Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T08:55:49.679Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 April 2017

Shan Gao
Affiliation:
Shanxi University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Meaning of the Wave Function
In Search of the Ontology of Quantum Mechanics
, pp. 170 - 184
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, S., Bouland, A., Chua, L., and Lowther, G. (2013). ψ-epistemic theories: The role of symmetry. Physical Review A 88, 032111.Google Scholar
Adler, S. L. (2002). Environmental influence on the measurement process in stochastic reduction models. Journal of Physics A: Mathematical and General 35, 841–858.CrossRefGoogle Scholar
Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory . Cambridge: Cambridge University Press.
Adler, S. L. (2016). Gravitation and the noise needed in objective reduction models. In Bell, M. and Gao, S. (eds.), Quantum Nonlocality and Reality: 50 Years of Bell's Theorem . Cambridge: Cambridge University Press.
Adler, S. L., and Bassi, A. (2009). Is quantum theory exact? Science 325, 275–276.Google Scholar
Aharonov, Y., and Cohen, E. (2014). Protective measurement, postselection and the Heisenberg representation. In Gao (2014a), pp. 28–38.CrossRef
Aharonov, Y., and Vaidman, L. (1993). Measurement of the Schrödinger wave of a single particle. Physics Letters A 178, 38.Google Scholar
Aharonov, Y., and Vaidman, L. (1996). About position measurements which do not show the Bohmian particle position. In Cushing, J. T., Fine, A., and Goldstein, S. (eds.), Bohmian Mechanics and Quantum Theory: An Appraisal . Dordrecht: Kluwer Academic, pp. 141–154.CrossRef
Aharonov, Y., and Vaidman, L. (2008). The two-state vector formalism: An updated review. Lecture Notes in Physics 734, 399–447.Google Scholar
Aharonov, Y., Anandan, J. S., and Vaidman, L. (1993). Meaning of the wave function. Physical Review A 47, 4616.Google Scholar
Aharonov, Y., Anandan, J. S., and Vaidman, L. (1996). The meaning of protective measurements. Foundations of Physics 26, 117.CrossRefGoogle Scholar
Aharonov, Y., Englert, B. G., and Scully, M. O. (1999). Protective measurements and Bohm trajectories. Physics Letters A 263, 137.Google Scholar
Aharonov, Y., Erez, N., and Scully, M. O. (2004). Time and ensemble averages in Bohmian mechanics. Physica Scripta 69, 81–83.Google Scholar
Aharonov, Y., Cohen, E., Gruss, E., and Landsberger, T. (2014). Measurement and collapse within the two-state vector formalism. Quantum Studies: Mathematics and Foundations 1, 133–146.
Aicardi, F., Borsellino, A., Ghirardi, G. C., and Grassi, R. (1991). Dynamical models for state-vector reduction: Do they ensure that measurements have outcomes? Foundations of Physics Letters 4, 109–128.Google Scholar
Albert, D. Z. (1992). Quantum Mechanics and Experience . Cambridge, MA: Harvard University Press.
Albert, D. Z. (1996). Elementary Quantum Metaphysics. In Cushing, J., Fine, A., and Goldstein, S. (eds.), Bohmian Mechanics and Quantum Theory: An Appraisal . Dordrecht: Kluwer, pp. 277–284.CrossRef
Albert, D. Z. (2013). Wave function realism. In Ney and Albert (2013), pp. 52–57.
Albert, D. Z. (2015). After Physics . Cambridge, MA: Harvard University Press.
Albert, D. Z., and Loewer, B. (1988). Interpreting the many worlds interpretation. Synthese 77, 195–213.CrossRefGoogle Scholar
Albert, D. Z., and Loewer, B. (1996). Tails of Schrödinger's cat. In Clifton, R. (ed.), Perspectives on Quantum Reality . Dordrecht: Kluwer Academic Publishers.
Allori, V., Goldstein, S., Tumulka, R., and Zanghì, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. British Journal for the Philosophy of Science 59(3), 353–389.CrossRefGoogle Scholar
Anandan, J. S. (1993). Protective measurement and quantum reality. Foundations of Physics Letters 6, 503–532.CrossRefGoogle Scholar
Anandan, J. S. (1998). Quantum measurement problem and the gravitational field. In Huggett, S. A., Mason, L. J., Tod, K. P., Tsou, S. T., and Woodhouse, N. M. J. (eds.), The Geometric Universe: Science, Geometry, and the Work of Roger Penrose . Oxford: Oxford University Press, pp. 357–368.
Anderson, E. (2012). The problem of time in quantum gravity. In Frignanni, V. R. (ed.), Classical and Quantum Gravity: Theory, Analysis and Applications . New York: Nova Science, ch. 4.
Bacciagaluppi, G. (1999). Nelsonian mechanics revisited. Foundations of Physics Letters 12, 1–16.Google Scholar
Bacciagaluppi, G. (2008). The role of decoherence in quantum mechanics. In The Stanford Encyclopedia of Philosophy (fall 2008 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/fall2008/entries/qm-decoherence/.
