, M. and Nicholson, P. D. (2016). The B-ring's surface mass density from hidden density waves: Less than meets the eye? Icarus, 279, 109-124, http://dx.doi.org/10.1016/j.icarus.2016.01.007.
Hedman, M. M., Burns, J. A., Tiscareno, M. S. et al. (2007). The Source of Saturn's G Ring. Science, 317, 5838, 653-656, doi: 10. 1126/science. 1143964.CrossRefGoogle ScholarPubMed
Hedman, M. M., Murray, C. D., Cooper, N. J. et al. (2009). Three tenuous rings/arcs for three tiny moons. Icarus, 199, 378-386, doi: 10. 1016/j. icarus. 2008. 11. 001.CrossRefGoogle Scholar
Hedman, M. M., Cooper, N. J., Murray, C. D. et al. (2010). Aegaeon (Saturn LIII), a G-ring object. Icarus, 207, 433-447, doi: 10. 1016/j. icarus. 2009. 10. 024.CrossRefGoogle Scholar
Hedman, M. M., Gosmeyer, C. M., Nicholson, P. D., et al. (2013). An observed correlation between plume activity and tidal stresses on Enceladus. Nature, 500, 182-184, doi: 10. 1038/naturel2371.CrossRefGoogle ScholarPubMed
Hess, W. N., Canfield, E. H. and Lingenfelter, R. E. (1961), Cosmic-ray neutron demography. Journal of Geophysical Research, 66, 665-677, doi: 10. 1029/JZ066i003p00665.CrossRefGoogle Scholar
Hill, T. W., Rymer, A. M., Burch, J. L. et al. (2005). Evidence for rotationally driven plasma transport in Saturn's magnetosphere. Geophysical Research Letters, 32, L14S10, doi: 10. 1029/2005GL022620.CrossRefGoogle Scholar
Hill, T. W., Thomsen, M. R., Tokar, R. L. et al. (2012). Charged nanograins in the Enceladus plume, Journal of Geophysical Research, 117, A05209, doi:10. 1029/2011JA017218.CrossRefGoogle Scholar
Holmberg, M. K. G., Wahlund, J. -E. and Morooka, M. W. (2014). Dayside/nightside asymmetry of ion densities and velocities in Saturn's inner magnetosphere. Geophysical Research Letters, 41, 11, 3717-3723, doi: 10. 1002/2014GL060229.CrossRefGoogle Scholar
Holmberg, M. K. G., Wahlund, J. -E., Vigren, E., Cassidy, T. A. and Andrews, D. J. (2016). Transport and chemical loss rates in Saturn's inner plasma disk. Journal of Geophysical Research: Space Physics, 121, 2321-2334, doi: 10. 1002/2015JA021784.Google Scholar
Horanyi, M., Hartquist, T. W., Havnes, O., Merdis, D. A. and Morfill, G. E. (2004). Dusty plasma effects in Saturn's magnetosphere. Reviews of Geophysics, 42, RG4002, doi: 10. 1029/2004RG000151.CrossRefGoogle Scholar
Horanyi, M., Juhasz, A. and Morfill, G. E. (2008). Large-scale structure of Saturn's E-ring. Geophysical Research Letters, 35, L04203, doi: 10. 1029/2007GL032726.CrossRefGoogle Scholar
Hsu, H. -W., Kempf, S., Postberg, F. et al. (2011a). Cassini dust stream particle measurements during the first three orbits at Saturn. Journal of Geophysical Research, 116, A08213, doi: 10. 1029/2010JA015959.CrossRefGoogle Scholar
Hsu, H. -W., Postberg, E., Kempf, S. et al. (2011b). Stream particles as the probe of the dust-plasma-magnetosphere interaction at Saturn. Journal of Geophysical Research, 116, A09215, doi: 10. 1029/2011JA016488.CrossRefGoogle Scholar
Huebner, W. F. and Mukherjee, J. (2015). Photoionization and photodissociation rates in solar and blackbody radiation fields. Planetary and Space Science, 106, 11—45, doi: 10. 1016/j. pss. 2014. 11. 022.CrossRefGoogle Scholar
Ip, W. -H. (1983a). Equatorial confinement of thermal plasma near the rings of Saturn. Nature, 302, 599-600, doi: 10. 1038/302599a0.CrossRefGoogle Scholar
Ip, W. -H. (1983b). On plasma transport in the vicinity of the rings of Saturn —A siphon flow mechanism. Journal of Geophysical Research, 88, 819-822, doi: 10. 1029/JA088iA02p00819.CrossRefGoogle Scholar
Ip, W. -H. (1984a). On the equatorial confinement of thermal plasma generated in the vicinity of the rings of Saturn. Journal of Geophysical Research, 89, 395—398, doi: 10. 1029/JA089iA01p00395.CrossRefGoogle Scholar
