Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T04:13:37.276Z Has data issue: false hasContentIssue false

18 - Iron

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Michael K. Georgieff
Affiliation:
Department of Pediatrics and Child Development, University of Minnesota, Minneapolis, MN
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Overview

Iron is a ubiquitous element required by virtually all cells for normal growth and metabolism. Rapidly growing and differentiating cells have particularly high iron requirements. Since preterm and term human infants have high growth rates (on a per-weight basis), it is not surprising that these infants also have high iron needs. Term infants typically acquire adequate iron stores during the last trimester of gestation, but preterm infants are relatively compromised in this respect. This fact, combined with their higher postnatal growth rates in the first year, renders preterm infants at higher risk than their term counterparts for iron deficiency and iron-deficiency anemia. This increased risk could theoretically be avoided by administering large doses of iron to the preterm infant, were it not for the concern of iron toxicity; iron plays an important catalytic role in the Fenton reaction, which creates radical oxygen species that peroxidate the lipids in cell membranes. The concern is relevant particularly in the premature infant whose plasma total iron-binding capacity (TIBC) is low and whose antioxidant defense system is immature. Thus, iron can be considered a highly necessary element with a narrow therapeutic window where both deficiency and overload contribute to significant morbidity.

Iron balance in the fetus and neonate

Iron is classically seen as an integral part of the hemoglobin molecule, and iron deficiency is thus frequently assumed to be synonymous with anemia.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuhn, L., Schulman, H. M., Ponka, P. Iron-transferrin requirements and transferrin receptor expression in proliferating cells. In Ponka, P., Schulman, H. M., Woodworth, R. C., eds. Iron Transport and Storage. Boca Raton, FL: CRC Press; 1990:149–92.Google Scholar
Oski, F. A., Naiman, J. L. The hematologic aspects of the maternal–fetal relationship. In Oski, F. A., Naiman, J. L., eds. Hematologic Problems in the Newborn. 3rd edn. Philadelphia: WB Saunders;1982:32–55.Google ScholarPubMed
Hall, R. T., Wheeler, R. E., Benson, J., Harris, G., Rippetoe, L.Feeding iron-fortified premature formula during initial hospitalization to infants less than 1800 grams birth weight. Pediatrics 1993;92:409–14.Google ScholarPubMed
Friel, J. K., Andrews, W. L., Aziz, K.et al.A randomized trial of two levels of iron supplementation and developmental outcome in low birth weight infants. J. Pediatr. 2001;139:254–60.CrossRefGoogle ScholarPubMed
Chockalingam, U., Murphy, E., Ophoven, J. C., Georgieff, M. K.The influence of gestational age, size for dates, and prenatal steroids on cord transferrin levels in newborn infants. J. Pediatr. Gastroenterol. Nutr. 1987;6:276–80.CrossRefGoogle ScholarPubMed
Jansson. L. T. Iron, oxygen stress, and the preterm infant. In Lonnerdal, B., ed. Iron Metabolism in Infants. Boca Raton, FL: CRC Press;1990:73–85.Google ScholarPubMed
Rios, E., Lipschitz, D. A., Cook, J. D., Smith, N. J.Relationship of maternal and infant iron stores as assessed by determination of plasma ferritin. Pediatrics 1975; 55:694–9.Google ScholarPubMed
Dallman, P. R.Biochemical basis for the manifestations of iron deficiency. Ann. Rev. Nutr. 1986;6:13–40.CrossRefGoogle ScholarPubMed
Guiang, S. F. III, Georgieff, M. K., Lambert, D. J., Schmidt, R. L., Widness, J. A.Intravenous iron supplementation effect on tissue iron and hemoproteins in chronically phlebotomized lambs. Am. J. Physiol. 1997;273:R2124–31.Google ScholarPubMed