Bacciagaluppi, G., and Valentini, A. (2009). Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference . Cambridge: Cambridge University Press.CrossRef
Bain, J. (2011). Quantum field theories in classical spacetimes and particles. Studies in History and Philosophy of Modern Physics 42, 98–106.CrossRefGoogle Scholar
Baker, D. J. (2009). Against field interpretations of quantum field theory. British Journal for the Philosophy of Science 60, 585–609.CrossRefGoogle Scholar
Barrett, J., Leifer, M., and Tumulka, R. (2005). Bell's jump process in discrete time. Europhysics Letters 72, 685.CrossRefGoogle Scholar
Barrett, J., Cavalcanti, E. G., Lal, R., and Maroney, O. J. E. (2014). No ψ-epistemic model can fully explain the indistinguishability of quantum states. Physical Review Letters 112, 250403.CrossRefGoogle Scholar
Barrett, J., and Kent, A. (2004). Non-contextuality, finite precision measurement and the Kochen-Specker theorem. Studies in History and Philosophy of Modern Physics 35, 151–176.CrossRefGoogle Scholar
Barrett, J. A. (1999). The Quantum Mechanics of Minds and Worlds . Oxford: Oxford University Press.
Barrett, J. A. (2005). The preferred basis problem and the quantum mechanics of everything. British Journal for the Philosophy of Science 56 (2), 199–220.CrossRefGoogle Scholar
Barrett, J. A. (2014). Everett's relative-state formulation of quantum mechanics. In The Stanford Encyclopedia of Philosophy (fall 2014 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/fall2014/entries/qm-everett/.
Barrett, J. A., and Byrne, P. (eds.) (2012). The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary . Princeton, NJ: Princeton University Press.
Bartlett, S. D., Rudolph, T., and Spekkens, R. W. (2012). Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction. Physical Review A 86, 012103.Google Scholar
Barut, A. O. (1988). Quantum-electrodynamics based on self-energy. Physica Scripta T21, 18–21.CrossRefGoogle Scholar
Bassi, A. (2007). Dynamical reduction models: Present status and future developments. Journal of Physics: Conference Series 67, 012013.Google Scholar
Bassi, A., and Hejazi, K. (2015). No-faster-than-light-signaling implies linear evolutions. A re-derivation. European Journal of Physics 36, 055027.Google Scholar
Bassi, A., Ippoliti, E., and Vacchini, B. (2005). On the energy increase in space-collapse models. Journal of Physics A: Mathematical and General 38, 8017.Google Scholar
Bassi, A., Lochan, K., Satin, S., Singh, T. P., and Ulbricht, H. (2013). Models of wave-function collapse, underlying theories, and experimental tests. Reviews of Modern Physics 85, 471–527.Google Scholar
Bedard, K. (1999). Material objects in Bohm's interpretation. Philosophy of Science 66, 221–242.Google Scholar
Bedingham, D. J. (2011). Relativistic state reduction dynamics. Foundations of Physics 41, 686–704.Google Scholar
Bedingham, D. J., Dürr, D., Ghirardi, G. C., Goldstein, S., Tumulka, R., and Zanghì, N. (2014). Matter density and relativistic models of wave function collapse. Journal of Statistical Physics 154, 623.CrossRefGoogle Scholar
Bell, J. S. (1981). Quantum mechanics for cosmologists. In Isham, C. J., Penrose, R., and Sciama, D. W. (eds.), Quantum Gravity 2: A Second Oxford Symposium . Oxford: Oxford University Press, pp. 611–637.
Bell, J. S. (1986a). In Davies, P. C. W., and Brown, J. R. (eds.), The Ghost in the Atom. Transcript of radio interview with John Bell . Cambridge: Cambridge University Press, pp. 45–57.
Bell, J. S. (1986b). Beables for quantum field theory. Physics Reports 137, 49–54.Google Scholar
Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics . Cambridge: Cambridge University Press.
Bell, J. S. (1990). Against “measurement.” In Miller, A. I. (ed.), Sixty-Two Years of Uncertainty: Historical Philosophical and Physics Enquiries into the Foundations of Quantum Mechanics . Berlin: Springer, pp. 17–33.CrossRef
Bell, M., and Gao, S. (eds.) (2016). Quantum Nonlocality and Reality: 50 Years of Bell's Theorem . Cambridge: Cambridge University Press.CrossRef
Belot, G. (2012). Quantum states for primitive ontologists: A case study. European Journal for Philosophy of Science 2, 67–83.
Belousek, D. (2003). Formalism, ontology and methodology in Bohmian mechanics. Foundations of Science 8, 109–172.Google Scholar
Bohm, D. (1952).A suggested interpretation of quantum theory in terms of “hidden” variables, I and II. Physical Review 85, 166–193.Google Scholar
Bohm, D. (1957). Causality and Chance in Modern Physics . London: Routledge and Kegan Paul.CrossRef
Bohm, D., and Hiley, B. J. (1993). The Undivided Universe: An Ontological Interpretation of Quantum Theory . London: Routledge.
