Book contents
- Frontmatter
- SECONDE SÉRIE
- RÉSUMÉ DES LEÇONS
- AVERTISSEMENT
- RÉSUMÉ DES LEÇONS DONNÉES A L'ÉCOLE ROYALE POLYTECHNIQUE SUR LE CALCUL INFINITÉSIMAL
- DEUXIÈME LEÇON. DES FONCTIONS CONTINUES ET DISCONTINUES. REPRÉSENTATION GÉOMÉTBIQUE DES FONCTIONS CONTINUES
- TROISIÈME LECON DÉRIVÉES DES FONCTIONS D'UNE SEULE VARIABLE
- QUATRIÈME LECON DIFFÈRENTIELLES DES FONCTIOKS D'UNE SEULE VARIABLE
- CINQUIÈME LECON
- SIXIÈME LEÇON
- SEPTIÈME LEÇON
- HUITIÈME LEÇON
- NEUVIÈME LEÇON
- DIXIÈME LEÇON
- ONZIÈME LEÇON. USAGE DES FACTEURS INDÉTERMINÉS DANS LA RECHERCHE DES MAXIMA ET MINIMA
- DOUZIÉME LEÇON. DIFÉRENTIELLES ET DEHIVÉES DES DIVERS ORDRES POUR LES FONCTIONS D'UNE SEULE VARIABLE. CHANGEMENT DE LA VARIABLE INDÉPENDANTE
- TREIZIÉME LEÇON. DIFFÉRENTIELLES DES DIVERS ORDRES POUR LES FONCTIONS DE PLUSIEURS VARIABLES
- QUATORZIÉME LEÇON METUODES PROPRES A SIMPLIFIER LA RECHERCHE DES DIFFÉRENTIELLES TOTALES, POCR LES FONCTIONS DE PLUSIEURS VARIABLES INDEPÉNDANTES VALEURS SYMBOLIQUES DE CES DIFFERÉNTIELLES
- QUINZIÈME LEÇON RELATIONS QUI EXISTENT ENTRE LES FONCT1ONS D'UNE SEULE VARIABLE ET LEURS DÉRIVÉES OU DIFFÉRENT1ELLES DES DIVERS ORDRES USAGE DE CES DIFFÉRENTIELLES DANS LA RECHERCHE DES MAXIMA ET MINIMA
- CALCUL DIFFERENTIEL. SEIZIÈME LECON. USAGE DES DIFFERENTIELLES DES DIVERS ORDKES BANS LA RECHERCHE DES MAXIMA ET MINIMA DES FONCTIONS DE PLUSIEURS VARIABLES
- DIX-SEPTIÈME LEÇON
- DIX-HUITIÈME LEÇON
- DIX-NEUVIÈME LEÇON. USAGE DES DÈRIVÉES ET DES DIFFÉRENTIELLES DES DIVERS ORDRES DANS LE DÉVELOPPEMENT DES FONCTIONS ENTIÈRES.
- VINGTIÈME LEÇON. DÉCOMPOSITION DES FRACTIONS RATIONNELLES
- CALCUL INTÉGRAL. VINGT ET UNIÈME LEÇON INTÉGRALES DÉFINIES
- VINGT-DEUXIÈME LEÇON. FORMULES POOR LA DÉTERMINATION DES VALEURS EXACTES OU APPROCHÉES DES INTÉGRALES BÉFINIES.
- VINGT-TROISIÈME LEÇON
- VINGT-QUATRIÈME LEÇON. DES INTÉGRALES DÉFINIES DONT LES VALEURS SONT INFINIES OU INDÉTERMINÉES. VALEURS PRINCIPALES DES INTÉGRALES INDÉTERMINÉES.
- VINGT-CINQUIÈME LEÇON. INTÉGRALES DÉFINIES SINGULIÈRES
- VINGT-SIXIÈME LEÇON. INTÉGRALES INDÉFINIES
- VINGT-SEPTIÈME LEÇON. PROPRIÉTIÉS DIVERSES DES INTÉGRALES INDÉFINIES MÉTHODES POUR DÉTERMINER LES VALEURS DE CES MÉMES INTÉGRALES.
- VINGT-HUITIÈME LEÇON. SUR LES INTÉGRALES INDÉFINIES QUI RENFERMENT DES FONCTIONS ALGÉBRIQUES.
- VINGT-NEUVIÈME LEÇON. SUR L'INTÉGRATION ET LA RÉDUCTION DES DIFFÉRENTIEILLES BINÔMES, ET DE QUELQUES AUTRES FOUMULES DIFFÉRENTIELLES DU MÔME GENRE
- TRENTIÈME LEÇON. SUR LES INTÉGRATES INDÉFINIES QUI RENFERMENT DES FONCTIONS EXPONENTIELLES, LOGARITHMIQUES OU CIRCULAIRES
- TRENTE ET UNIÈME LEÇON.