Chockalingam, U., Murphy, E., Ophoven, J. C., Weisdorf, S. A., Georgieff, M. K.Cord transferrin and ferritin levels in newborn infants at risk for prenatal uteroplacental insufficiency and chronic hypoxia. J. Pediatr. 1987;111:283–6.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Petry, C. D., Wobken, J. D., Oyer, C. E.Liver and brain iron deficiency in newborn infants with bilateral renal agenesis (Potter's syndrome). Pediatr. Pathol. Lab. Med. 1996;16:509–19.CrossRefGoogle Scholar
Sweet, D. G., Savage, G., Tubman, T. R., Lappin, T. R., Halliday, H. L.Study of maternal influences on fetal iron status at term using cord blood transferrin receptors. Arch. Dis. Child Fetal Neonatal. Edn. 2001;84:F40–3.CrossRefGoogle ScholarPubMed
Petry, C., Eaton, M. A., Wobken, J. D.et al.Iron deficiency of liver, heart, and brain in newborn infants of diabetic mothers. J. Pediatr. 1992;121:109–14.CrossRefGoogle ScholarPubMed
Georgieff, M., Landon, M. B., Mills, M. M.et al.Abnormal iron distribution in infants of diabetic mothers: spectrum and maternal antecedents. J. Pediatr. 1990;117:455–61.CrossRefGoogle ScholarPubMed
Philipps, A. F., Porte, P. J., Strabinsky, S., Rosenkranz, T. S., Raye, J. R.Effects of fetal hyperglycemia upon oxygen consumption in the ovine uterus and conceptus. J. Clin. Invest. 1984;74:279–86.CrossRefGoogle ScholarPubMed
Milley, J. R., Papacostas, J. S., Tabata, B. K.Effect of insulin on uptake of metabolic substrates by the fetus. Am. J. Physiol. 1986;251 (Endocrinol. Metab. 14): E349–59.Google ScholarPubMed
Widness, J. A., Susa, J. B., Garcia, J. F.et al.Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J. Clin. Invest. 1981;67:637–42.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Widness, J. A., Mills, M. M., Stonestreet, B. S.The effect of prolonged intrauterine hyperinsulinemia on iron utilization in fetal sheep. Pediatr. Res. 1989; 26:467–9.CrossRefGoogle ScholarPubMed
Petry, C., Eaton, M. A., Wobken, J. D.et al.Placental transferrin receptor in diabetic pregnancies with increased iron demand. Am. J. Physiol. 1994;121:109–14.Google Scholar
Georgieff, M. K., Petry, C. D., Mills, M. M., McKay, H., Wobken, J. D.Increased N-glycosylation and reduced transferrin-binding capacity of transferrin receptor isolated from placentae of diabetic women. Placenta 1997;18:563–8.CrossRefGoogle ScholarPubMed
Cox, T. M., Halsall, D. J.Hemochromatosis–neonatal and young subjects. Blood Cells Mol. Dis. 2002; 29:411–17.CrossRefGoogle ScholarPubMed
Butler, E.The HFE Cys282Tyr mutation as a necessary but not sufficient cause of clinical hereditary hemochromatosis. Blood 2003;101:3347–50.CrossRefGoogle Scholar
Grajeda, R., Perez-Escamilla, R., Dewey, K. G.Delayed clamping of umbilical cord improves hematologic status of Guatemalan infants at 2 months of age. Am. J. Clin. Nutr. 1997;65:425–31.CrossRefGoogle Scholar
Fomon, S. J., Nelson, S. E., Ziegler, E. E.Retention of iron by infants. Annu. Rev. Nutr. 2000; 20:273–90.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics Committee on Nutrition. Iron deficiency. In Kleinman, R. E., ed. Pediatric Nutrition Handbook. 4th Edn. Elk Grove Village, IL: American Academy of Pediatrics; 1998:233–46.Google Scholar
Ehrenkranz, R. A.Iron requirements of preterm infants. Nutrition 1994;10:77–8.Google ScholarPubMed
Dallman, P. R., Siimes, M. A.Iron deficiency in infancy and childhood: a report for the international nutritional anemia consultative group. Washington, DC: The Nutrition Foundation, 1979.Google Scholar
Ehrenkranz, R. A. Iron, folic acid, and vitamin B12. In Tsang, R. C., Lucas, A., Uauy, R., Zlotkin, S. eds. Nutritional Need of the Preterm Infant. 2nd Edn. Baltimore, MD: Williams & Wilkins; 1993:177–94.Google Scholar