Bohr, N. (1913). On the constitution of atoms and molecules. Philosophical Magazine 26, 1–25.CrossRefGoogle Scholar
Bohr, N. (1948). On the notions of causality and complementarity. Dialectica 2, 312–319.CrossRefGoogle Scholar
Boughn, S. (2009). Nonquantum gravity. Foundations of Physics 39, 331.CrossRefGoogle Scholar
Branciard, C. (2014). How ψ-epistemic models fail at explaining the indistinguishability of quantum states. Physical Review Letters 113, 020409.CrossRefGoogle Scholar
Brown, H. R. (1996). Mindful of quantum possibilities. British Journal for the Philosophy of Science 47, 189–200.CrossRefGoogle Scholar
Brown, H. R., and Wallace, D. (2005). Solving the measurement problem: De Broglie–Bohm loses out to Everett. Foundations of Physics 35, 517–540.Google Scholar
Buffa, M., Nicrosini, G., and Rimini, A. (1995). Dissipation and reduction effects of spontaneous localization on superconducting states. Foundations of Physics Letters 8, 105–125.Google Scholar
Butterfield, J. (1996). Whither the minds? British Journal for the Philosophy of Science 47, 200–221.Google Scholar
Camilleri, K., and Schlosshauer, M. (2015). Niels Bohr as philosopher of experiment: Does decoherence theory challenge Bohr's doctrine of classical concepts? Studies in History and Philosophy of Modern Physics 49, 73–83.Google Scholar
Cao, T. Y. (ed.) (1999). Conceptual Foundations of Quantum Field Theories . Cambridge: Cambridge University Press.
Carlip, S. (2008). Is quantum gravity necessary? Classical and Quantum Gravity 25, 154010–1.Google Scholar
Caves, C. M., Fuchs, C. A., and Schack, R. (2002). Subjective probability and quantum certainty. Studies in History and Philosophy of Modern Physics 38, 255.Google Scholar
Christian, J. (2001). Why the quantum must yield to gravity. In Callender, C. and Huggett, N. (eds.), Physics Meets Philosophy at the Planck Scale . Cambridge: Cambridge University Press, p. 305.
Cohen, E. (2016). Personal communication.
Colbeck, R., and Renner, R. (2012). Is a system's wave function in one-to-one correspondence with its elements of reality? Physical Review Letters 108, 150402.Google Scholar
Combes, J., Ferrie, C., Leifer, M. S., and Pusey, M. F. (2015). Why protective measurement does not establish the reality of the quantum state. arXiv:1509.08893 [quant-ph].
Dass, N. D. H., and Qureshi, T. (1999). Critique of protective measurements. Physical Review A 59, 2590.Google Scholar
de Broglie, L. (1928). La nouvelle dynamique des fields quanta. In Bordet, J. (ed.), Electrons et photons: Rapports et discussions du cinquime Conseil de Physique . Paris: Gauthier-Villars, pp. 105–132. English translation: The new dynamics of quanta, in Bacciagaluppi and Valentini (2009), pp. 341–371.
Deotto, E., and Ghirardi, G. C. (1998). Bohmian mechanics revisited. Foundations of Physics 28, 1–30.Google Scholar
DeWitt, B. S., and Graham, N. (eds.) (1973). The Many-Worlds Interpretation of Quantum Mechanics . Princeton, NJ: Princeton University Press.
DeWitt, C., and Rickles, D. (eds.) (2011). The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference . Max Planck Research Library for the History and Development of Knowledge, volume 5.Google Scholar
Dickson, M. (1995). An empirical reply to empiricism: Protective measurement opens the door for quantum realism. Philosophy of Science 62, 122–126.CrossRefGoogle Scholar
Díosi, L. (1984). Gravitation and the quantum-mechanical localization of macro-objects. Physics Letters A 105, 199–202.CrossRefGoogle Scholar
Díosi, L. (1987). A universal master equation for the gravitational violation of quantum mechanics. Physics Letters A 120, 377–381.CrossRefGoogle Scholar
Díosi, L. (1989). Models for universal reduction of macroscopic quantum fluctuations. Physical Review A 40, 1165–1173.CrossRefGoogle Scholar
Díosi, L. (2007). Notes on certain Newton gravity mechanisms of wave function localisation and decoherence. Journal of Physics A: Mathematical and General 40, 2989–2995.Google Scholar
Díosi, L. (2015). Testing spontaneous wave-function collapse models on classical mechanical oscillators. Physical Review Letters 114, 050403.Google Scholar
Dirac, P. A. M. (1930). The Principles of Quantum Mechanics . Oxford: Clarendon Press.
Dorato, M. (2015). Laws of nature and the reality of the wave function. Synthese 192, 3179–3201.CrossRefGoogle Scholar
Dorato, M., and Laudisa, F. (2014). Realism and instrumentalism about the wave function: How should we choose? In Gao (2014a), pp. 119–134.Google Scholar
Dowker, F., and Kent, A. (1995). Properties of consistent histories. Physical Review Letters 75, 3038–3041.CrossRefGoogle Scholar
Dowker, F., and Kent, A. (1996). On the consistent histories approach to quantum mechanics. Journal of Statistical Physics 82, 1575–1646.CrossRefGoogle Scholar
Drezet, A. (2006). Comment on “Protective measurements and Bohm trajectories.” Physics Letters A 350, 416.CrossRefGoogle Scholar
Drezet, A. (2015). The PBR theorem seen from the eyes of a Bohmian. International Journal of Quantum Foundations 1, 25–43.Google Scholar
Duff, M. J., Okun, L. B., and Veneziano, G. (2002). Trialogue on the number of fundamental constants. Journal of High Energy Physics 0203, 23.Google Scholar
Dürr, D., and Teufel, S. (2009). Bohmian Mechanics: The Physics and Mathematics of Quantum Theory . Berlin: Springer-Verlag.