- TRENTE-DEUXIÈME LEÇON. SUR LE PASSAGE DES INTÉGRALES 1NDÉFINIES AUX INTÉGRALES DÉFINIES.
- TRENTE-TROISIÈME LEÇON. DIFFÉRENTIATION ET INTÉGRATION SOUS LE SIGNE ∫. INTÉGRATION DES FORMULES DIFFÉRENTIELLES QUI RENFERMENT PLUSIEURS VARIABLES INDÉPENDANTES
- TRENTE-QUATRIÈME LEÇON. COMPARAISON DES DEUX ESPÈCES D'INTÉGRALES SIMPLES QUI RÉSULTENT DANS CERTAINS CAS D'UNE INTÉGRATION DOUBLE.
- TRENTE-CINQUIÈME LEÇON
- TRENTE-SIXIÈME LEÇON.
- TRENTE-SEPTIÈME LEÇON
- TRENTE-HUITIÈME LEÇON
- TRENTE-NEUVIÈME LEÇON
- QUARANTIÈME LEÇON. INTÉGRATION PAR SÉRIES.
- ADDITION
- SUR LES FORMULES DE TAYLOR ET DE MACLAURIN
- LEÇONS SUR LE CALCUL DIFFÉRENTIEL
- TABLE DES MATIÈRES
DIX-SEPTIÈME LEÇON
Published online by Cambridge University Press: 05 July 2011
- Frontmatter
- SECONDE SÉRIE
- RÉSUMÉ DES LEÇONS
- AVERTISSEMENT
- RÉSUMÉ DES LEÇONS DONNÉES A L'ÉCOLE ROYALE POLYTECHNIQUE SUR LE CALCUL INFINITÉSIMAL
- DEUXIÈME LEÇON. DES FONCTIONS CONTINUES ET DISCONTINUES. REPRÉSENTATION GÉOMÉTBIQUE DES FONCTIONS CONTINUES
- TROISIÈME LECON DÉRIVÉES DES FONCTIONS D'UNE SEULE VARIABLE
- QUATRIÈME LECON DIFFÈRENTIELLES DES FONCTIOKS D'UNE SEULE VARIABLE
- CINQUIÈME LECON
- SIXIÈME LEÇON
- SEPTIÈME LEÇON
- HUITIÈME LEÇON
- NEUVIÈME LEÇON
- DIXIÈME LEÇON
- ONZIÈME LEÇON. USAGE DES FACTEURS INDÉTERMINÉS DANS LA RECHERCHE DES MAXIMA ET MINIMA
- DOUZIÉME LEÇON. DIFÉRENTIELLES ET DEHIVÉES DES DIVERS ORDRES POUR LES FONCTIONS D'UNE SEULE VARIABLE. CHANGEMENT DE LA VARIABLE INDÉPENDANTE
- TREIZIÉME LEÇON. DIFFÉRENTIELLES DES DIVERS ORDRES POUR LES FONCTIONS DE PLUSIEURS VARIABLES
- QUATORZIÉME LEÇON METUODES PROPRES A SIMPLIFIER LA RECHERCHE DES DIFFÉRENTIELLES TOTALES, POCR LES FONCTIONS DE PLUSIEURS VARIABLES INDEPÉNDANTES VALEURS SYMBOLIQUES DE CES DIFFERÉNTIELLES
- QUINZIÈME LEÇON RELATIONS QUI EXISTENT ENTRE LES FONCT1ONS D'UNE SEULE VARIABLE ET LEURS DÉRIVÉES OU DIFFÉRENT1ELLES DES DIVERS ORDRES USAGE DE CES DIFFÉRENTIELLES DANS LA RECHERCHE DES MAXIMA ET MINIMA
- CALCUL DIFFERENTIEL. SEIZIÈME LECON. USAGE DES DIFFERENTIELLES DES DIVERS ORDKES BANS LA RECHERCHE DES MAXIMA ET MINIMA DES FONCTIONS DE PLUSIEURS VARIABLES
- DIX-SEPTIÈME LEÇON
- DIX-HUITIÈME LEÇON
- DIX-NEUVIÈME LEÇON. USAGE DES DÈRIVÉES ET DES DIFFÉRENTIELLES DES DIVERS ORDRES DANS LE DÉVELOPPEMENT DES FONCTIONS ENTIÈRES.