Ip, W. -H. (1984b). The ring atmosphere of Saturn -Monte Carlo simulation of ring source models. Journal of Geophysical Research, 89, 8843-8849, doi: 10. 1029/JA089iA10p08843.CrossRefGoogle Scholar
Ip, W. -H. (1995). The exospheric systems of Saturn's rings. Icarus, 115, 295-303, doi: 10. 1006/icar. 1995. 1098.CrossRefGoogle Scholar
Ip, W. -H. (2005). An update on the ring exosphere and plasma disc of Saturn. Geophysical Research Letters, 32, L13204, doi: 10. 1029/2004GL022217.CrossRefGoogle Scholar
Jacobsen, K. S., Wahlund, J. -E. and Pedersen, A. (2009). Cassini Langmuir probe measurements in the inner magnetosphere of Saturn. Planetary and Space Science, 57, 48-52, doi: 10. 1016/j. pss. 2008. 10. 012.CrossRefGoogle Scholar
Johnson, R. E., Lanzerotti, L. J. and Brown, W. L.(1982). Planetary applications of ion induced erosion of condensed-gas frosts. Nuclear Instruments and Methods in Physics Research, 198, 147-157, doi: 10. 1016/0167-5087(82)90066-7.CrossRefGoogle Scholar
Johnson, R. E., Carlson, R. W., Cooper, J. F. et al. (2004). Radiation effects on the surfaces of the Galilean satellites. In: Jupiter. The Planet, Satellites and Magnetosphere, eds. F., Bagenal., T. E., Dowling. and W. B., McKinnon.. Cambridge, UK: Cambridge University Press, pp. 485-512.Google Scholar
Johnson, R. E., Luhmann, J. G., Tokar, R. L. et al. (2006). Production, ionization and redistribution of O2 in Saturn's ring atmosphere. Icarus, 180, 393—402, http://dx.doi.org/10.1016/j.icarus.2005.08.021.CrossRefGoogle Scholar
Johnson, R. E., Tseng, W. -L., Elrod, M. K., and Persoon, A. M. (2016). Nanograin density outside Saturn's A ring. Astrophysical Journal Letters, 834:L6 (4pp), doi:10. 3847/2041-8213/834/l/L6.
Jones, G. H., Roussos, E., Krupp, N. et al. (2006). Enceladus' varying imprint on the magnetosphere of Saturn. Science, 311, 1412—1415, doi: 10. 1126/science. 1121011.CrossRefGoogle ScholarPubMed
Jones, G. H., Arridge, C. S., Coates, A. J. etal. (2009). Fine jet structure of electrically charged grains in Enceladus' plume. Geophysical Research Letters, 36, L16204, doi: 10. 1029/2009GL038284.CrossRefGoogle Scholar
Jurac, S. and Richardson, J. D. (2007). Neutral cloud interaction with Saturn's main rings. Geophysical Research Letters, 34, L08102, doi: 10. 1029/2007GL029567.CrossRefGoogle Scholar
Jurac, S., McGrath, M. A., Johnson, R. E. et al. (2002). Saturn: Search for a missing water source. Geophysical Research Letters, 29, 25-1, 2172, doi: 10. 1029/2002GL015855.CrossRefGoogle Scholar
Kempf, S., Beckmann, U., Srama, R. et al. (2006). The electrostatic potential of E ring particles. Planetary and Space Science, 54, 999-1006, doi: 10. 1016/j. pss. 2006. 05. 012.CrossRefGoogle Scholar
Kempf, S., Beckmann, U., Moragas-Klostermeyer, G. et al. (2008). The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus, 193, 420-37, doi: 10. 1016/j. icarus. 2007. 06. 027.Google Scholar
Kollmann, P. (2012). Sources, sinks, and transport of energetic particles in Saturn's magnetosphere. Ph. D. thesis, uni-edition GmbH, Berlin.Google Scholar
Kollmann, P., Roussos, E., Paranicas, C. et al. (2011). Energetic particle phase space densities at Saturn: Cassini observations and interpretations. Journal of Geophysical Research: Space Physics, 116, A05222, doi: 10. 1029/2010JA016221.CrossRefGoogle Scholar
Kollmann, P., Roussos, E., Paranicas, C., Krupp, N. and Hag-gerty, D. K. (2013) Processes forming and sustaining Saturn's proton radiation belts. Icarus, 111, 323—341, doi:10. 1016/j. icarus. 2012. 10. 033.Google Scholar