Dürr, D., Goldstein, S., and Zanghì, N. (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics 67, 843–907.CrossRefGoogle Scholar
Dürr, D., Goldstein, S., and Zanghì, N. (1997). Bohmian mechanics and the meaning of the wave function. In Cohen, R. S., Horne, M., and Stachel, J. (eds.), Experimental Metaphysics: Quantum Mechanical Studies for Abner Shimony , volume 1. Boston Studies in the Philosophy of Science 193. Boston: Kluwer Academic Publishers.Google Scholar
Dürr, D., Goldstein, S., and Zanghì, N. (2012). Quantum Physics without Quantum Philosophy . Berlin: Springer-Verlag.
Edwards, W. F. (1963). Special relativity in anisotropic space. American Journal of Physics 31, 482–489.Google Scholar
Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik 17, 891–921. English translation in Stachel, J. (ed.), Einstein's Miraculous Year . Princeton, NJ: Princeton University Press, 1998, pp. 123–160.CrossRef
Einstein, A. (1926). Einstein to Paul Ehrenfest, June 18, 1926, EA 10-138. Translated in Howard (1990), p. 83.
Einstein, A. (1948). Einstein to Walter Heitler. Translated in Fine (1993), p. 262.
Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777.Google Scholar
Englert, W. G. (1987). Epicurus on the Swerve and Voluntary Action . Atlanta, GA: Scholars Press.
Englert, B. G., Scully, M. O., Süssmann, G., and Walther, H. (1992). Surrealistic Bohm trajectories. Zeitschrift für Naturforschung 47a, 1175.CrossRefGoogle Scholar
Esfeld, M., and Gisin, N. (2014). The GRW flash theory: A relativistic quantum ontology of matter in space-time? Philosophy of Science 81, 248–264.Google Scholar
Esfeld, M., Lazarovici, D., Hubert, M., and Dürr, D. (2014). The ontology of Bohmian mechanics. British Journal for the Philosophy of Science 65, 773–796.Google Scholar
Everett, H. (1957). “Relative state” formulation of quantum mechanics. Reviews of Modern Physics 29, 454–462.Google Scholar
Faye, J. (1991). Niels Bohr: His Heritage and Legacy. An Antirealist View of Quantum Mechanics . Dordrecht: Kluwer Academic Publishers.
Faye, J. (2014). Copenhagen interpretation of quantum mechanics. In The Stanford Encyclopedia of Philosophy (fall 2014 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/fall2014/entries/qm-copenhagen/. Accessed on June 18, 2016.
Faye, J. (2015). Backward causation. In The Stanford Encyclopedia of Philosophy (winter 2015 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/win2015/entries/causation-backwards/. Accessed on June 18, 2016.
Feintzeig, B. (2014). Can the ontological models framework accommodate Bohmian mechanics? Studies in History and Philosophy of Modern Physics 48, 59–67.Google Scholar
Feynman, R. (1995). Feynman Lectures on Gravitation . Hatfield, B. (ed.), Reading, MA: Addison-Wesley.
Feynman, R. (2001). The Character of Physical Law (Messenger Lectures, 1964). Cambridge: MIT Press.
Fine, A. (1993). Einstein's interpretations of the quantum theory. Science in Context 6, 257–273.Google Scholar
Fine, A. (1996). The Shaky Game: Einstein Realism and the Quantum Theory . Chicago, IL: University of Chicago Press.CrossRef
Forrest, P. (1988). Quantum Metaphysics . Oxford: Blackwell.
Fraser, D. (2008). The fate of “Particles” in quantum field theories with interactions. Studies in History and Philosophy of Modern Physics , 39, 841–859.CrossRefGoogle Scholar
French, S. (2013). Whither wave function realism? In Ney and Albert (2013), pp. 76–90.Google Scholar
French, S., and Krause, D. (2006). Identity in Physics: A Historical, Philosophical, and Formal Analysis . Oxford: Oxford University Press.CrossRef
Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K., and Lukens, J. E. (2000). Quantum superposition of distinct macroscopic states. Nature 406, 43.Google Scholar
Frigg, R., and Hoefer, C. (2007). Probability in GRW Theory. Studies in the History and Philosophy of Modern Physics 38, 371–389.CrossRefGoogle Scholar
Fuchs, C. A. (2011). Coming of Age with Quantum Information: Notes on a Paulian Idea . Cambridge: Cambridge University Press.CrossRef
Gao, S. (1993). A suggested interpretation of quantum mechanics in terms of discontinuous motion. Unpublished manuscript.
Gao, S. (1999). The interpretation of quantum mechanics (I) and (II). arXiv: physics/t9907001[physics.gen-ph], arXiv: physics/9907002 [physics.gen-ph].
Gao, S. (2000). Quantum Motion and Superluminal Communication . Beijing: Chinese Broadcasting and Television Publishing House (in Chinese).