Winzerling, J., Kling, P.Iron-deficient erythropoiesis in premature infants measured by blood zinc protoporphyrin/heme. J. Pediatr. 2001;139:134–6.CrossRefGoogle ScholarPubMed
Carnielli, V. P., Da Riol, R., Montini, G.Iron supplementation enhances response to high doses of recombinant human erythropoietin in preterm infants. Arch. Dis. Child Fetal Neonatal Edn. 1998;79:F44-8.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics Committee on Nutrition. Nutritional needs of preterm infants. In Kleinman, R. E., ed. Pediatric Nutrition Handbook. Elk Grove Village, IL: American Academy of Pediatrics; 1998:55–87.Google Scholar
Pollak, A., Hayde, M., Hayn, M.et al.Effect of intravenous iron supplementation on erythropoiesis in erythropoietin-treated premature infants. Pediatrics 2001;107:78–85.CrossRefGoogle ScholarPubMed
Inder, T. E., Clemett, R. S., Austin, N. C., Graham, P., Darlow, B. A.High iron status in very low birth weight infants is associated with an increased risk of retinopathy of prematurity. J. Pediatr. 1997;131:541–4.CrossRefGoogle ScholarPubMed
Romagnoli, C., Zecca, E., Gallini, F., Girlando, P., Zuppa, A. A.Do recombinant human erythropoietin and iron supplementation increase the risk of retinopathy of prematurity?Eur. J. Pediatr. 2000;159:627–8.CrossRefGoogle ScholarPubMed
Cooke, R. W., Drury, J. A., Yoxall, C. W., James, C.Blood transfusion and chronic lung disease in preterm infants. Eur. J. Pediatr. 1997;156:47–50.CrossRefGoogle ScholarPubMed
Baydas, G., Karatas, F., Gursu, M. F.et al.Antioxidant vitamin levels in term and preterm infants and their relation to maternal vitamin status. Arch. Med. Res. 2002;33:276–80.CrossRefGoogle ScholarPubMed
Berger, T. M., Polidori, M. C., Dabbagh, A.et al.Antioxidant activity of vitamin C in iron-overloaded human plasma. J. Biol. Chem. 1997;272:15656–60.CrossRefGoogle ScholarPubMed
Davis, J. M.Role of oxidant injury in the pathogenesis of neonatal lung disease. Acta. Paediatr. Suppl. 2002;91:23–5.CrossRefGoogle ScholarPubMed
Saarinen, U. M., Siimes, M. A.Serum ferritin in assessment of iron nutrition in healthy infants. Acta. Paediatr. Scand. 1978;67:745–51.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Schmidt, R. L., Mills, M. M., Radmer, W. J., Widness, J. A.Fetal iron and cytochrome c status after intrauterine hypoxemia and erythropoietin administration. Am. J. Physiol. 1992;262:R485–91.Google ScholarPubMed
Guiang, S. F. III, Widness, J. A., Flanagan, K. B.et al.The relationship between fetal arterial oxygen saturation and heart and skeletal muscle myoglobin concentrations in the ovine fetus. J. Dev. Physiol. 1993;19:99–104.Google ScholarPubMed
Connor, J. R., Menzies, S. L.Relationship of iron to oligodendrocytes and myelination. Glia 1996;17:83–93.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Nelson, C., Erikson, K., Piñero, J., Beard, J. L.In vivo dopamine metabolism is altered in iron-deficient anemic rats. J. Nutr. 1997;127:2282–8.CrossRefGoogle ScholarPubMed
Thelander, L. Ribonucleotide reductase. In Ponka, P., Schulman, H. M., Woodworth, R. C., eds. Iron Transport and Storage. Boca Raton, FL: CRC Press; 1990:193–200.Google Scholar
Ungria, M., Rao, R., Wobken, J. D.et al.Perinatal iron deficiency decreases cytochrome c oxidase activity in selected regions of neonatal rat brain. Pediatr. Res. 2000;48:169–76.CrossRefGoogle Scholar
Roncagliolo, M., Garrido, M., Walter, T., Peirano, P., Lozoff, B.Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: delayed maturation of auditory brainstem responses. Am. J. Clin. Nutr. 1998;68:683–90.CrossRefGoogle ScholarPubMed
Algarin, C., Peirano, P., Garrido, M., Pizarro, F., Lozoff, B.Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr. Res. 2003;53:217–23.