Kollmann, P., Roussos, E., Kotova, A. et al. (2015) MeV proton flux predictions near Saturn's D ring. Journal of Geophysical Research Space Physics, 120, 8586-8602, doi:10. 1002/2015JA021621.CrossRefGoogle ScholarPubMed
Konradi, A. (1988). Effect of the orbital debris environment on the high-energy Van Allen proton belt. Science, 1A1, 1283—1286, doi: 10. 1126/science. 242. 4883. 1283.Google Scholar
Krimigis, S. M., Armstrong, T. P., Axford, W. I.et al. (1981). Low-energy charged particles in Saturn's magnetosphere —Results from Voyager 1. Science, 212, 225-231, doi: 10. 1126/sci-ence. 212. 4491. 225.CrossRefGoogle ScholarPubMed
Krimigis, S. M., Armstrong, T. P., Axford, W. I.et al. (1982). Low-energy hot plasma and particles in Saturn's magnetosphere. Science, 215, 571-577, doi: 10. 1126/science. 215. 4532. 571.CrossRefGoogle ScholarPubMed
Krimigis, S. M. and Armstrong T. P. (1982) Two-component proton spectra in the inner Saturnian magnetosphere. Geophysical Research Letters, 9, 1143-1146, doi: 10. 1029/ GL009i010p01143.CrossRefGoogle Scholar
Krimigis, S. M., Mitchell, D. G., Hamilton, D. C. et al. (2004) Magnetosphere Imaging Instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Science Reviews, 114, 233-329, doi:10. 1007/sl 1214-004-1410-8.CrossRefGoogle Scholar
Krimigis, S. M., Mitchell, D. G., Hamilton, D. C. et al. (2005) Dynamics of Saturn's magnetosphere from MIMI during Cassini's orbital insertion. Science, 307, 1270-1273, doi: 10. 1126/science. 1105978.CrossRefGoogle ScholarPubMed
Lenchek, A. M., Singer, S. F. and Wentworth R. C. (1961). Geomagnetically trapped electrons from cosmic ray albedo neutrons. Journal of Geophysical Research, 66, 4027—4046, doi: 10. 1029/JZ066i012p04027.CrossRefGoogle Scholar
Liou, J. -C, Hall, D. X., Krisko, P. H. and Opiela, J. N. (2004). LEGEND -a three-dimensional LEO-to-GEO debris evolutionary model. Advances in Space Research, 34, 981—986, doi: 10. 1016/j. asr. 2003. 02. 027.CrossRefGoogle Scholar
Liu, C. -H. and Ip, W. -H. (2014). A new pathway of Saturnian ring-ionosphere coupling via charged nanograins. Astrophysical Journal, 786, 34 (8pp.), doi:10. 1088/0004-637X/786/l/34.CrossRefGoogle Scholar
Livi, R., Goldstein, J., Burch, J. L. et al. (2014) Multi-instrument analysis of plasma parameters in Saturn's equatorial, inner magneto-sphere using corrections for spacecraft potential and penetrating background radiation Journal of Geophysical Research Space Physics, 119, 3683-3707, doi:10. 1002/2013JA019616.CrossRefGoogle Scholar
Loeffler, M. J., Raut, U., Vidal, R. A., Baragiola, R. A. and Carlson, R. W. (2006). Synthesis of hydrogen peroxide in water ice by ion irradiation. Icarus, 180, 265—273, doi: 10. 1016/j. icarus. 2005. 08. 001.CrossRefGoogle Scholar
Luhmann, J. G., Johnson, R. E., Tokar, R. L., Ledvina, S. A. and Cravens, T. E. (2006). A model of the ionosphere of Saturn's rings and its implications. Icarus, 181, 465-74, doi: 10. 1016/j. icarus. 2005. 11. 022.CrossRefGoogle Scholar
Mamajek, E. E., Quillen, A. C., Pecaut, M. J. et al. (2012). Planetary construction zones in occultation: Discovery of an extrasolar ring system transiting a young Sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astronomical Journal, 143, 72 (15 pp.), doi: 10. 1088/0004-6256/143/3/72.CrossRefGoogle Scholar
Martens, H. R., Reisenfeld, D. B., Williams, J. D., Johnson, R. E. and Smith, H. T. (2008). Observations of molecular oxygen ions in Saturn's inner magnetosphere. Geophysical Research Letters, 35, L20103, doi: 10. 1029/2008GL035433.CrossRefGoogle Scholar
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E. et al. (2013a). The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission. Space Science Reviews, on-line (51 pp.), doi: 10. 1007/sl1214-013-0025-3.