Gao, S. (2003). Quantum: A Historical and Logical Journey . Beijing: Tsinghua University Press (in Chinese).
Gao, S. (2004). Quantum collapse, consciousness and superluminal communication. Foundations of Physics Letters 17, 167–182.Google Scholar
Gao, S. (2005). A conjecture on the origin of dark energy. Chinese Physics Letters 22, 783.Google Scholar
Gao, S. (2006a). A model of wave-function collapse in discrete space-time. International Journal of Theoretical Physics 45, 1943–1957.Google Scholar
Gao, S. (2006b). Quantum Motion: Unveiling the Mysterious Quantum World . Bury St Edmunds, UK: Arima Publishing.
Gao, S. (2008). God Does Play Dice with the Universe? Bury St Edmunds, UK: Arima Publishing.
Gao, S. (2010). On Díosi-Penrose criterion of gravity-induced quantum collapse. International Journal of Theoretical Physics 49, 849–853.CrossRefGoogle Scholar
Gao, S. (2011a). The wave function and quantum reality. In Khrennikov, A., Jaeger, G., Schlosshauer, M., and Weihs, G. (eds.), Proceedings of the International Conference on Advances in Quantum Theory . AIP Conference Proceedings 1327, 334–338.
Gao, S. (2011b). Meaning of the wave function. International Journal of Quantum Chemistry 111, 4124–4138.Google Scholar
Gao, S. (2013a). A discrete model of energy-conserved wave-function collapse. Proceedings of the Royal Society A 469, 20120526.Google Scholar
Gao, S. (2013b). Does gravity induce wave-function collapse? An examination of Penrose's conjecture. Studies in History and Philosophy of Modern Physics 44, 148–151.Google Scholar
Gao, S. (2013c). Explaining holographic dark energy. Galaxies special issue “Particle Physics and Quantum Gravity Implications for Cosmology,” Cleaver, Gerald B. (eds). 1, 180–191.
Gao, S. (2013d). On Uffink's criticism of protective measurements. Studies in History and Philosophy of Modern Physics 44, 513–518.Google Scholar
Gao, S. (ed.) (2014a). Protective Measurement and Quantum Reality: Toward a New Understanding of Quantum Mechanics . Cambridge: Cambridge University Press.
Gao, S. (2014b). Reality and meaning of the wave function. In Gao (2014a), pp. 211–229.
Gao, S. (2014c). Three possible implications of spacetime discreteness. In Licata, Ignazio (ed.), Space-Time Geometry and Quantum Events . New York: Nova Science Publishers, pp. 197–214.
Gao, S. (2014d). On the possibility of nonlinear quantum evolution and superluminal communication. International Journal of Modern Physics: Conference Series 33, 1–6.Google Scholar
Gao, S. (2014e). Comments on “Physical theories in Galilean space-time and the origin of Schrdinger-like equations.” www.academia.edu/24138227. Accessed April 7, 2016.
Gao, S. (2015a). How do electrons move in atoms? From the Bohr model to quantum mechanics. In Aaserud, F. and Kragh, H. (eds.), One Hundred Years of the Bohr Atom: Proceedings from a Conference, Scientia Danica. Series M: Mathematica et physica, vol. 1. Copenhagen: Royal Danish Academy of Sciences and Letters, pp. 450–464.
Gao, S. (2015b). An argument for ψ-ontology in terms of protective measurements. Studies in History and Philosophy of Modern Physics 52, 198–202.Google Scholar
Gao, S. (2016). What does it feel like to be in a quantum superposition? http://philsciarchive.pitt.edu/11811/. Accessed on June 18, 2016.
Gao, S., and Guo, G. C. (2009). Einstein's Ghost: The Puzzle of Quantum Entanglement . Beijing: Beijing Institute of Technology Press (in Chinese).
Garay, L. J. (1995). Quantum gravity and minimum length. International Journal of Modern Physics A 10, 145.CrossRefGoogle Scholar
Ghirardi, G. C. (1997). Quantum dynamical reduction and reality: Replacing probability densities with densities in real space. Erkenntnis 45, 349.Google Scholar
Ghirardi, G. C. (1999). Quantum superpositions and definite perceptions: Envisaging new feasible experimental tests. Physics Letters A 262, 1–14.Google Scholar
Ghirardi, G. C. (2016). Collapse theories. In The Stanford Encyclopedia of Philosophy (spring 2016 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2016/entries/qm-collapse/. Accessed on June 18, 2016.