Tamura, T., Goldberg, R. L., Hou, J.et al.Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J. Pediatr. 2002;140:165–70.CrossRefGoogle ScholarPubMed
deRegnier, R. A., Nelson, C. A., Thomas, K., Wewerka, S., Georgieff, M. K.Neurophysiologic evaluation of auditory recognition memory in healthy newborn infants and infants of diabetic mothers. J. Pediatr. 2000;137:777–84.CrossRefGoogle ScholarPubMed
Nelson, C. A., Wewerka, S., Thomas, K. M.et al.Neurocognitive sequelae of infants of diabetic mothers. Behav. Neurosci. 2000;114:950–6.CrossRefGoogle ScholarPubMed
Nelson, C. A., Wewerka, S., Borscheid, A. J., deRegnier, R.-A., Georgieff, M. K.Electrophysiologic evidence of impaired cross-modal recognition memory in 8-month-old infants of diabetic mothers. J. Pediatr. 2003;142:575–82.CrossRefGoogle ScholarPubMed
Rizzo, T. A., Metzger, B. E., Dooley, S. L. & Cho, N. H.Early malnutrition and child neurobehavioral development: insights from the study of children of diabetic mothers. Child Dev. 1997;68:26–38.CrossRefGoogle Scholar
Georgieff, M. K., Wewerka, S. W., Nelson, C. A., deRegnier, R.-A.Iron status at 9 months of infants with low iron stores at birth. J. Pediatr. 2002;141:405–9.CrossRefGoogle ScholarPubMed
Liu, P. K.Ischemia-reperfusion-related repair deficit after oxidative stress: implications of faulty transcripts in neuronal sensitivity after brain injury. J. Biomed. Sci. 2003;10:4–13.CrossRefGoogle ScholarPubMed
Buonocoare, G., Perrone, S., Longini, M.et al.Oxidative stress in preterm babies at birth and on the seventh day of life. Pediatr. Res. 2003;52:46–9.CrossRefGoogle Scholar
Palmer, C., Menzies, S. L., Roberts, R. L., Pavlick, G., Connor, J. R.Changes in iron histochemistry after hypoxic-ischemic brain injury in the neonatal rat. J. Neurosci. Res. 1999;56:60–71.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Palmer, C., Roberts, R. L., Bero, C.Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 1994;25:1039–45.CrossRefGoogle ScholarPubMed
Hagberg, H., Gilland, E., Bona, E.et al.Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr. Res. 1996;40:603–9.CrossRefGoogle ScholarPubMed
Mishra, O. P., Delivoria-Papadopoulos, M.Cellular mechanisms of hypoxic injury in the developing brain. Brain Res. Bull. 1998;25:766–70.Google Scholar
Akhtar, W., Ashraf, Q. M., Zanelli, S. A., Mishra, O. P., Delivoria-Papadopoulos, M.Effect of graded hypoxia on cerebral cortical genomic DNA fragmentation in newborn piglets. Biol. Neonate 2001;79:187–93.Google Scholar
Hsueh, W., Caplan, M. S., Qu, X. W.et al.Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr. Dev. Pathol. 2003;6:6–23.CrossRefGoogle ScholarPubMed
Saugstad, O. D.Bronchopulmonary dysplasia-oxidative stress and anti-oxidants. Semin. Neonatol. 2003;8:39–49.CrossRefGoogle Scholar
Bracci, R., Perrone, S., Buonocore, G.Oxidant injury in neonatal erythrocytes during the perinatal period. Acta Paediatr. Suppl. 2002;438:S130–4.CrossRefGoogle Scholar
Hirano, K., Morinobu, T., Kim, H.et al.Blood transfusion increases radical promoting non-transferrin bound iron in preterm infants. Arch. Dis. Child. Fetal Neonatal Edn 2001;84:F188–93.CrossRefGoogle ScholarPubMed
Perrone, S., Bracci, R., Buonocore, G.New biomarkers of fetal-neonatal hypoxic stress. Acta Paediatr. Suppl. 2002: 438:S135–8.CrossRefGoogle Scholar
American Academy of Pediatrics. Iron fortification of infant formulas. Pediatrics 1999;104:119–23.CrossRef
Fomon, S. J., Ziegler, E. E., Nelson, S. E.Erythrocyte incorporation of ingested 58Fe by 56 day old breast-fed and formula-fed infants. Pediatr. Res. 1993;33:573–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Iron
    • By Michael K. Georgieff, Department of Pediatrics and Child Development, University of Minnesota, Minneapolis, MN
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Iron
    • By Michael K. Georgieff, Department of Pediatrics and Child Development, University of Minnesota, Minneapolis, MN
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Iron
    • By Michael K. Georgieff, Department of Pediatrics and Child Development, University of Minnesota, Minneapolis, MN
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.019
Available formats
×