Mauk, B. H., Fox, N. J., Kanekal, S. G. et al. (2013b). Science objectives and rationale for the Radiation Belt Storm Probes Mission. Space Science Reviews, 179, 3-27, doi: 10. 1007/sl1214-012-9908-y.CrossRefGoogle Scholar
Maurice, S., Sittler, E. C. Jr., Cooper, J. F. et al. (1996). Comprehensive analysis of electron observations at Saturn: Voyager 1 and 2. Journal of Geophysical Research, 101, 15211-15 232, doi: 10. 1029/96JA00765.CrossRefGoogle Scholar
Mcllwain, C. E. (1961). Coordinates for mapping the distribution of magnetically trapped particles. Journal of Geophysical Research, 66, 3681-3691, doi: 10. 1029/JZ066i011p03681.Google Scholar
Menietti, J. D., Santolik, O., Rymer, A. M. et al. (2008). Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere. Journal of Geophysical Research: Space Physics, 113, A05213, doi: 10. 1029/2007JA012856.CrossRefGoogle Scholar
Moore, L., Nagy, A. E., Kliore, A. J. et al. (2006). Cassini radio occultations of Saturn's ionosphere: Model comparisons using a constant water flux. Geophysical Research Letters, 33, L22202, doi: 10. 1029/2006GL027375.CrossRefGoogle Scholar
Moore, L., O'Donoghue, J., Miiller-Wodarg, I., Galand, M. and Mendillo, M. (2015). Saturn ring rain: Model estimates of water influx into Saturn's atmosphere. Icarus, 245, 355-366, doi: 10. 1016/j. icarus. 2014. 08. 041.CrossRefGoogle Scholar
Moore, M. H. and Hudson, R. L. (2000). IR detection of H2O2 at 80 K in ion-irradiated laboratory ices relevant to Europa. Icarus 145, 282-288, doi: 10. 1006/icar. 1999. 6325.CrossRefGoogle Scholar
Morfill, G. E., Goertz, C. K. and Havnes, O. (1993). A dust-driven flux tube interchange instability. Journal of Geophysical Research, 98, 1435-1442, doi: 10. 1029/92JA01951.CrossRefGoogle Scholar
Morishima, R., Spilker, L. and Ohtsuki, K. (2011). A multilayer model for thermal infrared emission of Saturn's rings. Ill: Thermal inertia inferred from Cassini CIRS. Icarus, 215, 101-121, doi: 10. 1016/j. icarus. 2011. 06. 042.CrossRefGoogle Scholar
Morishima, R., Spilker, L. and Turner, N. (2014). Azimuthal temperature modulations of Saturn's A ring caused by self-gravity wakes. Icarus, 228, 247-259, doi: 10. 1016/j. icarus. 2013. 10. 007.CrossRefGoogle Scholar
Morishima, R., Spilker, L., Brooks, S., Deau, E. and Pilorz, S. (2016). Incomplete cooling down of Saturn's A ring at solar equinox: Implication for seasonal thermal inertia and internal structure of ring particles. Icarus, 279, 2—19, doi: 10. 1016/j. icarus. 2015. 06. 025.CrossRefGoogle Scholar
Moritz, J. (1972). Energetic protons at low equatorial altitudes. Zeitschrift fur Geophysik, 38, 701-717.Google Scholar
Moses, J. I., Lellouch, E., Bezard, B., et al. (2000). Photochemistry of Saturn's atmosphere. II. Effects of an influx of external oxygen. Icarus, 145, 166-202, doi: 10. 1006/icar. 1999. 6320.CrossRefGoogle Scholar
Nicholson, P. D. and Hedman, M. M. (2010). Self-gravity wake parameters in Saturn's A and Brings. Icarus, 206, 410—423.CrossRefGoogle Scholar
Noll, K. S., Johnson, R. E., Lane, A. L., Domingue, D. L. and Weaver, H. A. (1996). Detection of ozone on Ganymede. Science, 273, 341-343, doi: 10. 1126/science. 273. 5273. 341.CrossRefGoogle ScholarPubMed
Noll, K. S., Roush, T. L., Cruikshank, D. P., Johnson, R. E. and Pendle-ton Y, J. (1997). Detection of ozone on Saturn's satellites Rhea and Dione. Nature, 388, 45-7.CrossRefGoogle ScholarPubMed
Oberg, K. I., Linnartz, H., Visser, R. and van Dishoeck, E. F. (2009). Photodesorption of ices. II. H2O and D2O. The Astrophysical Journal, 693, 1209-1218, doi: 10. 1088/0004-637X/693/2/1209.CrossRefGoogle Scholar
O'Donoghue, J., Stallard, T. S., Melin, H. et al. (2013). The domination of Saturn's low-latitude ionosphere by ring ‘rain’. Nature, 496, 193-195, doi: 10. 1038/naturel2049.Google Scholar
Paranicas, C. and Cheng, A. F. (1997). A model of satellite microsignatures for Saturn. Icarus, 125, 380—396, doi: 10. 1006/icar. 1996. 5635.CrossRefGoogle Scholar
Paranicas, C., Mitchell, D. G., Livi, S. et al. (2005). Evidence of Ence-ladus and Tethys microsignatures. Geophysical Research Letters, 32, L20101, doi: 10. 1029/2005GL024072.CrossRefGoogle Scholar
Paranicas, C., Cooper, J. E., Garrett, H. B., Johnson, R. E. and Sturner, S. J. (2009). Europa's radiation environment and its effect on the surface, in Europa, eds. R. T., Pappalardo, W. B., McKinnon, and K. K., Khurana. Tucson, AZ: Space Science Series, University of Arizona Press, pp. 529-544.Google Scholar