Ghirardi, G. C., Grassi, R., and Benatti, F. (1995). Describing the macroscopic world: Closing the circle within the dynamical reduction program. Foundations of Physics 25, 313–328.CrossRefGoogle Scholar
Ghirardi, G. C., Grassi, R., and Rimini, A. (1990). Continuous spontaneous reduction model involving gravity. Physical Review A 42, 1057.Google Scholar
Ghirardi, G. C., Pearle, P., and Rimini, A. (1990). Markov-processes in Hilbert-space and continuous spontaneous localization of systems of identical particles. Physical Review A 42, 78.CrossRefGoogle Scholar
Ghirardi, G. C., Rimini, A., and Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D 34, 470.CrossRefGoogle Scholar
Gisin, N. (1989). Stochastic quantum dynamics and relativity. Helvetica Physica Acta 62, 363–371.Google Scholar
Gisin, N. (1990). Weinberg's non-linear quantum mechanics and superluminal communications. Physics Letters A 143, 1–2.Google Scholar
Giulini, D., and Großardt, A. (2011). Gravitationally induced inhibitions of dispersion according to the Schrödinger-Newton equation. Classical and Quantum Gravity 28, 195026.CrossRefGoogle Scholar
Giulini, D., and Großardt, A. (2012). The Schrödinger-Newton equation as non-relativistic limit of self-gravitating Klein–Gordon and Dirac fields. Classical and Quantum Gravity 29, 215010.Google Scholar
Goldstein, S. (2013). Bohmian mechanics. In The Stanford Encyclopedia of Philosophy (spring 2013 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2013/entries/qm-bohm/. Accessed on June 18, 2016.
Goldstein, S., and Teufel, S. (2001). Quantum spacetime without observers: Ontological clarity and the conceptual foundations of quantum gravity. In Callender, C., and Huggett, N. (eds.), Physics Meets Philosophy at the Planck Scale . Cambridge: Cambridge University Press, pp. 275–289.
Goldstein, S., and Zanghì, N. (2013). Reality and the role of the wave function in quantum theory. In Ney and Albert (2013), pp. 91–109.
Grabert, H., Hanggi, P., and Talkner, P. (1979). Is quantum mechanics equivalent to a classical stochastic process? Physical Review A 19, 2440–2445.Google Scholar
Greiner, W. (1994). Quantum Mechanics: An Introduction . New York: Springer.
Griffiths, R. B. (1984). Consistent histories and the interpretation of quantum mechanics. Journal of Statistical Physics 36, 219–272.Google Scholar
Griffiths, R. B. (2002). Consistent Quantum Theory . Cambridge: Cambridge University Press.
Griffiths, R. B. (2013). A consistent quantum ontology. Studies in History and Philosophy of Modern Physics 44, 93–114.Google Scholar
Griffiths, R. B. (2015). Consistent quantum measurements. Studies in History and Philosophy of Modern Physics 52, 188–197.CrossRefGoogle Scholar
Grünbaum, A. (1973). Philosophical Problems of Space and Time . Boston Studies in the Philosophy of Science, volume 12, 2nd enlarged edition. Dordrecht and Boston: D. Reidel.CrossRef
Hardy, L. (2013). Are quantum states real? International Journal of Modern Physics B 27, 1345012.Google Scholar
Hàjek, A. (2012). Interpretations of probability. In The Stanford Encyclopedia of Philosophy (winter 2012 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/win2012/entries/probability-interpret/. Accessed on June 18, 2016.
Harrigan, N., and Spekkens, R. (2010). Einstein, incompleteness, and the epistemic view of quantum states. Foundations of Physics 40, 125–157.CrossRefGoogle Scholar
Hartle, J. B., and Gell-Mann, M. (1993). Classical equations for quantum systems. Physical Review D 47, 3345–3358.Google Scholar
Hetzroni, G., and Rohrlich, D. (2014). Protective measurements and the PBR theorem. In Gao (2014a), pp. 135–144.
Hiley, B. J., Callaghan, R. E., and Maroney, O. J. (2000). Quantum trajectories, real, surreal or an approximation to a deeper process? arxiv: quant-ph/0010020.
Holland, P. (1993). The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics . Cambridge: Cambridge University Press.CrossRef
Holland, P., and Philippidis, C. (2003). Implications of Lorentz covariance for the guidance equation in two-slit quantum interference. Physical Review A 67, 062105.CrossRefGoogle Scholar
Hughston, L. P. (1996). Geometry of stochastic state vector reduction. Proceedings of the Royal Society A 452, 953.CrossRefGoogle Scholar
Isham, C. J. (1993). Canonical Quantum Gravity and the Problem of Time. In Ibort, L. A. and Rodriguez, M. A. (eds.), Integrable Systems, Quantum Groups, and Quantum Field Theories . London: Kluwer Academic, pp. 157–288.CrossRef
Isham, C. J., and Butterfield, J. (1999). On the emergence of time in quantum gravity. In Butterfield, J. (ed.), The Arguments of Time . Oxford: Oxford University Press. pp. 111–168.
Ismael, J. (2015). Quantum mechanics. In The Stanford Encyclopedia of Philosophy (spring 2015 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2015/entries/qm/. Accessed on June 18, 2016.
Jammer, M. (1974). The Philosophy of Quantum Merchanics. New York: John Wiley and Sons.
Janis, A. (2014). Conventionality of simultaneity. In The Stanford Encyclopedia of Philosophy (fall 2014 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/fall2014/entries/spacetime-convensimul/. Accessed on June 18, 2016.
Jànossy, L. (1952). The physical aspects of the wave-particle problem. Acta Physica Academiae Scientiarum Hungaricae 1 (4), 423–467.CrossRefGoogle Scholar
Jànossy, L. (1962). Zum hydrodynamischen Modell der Quantenmechanik. Zeitschrift für Physik 169, 79–89.CrossRefGoogle Scholar
Jaynes, E. T. (1973). Survey of the present status of neoclassical radiation theory. In Mandel, L. and Wolf, E. (eds.), Coherence and Quantum Optics . New York: Plenum, p. 35.