- VINGTIÈME LEÇON. DÉCOMPOSITION DES FRACTIONS RATIONNELLES
- CALCUL INTÉGRAL. VINGT ET UNIÈME LEÇON INTÉGRALES DÉFINIES
- VINGT-DEUXIÈME LEÇON. FORMULES POOR LA DÉTERMINATION DES VALEURS EXACTES OU APPROCHÉES DES INTÉGRALES BÉFINIES.
- VINGT-TROISIÈME LEÇON
- VINGT-QUATRIÈME LEÇON. DES INTÉGRALES DÉFINIES DONT LES VALEURS SONT INFINIES OU INDÉTERMINÉES. VALEURS PRINCIPALES DES INTÉGRALES INDÉTERMINÉES.
- VINGT-CINQUIÈME LEÇON. INTÉGRALES DÉFINIES SINGULIÈRES
- VINGT-SIXIÈME LEÇON. INTÉGRALES INDÉFINIES
- VINGT-SEPTIÈME LEÇON. PROPRIÉTIÉS DIVERSES DES INTÉGRALES INDÉFINIES MÉTHODES POUR DÉTERMINER LES VALEURS DE CES MÉMES INTÉGRALES.
- VINGT-HUITIÈME LEÇON. SUR LES INTÉGRALES INDÉFINIES QUI RENFERMENT DES FONCTIONS ALGÉBRIQUES.
- VINGT-NEUVIÈME LEÇON. SUR L'INTÉGRATION ET LA RÉDUCTION DES DIFFÉRENTIEILLES BINÔMES, ET DE QUELQUES AUTRES FOUMULES DIFFÉRENTIELLES DU MÔME GENRE
- TRENTIÈME LEÇON. SUR LES INTÉGRATES INDÉFINIES QUI RENFERMENT DES FONCTIONS EXPONENTIELLES, LOGARITHMIQUES OU CIRCULAIRES
- TRENTE ET UNIÈME LEÇON.
- TRENTE-DEUXIÈME LEÇON. SUR LE PASSAGE DES INTÉGRALES 1NDÉFINIES AUX INTÉGRALES DÉFINIES.
- TRENTE-TROISIÈME LEÇON. DIFFÉRENTIATION ET INTÉGRATION SOUS LE SIGNE ∫. INTÉGRATION DES FORMULES DIFFÉRENTIELLES QUI RENFERMENT PLUSIEURS VARIABLES INDÉPENDANTES
- TRENTE-QUATRIÈME LEÇON. COMPARAISON DES DEUX ESPÈCES D'INTÉGRALES SIMPLES QUI RÉSULTENT DANS CERTAINS CAS D'UNE INTÉGRATION DOUBLE.
- TRENTE-CINQUIÈME LEÇON
- TRENTE-SIXIÈME LEÇON.
- TRENTE-SEPTIÈME LEÇON
- TRENTE-HUITIÈME LEÇON
- TRENTE-NEUVIÈME LEÇON
- QUARANTIÈME LEÇON. INTÉGRATION PAR SÉRIES.
- ADDITION
- SUR LES FORMULES DE TAYLOR ET DE MACLAURIN
- LEÇONS SUR LE CALCUL DIFFÉRENTIEL
- TABLE DES MATIÈRES
Summary
DES CONDITIONS QUI DOIVENT ÊTRE REMPLIES POUR QU'UNE DIFFERENTIELLE TOTALE NE CHANGE PAS DE SIGNE, TANDIS QUE L'ON CHANGE LES VALEURS ATTRIBUÈES AUX DIFFERENTIELLES DES VARIABLES INDÈPENDANTES.
D'aprés ce qu'on a vu dans les Leçons précédentes, si l'on désigne par u une fonction des variables independantes x, y, z, …, et si l'on fait abstraction des valeurs de ces variables qui rendent discontinue l'une des fonctions u, du, d2u, …, la fonction u ne pourra devenir un maximum ou un minimum que dans le cas où l'une des différentielles totales d2u, d4u, dcu, …, savoir la première de celles qui ne seront pas constamment nulles, conservera le même signe pour toutes les valeurs possibles des quantites arbitraires dx = h, dy = κ, dz = l, …, ou du moins pour les valeurs de ces quantités qui ne la réduiront pas à zéro. Ajoutons que, dans la dernière supposition, chacun des systèmes de valeurs de h, k,l, … propres à faire évanouir la différentielle totale dont il s'agit devra changer une autre différentielle totale d'ordre pair en une quantité affectée du signe que conserve la premiére différentielle, tant qu'elle ne s'évanouit pas.
- Type
- Chapter
- Information
- Oeuvres complètesSeries 2, pp. 98 - 103Publisher: Cambridge University PressPrint publication year: 2009First published in: 1899