Paranicas, C., Mitchell, D., Krimigis, S. et al. (2010). Asymmetries in Saturn's radiation belts. Journal of Geophysical Research, 115, A07216, doi:10. 1029/2009JA014971.CrossRefGoogle Scholar
Paranicas, C., Thomsen, M. F., Achilleos, N. et al. (2016). Effects of radial motion on interchange injections at Saturn. Icarus, 264, 342-351, doi: 10. 1016/j. icarus. 2015. 10. 002.CrossRefGoogle Scholar
Persoon, A. M., Gurnett, D. A., Kurth, W. S.and Groene, J. B. (2006). A simple scale height model of the electron density in Saturn's plasma disk. Geophysical Research Letters, 33, L18106, doi: 10. 1029/2006GL027090.CrossRefGoogle Scholar
Persoon, A. M., Gurnett, D. A., Leisner, J. S. et al. (2013). The plasma density distribution in the inner region of Saturn's magnetosphere. Journal of Geophysical Research: Space Physics, 118, 2970-2974, doi: 10. 1002/jgra. 50182.Google Scholar
Persoon, A. M., Gurnett, D. A., Kurth, W. S., Groene, J. B. and Faden, J. B. (2015). Evidence for a seasonally dependent ring plasma in the region between Saturn's A ring and Enceladus' orbit. Journal of Geophysical Research, 120, 6276-6285, doi: 10. 1002/2015JA021180.Google Scholar
Porco, C. C., Helfersteir, P., Thomas, P. C. et al. (2006). Cassini observes the active south pole of Enceladus. Science, 311, 1393—1401, doi: 10. 1126/science. 1123013.CrossRefGoogle ScholarPubMed
Pospieszalska, M. K. and Johnson, R. E. (1991). Micrometeorite erosion of the main rings as a source of plasma in the inner Saturnian plasma torus. Icarus, 93, 45-52, doi: 10. 1016/0019-1035(91)90162-M.CrossRefGoogle Scholar
Pyle, K. R., McKibben, R. B. and Simpson, J. A. (1983). Pioneer 11 observations of trapped particle absorption by the Jovian ring and the satellites 1979, Jl, J2, and J3. Journal of Geophysical Research, 88, 45-48, doi: 10. 1029/JA088iA01p00045.CrossRefGoogle Scholar
Randall, B. A. (1994). Energetic electrons in the magnetosphere of Saturn. Journal of Geophysical Research, 99, 8771—8785, doi: 10. 1029/94JA00254.CrossRefGoogle Scholar
Roddier, C., Roddier, E., Grawes, J. E. and Northcott, M. J. (1998). Discovery of an arc of particles near Enceladus's orbit: a possible key to the origin of the E ring. Icarus, 136, 50—59, doi: 10. 1006/icas. 1998. 6014.CrossRefGoogle Scholar
Roussos, E., Krupp, N., Woch, J. et al. (2005). Low energy electron microsignatures at the orbit of Tethys: Cassini MIMI/LEMMS observations. Geophysics Research Letters, 32, L24107, doi:10. 1029/2005GL024084.CrossRefGoogle Scholar
Roussos, E., Jones, G. H., Krupp, N. et al. (2007). Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons. Journal of Geophysical Research, 112, A06214, doi: 10. 1029/2006JA012027.CrossRefGoogle Scholar
Roussos, E., Krupp, N., Armstrong T, P. et al. (2008a) Discovery of a transient radiation belt at Saturn. Geophysical Research Letters, 35, L22106, doi:10. 1029/2008GL035767.CrossRefGoogle Scholar
Roussos, E., Jones, G. H., Krupp, N. et al. (2008b). Energetic electron signatures of Saturn's smaller moons: Evidence of an arc of material at Methone. Icarus, 193, 455—464, doi: 10. 1016/j. icarus. 2007. 03. 034.CrossRefGoogle Scholar
Roussos, E., Krupp, N., Paranicas, C. P. et al. (2011). Long-and short-term variability of Saturn's ionic radiation belts. Journal of Geophysical Research, 116, A02217, doi:10. 1029/2010JA015954.CrossRefGoogle Scholar
Roussos, E., Andriopoulou, M., Krupp, N. et al. (2013). Numerical simulation of energetic electron microsignature drifts at Saturn: Methods and applications. Icarus, 226, 1595-1611, doi: 10. 1016/j. icarus. 2013. 08. 023.CrossRefGoogle Scholar
Roussos, E., Krupp, N., Paranicas, C. et al. (2014). The variable extension of Saturn's electron radiation belts. Planetary and Space Science, 104, 3-17, doi: 10. 1016/j. pss. 2014. 03. 021.CrossRefGoogle Scholar
Roussos, E., Krupp, N., Kollmann, P. et al. (2016). Evidence for dust-driven, radial plasma transport in Saturn's inner radiation belts. Icarus, 274, 272-283, doi: 10. 1016/j. icarus. 2016. 02. 054.CrossRefGoogle Scholar
Rymer, A. M. et al. (2007). Electron sources in Saturn's magnetosphere. Journal of Geophysical Research, 112, A02201, doi: 10. 1029/2006JA012017.CrossRefGoogle Scholar
Sakai, S., Watanabe, S., Morooka, M. W. et al. (2013). Dust-plasma interaction through magnetosphere—ionosphere coupling in Saturn's plasma disk. Planetary and Space Science, 75, 11-16, doi: 10. 1016/j. pss. 2012. 11. 003.CrossRefGoogle Scholar
Sawyer, D. M. and Vette, J. I. (1976). AP-8 trapped proton environment for solar maximum and minimum. National Space Science Data Center Technical Report, 76-06, NSSDC Technical Reference File No. B28883, December 1976.