Joos, E., and Zeh, H. D. (1985). The emergence of classical properties through interaction with the environment. Zeitschrift fr Physik B 59, 223–243.Google Scholar
Kàrolyhàzy, F. (1966). Gravitation and quantum mechanics of macroscopic objects. Nuovo Cimento A 42, 390–402.Google Scholar
Kàrolyhàzy, F., Frenkel, A., and Lukàcs, B. (1986). On the possible role of gravity on the reduction of the wavefunction. In Penrose, R. and Isham, C. J. (eds.), Quantum Concepts in Space and Time . Oxford: Clarendon Press, pp. 109–128.
Kent, A. (2010). One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation. In Saunders, S., Barrett, J. A., Kent, A., and Wallace, D. (eds.), Many Worlds? Everett, Quantum Theory, and Reality . Oxford: Oxford University Press, pp. 307–354.CrossRef
Kiefer, C. (2007). Quantum Gravity , second edition. Oxford: Oxford University Press.
Kline, M. (1990). Mathematical Thought from Ancient to Modern Times. Oxford: Oxford University Press.
Kochen, S., and Specker, E. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17, 59–87.CrossRefGoogle Scholar
Kuchar, K. V. (1992). Time and interpretations of quantum gravity. In Kunstatter, G., Vincent, D., and Williams, J. (eds.), Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics . Singapore: World Scientific.
Kuhlmann, M. (2015). Quantum field theory. In The Stanford Encyclopedia of Philosophy (summer 2015 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/sum2015/entries/quantum-field-theory/. Accessed on June 18, 2016.
Landau, L., and Lifshitz, E. (1977). Quantum Mechanics . Oxford: Pergamon Press.
Landsman, N. P. (2009). The Born rule and its interpretation. In Greenberger, D., Hentschel, K., and Weinert, F. (eds.), Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy . Berlin: Springer-Verlag, pp. 64–70.CrossRef
Leggett, A. J. (2002). Testing the limits of quantum mechanics: Motivation, state of play, prospects. Journal of Physics: Condensed Matter 14, R414–R451.Google Scholar
Leifer, M. S. (2014a). Is the quantum state real? An extended review of ψ-ontology theorems. Quanta 3, 67–155.Google Scholar
Leifer, M. S. (2014b). ψ-Epistemic models are exponentially bad at explaining the distinguishability of quantum states. Physical Review Letters 112, 160404.Google Scholar
Leifer, M. S., and Maroney, O. J. E. (2013). Maximally epistemic interpretations of the quantum state and contextuality. Physical Review Letters 110, 120401.Google Scholar
Lewis, P. J. (2004). Life in configuration space. British Journal for the Philosophy of Science 55, 713–729.Google Scholar
Lewis, P. J. (2007). How Bohm's theory solves the measurement problem. Philosophy of Science 74, 749–760.Google Scholar
Lewis, P. J. (2013). Dimension and illusion. In Ney and Albert (2013), pp. 110–125.CrossRefGoogle Scholar
Lewis, P. J. (2016). Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics . Oxford: Oxford University Press.CrossRef
Lewis, P. G., Jennings, D., Barrett, J., and Rudolph, T. (2012). Distinct quantum states can be compatible with a single state of reality. Physical Review Letters 109, 150404.CrossRefGoogle Scholar
Lombardi, O., and Dieks, D. (2012). Modal interpretations of quantum mechanics. In The Stanford Encyclopedia of Philosophy (spring 2016 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2016/entries/qm-modal/. Accessed on June 18, 2016.
Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C., and Bamber, C. (2011). Direct measurement of the quantum wavefunction. Nature 474, 188–191.Google Scholar
Madelung, E. (1926). Eine anschauliche Deutung der Gleichung von Schrdinger. Naturwissenschaften 14, 1004.Google Scholar
Madelung, E. (1927). Quantentheorie in hydrodynamischer Form. Zeitschrift für Physik 40, 322.CrossRefGoogle Scholar
Marchildon, L. (2004). Why should we interpret quantum mechanics? Foundations of Physics 34, 1453–66.Google Scholar
Maroney, O. J. E. (2012). How statistical are quantum states? arXiv:1207.6906.
Marshall, W., Simon, C., Penrose, R., and Bouwmeester, D. (2003). Towards quantum superpositions of a mirror. Physical Review Letters 91, 130401.CrossRefGoogle Scholar
Maudlin, T. (1995a). Three measurement problems. Topoi 14, 7–15.Google Scholar
Maudlin, T. (1995b). Why Bohm's theory solves the measurement problem. Philosophy of Science 62, 479–483.Google Scholar
Maudlin, T. (2002). Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics. Oxford: Blackwell.CrossRef
Maudlin, T. (2013). The nature of the quantum state. In Ney and Albert (2013), pp. 126–153.CrossRef
Maxwell, N. (1976). Towards a micro realistic version of quantum mechanics. Part I and Part II. Foundations of Physics 6, 275–92 and 661–76.Google Scholar
Maxwell, N. (2011). Is the quantum world composed of propensitons?, In Probabilities, Causes and Propensities in Physics, edited by Suarez, M., Synthese Library, Springer, Dordrecht, pp. 221–243.