Schardt, A. W. and McDonald, F. B. (1983). The flux and source of energetic protons in Saturn's inner magnetosphere. Journal of Geophysical Research, 88, 8923—8935, doi: 10. 1029/JA088iAllp08923.CrossRefGoogle Scholar
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H. and Spahn, F. (2009). Dynamics of Saturn's dense rings. In: Saturn from Cassini-Huygens, eds. M. K., Dougherty, L. W., Esposito., and S. M., Krimigis.. New York, NY: Springer Science+Business Media B. V., pp. 413-58.Google Scholar
Selesnick, R. S. (2015). High-energy radiation belt electrons from CRAND. Journal of Geophysical Research Space Physics, 120, 2912-2917, doi:10. 1002/2014JA020963.CrossRefGoogle Scholar
Selesnick, R. S., Baker, D. N., Jaynes, A. N. et al. (2016). Inward diffusion and loss of radiation belt protons. Journal of Geophysical Research: Space Physics, 121, 1969—1978, doi: 10. 1002/2015JA022154.Google Scholar
Shemansky, D. E. and Hall, D. T. (1992). The distribution of atomic hydrogen in the magnetosphere of Saturn. Journal of Geophysical Research, 97, 4143-161, doi: 10. 1029/91JA02805.CrossRefGoogle Scholar
Shikaze, Y., Haino, S., Abe, K. et al. (2007). Measurements of 0. 2-20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer. Astroparticle Physics, 28, 154-167, doi: 10. 1016/j.astropartphys. 2007. 05. 001.CrossRefGoogle Scholar
Simpson, J. A. (1983). Elemental and isotopic composition of the galactic cosmic rays. Annual Review of Nuclear and Particle Science, 33, 323-382.CrossRefGoogle Scholar
Simpson, J. A., Bastian, T. S., Chenette, D. L., McKibben, R. B. and Pyle K. R. (1980) The trapped radiations of Saturn and their absorption by satellites and rings. Journal of Geophysical Research, 85, 5731-5762, doi:10. 1029/JA085iAllp05731.CrossRefGoogle Scholar
Singer, S. F. (1958). Trapped albedo theory of the radiation belt. Phys. Rev. Lett, 1, 181-183.CrossRefGoogle Scholar
Sittler, E. C., Thomsen, M., Chornay, D. et al. (2005). Preliminary results on Saturn's inner plasmasphere as observed by Cassini: Comparison with Voyager. Geophysical Research Letters, 32, L14S07, doi:10. 1029/2005GL022653.CrossRefGoogle Scholar
Sittler, E. C., Thomsen, M., Chornay, D. et al. (2006). Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results. Planetary and Space Science, 54, 1197—1210, doi: 10. 1016/j. pss. 2006. 05. 038.CrossRefGoogle Scholar
Sittler, E. C., Andre, N., Blanc, M. et al. (2008). Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planetary and Space Science, 56, 3—18, doi: 10. 1016/j. pss. 2007. 06. 006.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L., Beebe, R. F. et al. (1981). Encounter with Saturn: Voyager 1 imaging results. Science, 212, 163-191.Google Scholar
Smith, B. A., Doderblom, L., Batson, R. M. et al. (1982). A new look at the Saturn system: The Voyager 2 images. Science, 215, 504—537.CrossRefGoogle Scholar
Smyth, W. H. and Marconi, M. L. (1993). The nature of the hydrogen tori of Titan and Triton. Icarus, 101, 18-32, doi: 10. 1006/icar. 1993. 1002.CrossRefGoogle Scholar
Stone, E. C., Cooper, J. E., Cummings, A. C. et al. (1986). Energetic charged particles in the Uranian magnetosphere. Science, 233, 93-97, doi: 10. 1126/science. 233. 4759. 93.CrossRefGoogle ScholarPubMed
Stone, E. C., Cummings, A. C., Looper, M. D. et al. (1989). Energetic charged particles in the magnetosphere of Neptune. Science, 246, 1489-1494, doi: 10. 1126/science. 246. 4936. 1489.CrossRefGoogle ScholarPubMed
Stone, E. C., Frandsen, A. M., Mewaldt, R. A. et al. (1998a). The Advanced Composition Explorer. Space Science Reviews, 86, 1-22, doi: 10. 1023/A: 1005082526237.Google Scholar
Stone, E. C., Cohen, C. M. S., Cook, W. R. et al. (1998b). The Solar Isotope Spectrometer for the Advanced Composition Explorer. Space Science Reviews, 86, 357—408, doi: 10. 1023/A:1005027929871.Google Scholar
Stone, E. C., Cohen, C. M. S., Cook, W. R. et al. (1998c). The Cosmic-Ray Isotope Spectrometer for the Advanced Compo-sition Explorer. Space Science Reviews, 86, 285—356, doi: 10. 1023/A:1005075813033.Google Scholar
Sturner, S. J., Seifert, H., Shrader, C. R. and Teegarden, B. J. (2000). MGEANT -A GEANT-based multi-purpose simulation package for gamma-ray astronomy missions. In Proceedings of the Fifth Compton Symposium, eds. M. L., McConnell and J. M., Ryan. New York: American Institute of Physics, p. 814.Google Scholar
Sturner, S. J., Shrader, C. R., Weiderspointner, G., et al. (2003). Monte Carlo simulations and generation of the SPI response. Astronomy and Astrophysics, 411, L81-L84.CrossRefGoogle Scholar
Tamayo, D., Hedman, M. M. and Burns, J. A. (2014). First observations of the Phoebe ring in optical light. Icarus, 233, 1—8.CrossRefGoogle Scholar
Teolis, B. D. and Waite, J. H. (2016). Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS. Icarus, 272, 277-289 doi: 10. 1016/j. icarus. 2016. 02. 031.CrossRefGoogle Scholar
Teolis, B. D., Jones, G. H., Miles, P. F. et al. (2010). Cassini finds an oxygen—carbon dioxide atmosphere at Saturn's icy moon Rhea. Science, 330, 1813-1815, doi: 10. 1126/science. 1198366.CrossRefGoogle ScholarPubMed
Thomsen, M. F. and Van Allen, J. A. (1980). Motion of trapped electrons and protons in Saturn's inner magneto-sphere. Journal of Geophysical Research, 85, 5831—5834, doi: 10. 1029/JA085iAllp05831.CrossRefGoogle Scholar
Thomsen, M. F., Reisenfeld, D. B., Delapp, D. M. et al. (2010). Survey of ion plasma parameters in Saturn's magne-tosphere. Journal of Geophysical Research, 115, A10220, doi: 10. 1029/2010JA015267.CrossRefGoogle Scholar
Thomsen, M. F., Roussos, E., Andriopoulou, M. et al. (2012). Saturn's inner magnetospheric convection pattern: Further evidence. Journal of Geophysical Research, 111, A09208, doi: 10. 1029/2011JA017482.Google Scholar
Tokar, R. L., Johnson, R. E., Thomsen, M. E.et al. (2005). Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings. Geophysical Research Letters, 32, L14S04, doi:10. 1029/2005GL022690.CrossRefGoogle Scholar
Tokar, R. L., Johnson, R. E., Hill, T. W. et al. (2006). The interaction of the atmosphere of Enceladus with Saturn's plasma. Science, 311, 1409-1412, doi: 10. 1126/science. ll21061.CrossRefGoogle ScholarPubMed
Tokar, R. L., Johnson, R. E., Thomsen, M. E.et al. (2012). Detection of exospheric C>2+ at Saturn's moon Dione. Geophysical Research Letters, 39, L03105, doi:10. 1029/2011GL050452.CrossRefGoogle Scholar
Tseng, W. -L. Ip, W. -H., Johnson, R. E., Cassidy, T. A. and Elrod, M. K. (2010). The structure and time variability of the ring atmosphere and ionosphere. Icarus, 206, 382-389, doi: 10. 1016/j. icarus. 2009. 05. 019.CrossRefGoogle Scholar
Tseng, W. -L., Johnson, R. E., Thomsen, M. E., Cassidy, T. A. and Elrod, M. K. (2011). Neutral H2 and H2+ ions in the Satur-nian magnetosphere. Journal of Geophysical Research: Space Physics, 116, A03209, doi: 10. 1029/2010JA016145.CrossRefGoogle Scholar
Tseng, W. -L., Johnson, R. E. and Ip, W. -H. (2013a). The atomic hydrogen cloud in the saturnian system. Planetary and Space Science, 85, 164-174, doi: 10. 1016/j. pss. 2013. 06. 005.CrossRefGoogle Scholar
Tseng, W. -L., Johnson, R. E. and Elrod, M. K. (2013b). Modeling the seasonal variability of the plasma environment in Saturn's magnetosphere between main rings and Mimas. Planetary and Space Science, 11, 126-135, doi: 10. 1016/j. pss. 2012. 05. 001.Google Scholar
Turner, J. D., Chritie, D., Arras, P., Johnson, R. E. and Schmidt, C. (2016). Investigation of the environment around close-in transiting exoplants using CLOUDY. Monthly Notices of the Royal Astronomical Society, 458, 3880-3891, doi: 10. 1093/mnras/stw556.CrossRefGoogle Scholar
Usoskin, I. G., Alanko-Huotari, K., Kovaltsov, G. A. and Mursula, K. (2005). Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951-2004. Journal of Geophysical Research, 110, A12108, doi:10. 1029/2005JA011250.CrossRefGoogle Scholar
Van Allen, J. A. (1982). Findings on rings and inner satellites of Saturn of Pioneer 11. Icarus, 51, 509-527.CrossRefGoogle Scholar
Van Allen, J. A. (1983). Absorption of energetic protons by Sat-urn's Ring G. Journal of Geophysical Research, 88, 6911—6918, doi: 10. 1029/JA088iA09p06911.CrossRefGoogle Scholar
Van Allen, J. A. (1987). An upper limit on the sizes of Shepherding Satellites at Saturn's ring G. Journal of Geophysical Research, 92, 1153-1159. doi: 10. 1029/JA092:A02p01153.CrossRefGoogle Scholar
Van Allen, J. A. and Grosskreutz, C. L. (1989). Relativistic elec-trons in Saturn's inner magnetosphere and an estimate of their synchrotron emission. Journal of Geophysical Research, 94, 8731-8738, doi: 10. 1029/JA094iA07p08731.CrossRefGoogle Scholar
Van Allen, J. A. and Randall, B. A. (1985). Interplanetary cosmic ray intensity —1972—1984 and out to 32 AU. Journal of Geophysical Research, 90, 1399-1412.CrossRefGoogle Scholar
Van Allen, J. A., Thomsen, M. E., Randall, B. A., Rairden, R. L. and Grosskreutz, C. L. (1980a). Saturn's magnetosphere, rings, and inner satellites. Science, 201, 415-421.Google Scholar
Van Allen, J. A., Randall, B. A. and Thomsen, M. E.(1980b). Sources and sinks of energetic electrons and protons in Saturn's magnetosphere. Journal of Geophysical Research, 85, 5679-5694.
Verbiscer, A. J., Skrutskie, M. E., and Hamilton, D. P. (2009). Saturn's largest ring. Nature, 461, 1098-1100.CrossRefGoogle ScholarPubMed
Wahlund, J. -E., et al. (2005). Cassini measurements of cold plasma in the ionosphere of Titan. Science, 308, 986-989, doi: 10. 1126/science. 1109807.CrossRefGoogle ScholarPubMed
Wahlund, J. -E., Andre, M., Eriksson, A. I. E. et al. (2009). Detection of dusty plasma near the E-ring of Saturn. Planetary and Space Science, 51, 1795-1806, doi: 10. 1016/j. pss. 2009. 03. 011.
Waite, J. H., Lewis, W. S., Kasprzak, W. T.et al. (2004). The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation. Space Science Reviews, 114, 113-231, doi: 10. 1007/sll214-004-14 08-2.CrossRefGoogle Scholar
Waite, J. H., Cravens, T. E., Ip, W. -H. et al. (2005). Oxygen ions observed near Saturn's A ring. Science, 307, 1260-1262, http://dx.doi.org/10.1126/science.1105734.CrossRefGoogle ScholarPubMed
Waite, J. H., Combi, M. R., Ip, W. -H. et al. (2006). Cassini Ion and Natural Mass Spectrometer: Enceladus plume composition and Structure. Science, 311, 1419-1422, doi: 10. 1126/sci-ence. 1121290.CrossRefGoogle Scholar
Weidenspointner, G., Kiener, J., Gros, M. et al. (2003). First identification and modelling of SPI background lines. Astronomy and Astrophysics, 411, L113-L116, doi: 10. 1051/0004-6361:20031209.CrossRefGoogle Scholar
Westley, M. S., Baragiola, R. A., Johnson, R. E. and Barrata, G. A. (1995). Ultraviolet photodesorption from water ice. Planetary and Space Science, 43, 1311-1315, doi: 10. 1016/0032-0633(95)00088-M.CrossRefGoogle Scholar
White, R. S. (1973). High-energy proton radiation belt. Reviews of Geophysics and Space Science, 11, 595-632, doi: 10. 1029/RG01 li003p00595.Google Scholar
Wilson, R. J., Bagenal, E., Delamere, P. A. et al. (2013). Evidence from radial velocity measurements of a global electric field in Saturn's inner magnetosphere. Journal of Geophysical Research, Space Physics, 118, 2122-2132, doi: 10. 1002/jgra. 50251.CrossRefGoogle Scholar
Young, D. T., Berthelier, J. J., Blanc, M. et al. (2004). Cassini plasma spectrometer investigation. Space Science Reviews, 114, 1—112, doi:10. 1007/sll214-004-1406-4.CrossRefGoogle Scholar
Young, D. T., Berthelier, J. J. Blanc, M. et al. (2005). Composition and dynamics of plasma in Saturn's magnetosphere. Science, 307, 1262-1266, doi:10.1126/science.1106151.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×