McQueen, K. J. (2015). Four tails problems for dynamical collapse theories. Studies in History and Philosophy of Modern Physics 49, 10–18.CrossRefGoogle Scholar
Monton, B. (2002). Wave function ontology. Synthese 130, 265–277.CrossRefGoogle Scholar
Monton, B. (2006). Quantum mechanics and 3N-dimensional space. Philosophy of Science 73, 778–789.CrossRefGoogle Scholar
Monton, B. (2013). Against 3N-dimensional space. In Ney and Albert (2013), pp. 154–167.CrossRef
Moore, W. J. (1989). Schrödinger: Life and Thought . Cambridge: Cambridge University Press.CrossRef
Mott, N. F. (1929). The wave mechanics of α-ray tracks. Proceedings of the Royal Society of London A 126, 79–84.CrossRefGoogle Scholar
Musielak, Z. E., and Fry, J. L. (2009a). Physical theories in Galilean space-time and the origin of Schrödinger-like equations. Annals of Physics 324, 296–308.Google Scholar
Musielak, Z. E., and Fry, J. L. (2009b) General dynamical equations for free particles and their Galilean invariance. International Journal of Theoretical Physics 48, 1194–1202.Google Scholar
Myrvold, W. C. (2015). What is a wave-function? Synthese 192, 3247–3274.Google Scholar
Nakamura, K., et al (Particle Data Group) (2010). Review of Particle Physics. Journal of Physics G: Nuclear and Particle Physics 37, 075021.Google Scholar
Nelson, E. (1966). Derivation of the Schrödinger equation from Newtonian mechanics. Physical Review 150, 1079–1085.CrossRefGoogle Scholar
Nelson, E. (2001). Dynamical Theories of Brownian Motion , second edition. Princeton, NJ: Princeton University Press. Available at https://web.math.princeton.edu/nelson/books/bmotion.pdf. Accessed on June 18, 2016.
Nelson, E. (2005). The mystery of stochastic mechanics. Unpublished manuscript.
Ney, A. (2012). The status of our ordinary three dimensions in a quantum universe. Noûs 46, 525–560.CrossRefGoogle Scholar
Ney, A., and Albert, D. Z. (eds.) (2013). The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford: Oxford University Press.CrossRef
Nicrosini, O., and Rimini, A. (2003). Relativistic spontaneous localization: A proposal. Foundations of Physics 33, 1061.Google Scholar
Norsen, T. (2016). Quantum solipsism and non-locality. In Bell, M. and Gao, S. (eds.), Quantum Nonlocality and Reality: 50 Years of Bell's Theorem. Cambridge: Cambridge University Press.
Okon, E., and Sudarsky, D. (2014a). Measurements according to Consistent Histories. Studies in History and Philosophy of Modern Physics 48, 7–12.Google Scholar
Okon, E., and Sudarsky, D. (2014b). On the consistency of the consistent histories approach to quantum mechanics. Foundations of Physics 44, 19–33.Google Scholar
Okon, E., and Sudarsky, D. (2015). The consistent histories formalism and the measurement problem. Studies in History and Philosophy of Modern Physics 52, 217–222.CrossRefGoogle Scholar
Omnès, R. (1988). Logical reformulation of quantum mechanics. I. Foundations. Journal of Statistical Physics 53, 893–932.Google Scholar
Omnès, R. (1999). Understanding Quantum Mechanics . Princeton, NJ: Princeton University Press.
Pais, A. (1991). Niels Bohr's Times: In Physics, Philosophy, and Polity . Oxford: Oxford University Press.
Patra, M. K., Pironio, S., and Massar, S. (2013). No-go theorems for ψ-epistemic models based on a continuity assumption. Physical Review Letters 111, 090402.CrossRefGoogle Scholar
Pearle, P. (1989). Combining stochastic dynamical state-vector reduction with spontaneous localization. Physical Review A 39, 2277.CrossRefGoogle Scholar
Pearle, P. (1999). Collapse models. In Petruccione, F. and Breuer, H. P. (eds.), Open Systems and Measurement in Relativistic Quantum Theory . New York: Springer-Verlag.
Pearle, P. (2000). Wavefunction collapse and conservation laws. Foundations of Physics 30, 1145–1160.CrossRefGoogle Scholar
Pearle, P. (2004). Problems and aspects of energy-driven wave-function collapse models. Physical Review A 69, 42106.CrossRefGoogle Scholar
Pearle, P. (2005). Review of Stephen L. Adler, Quantum theory as an emergent phenomenon. Studies in History and Philosophy of Modern Physics 36, 716–723.Google Scholar
Pearle, P. (2007). How stands collapse. I. Journal of Physics A: Mathematical and General 40, 3189–3204.CrossRefGoogle Scholar
Pearle, P. (2009). How stands collapse. II. In Myrvold, W. C., and Christian, J., (eds.), Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Essays in Honour of Abner Shimony . The University ofWestern Ontario Series in Philosophy of Science, 73(IV), 257–292.CrossRef
Pearle, P., and Squires, E. (1996). Gravity, energy conservation and parameter values in collapse models. Foundations of Physics 26, 291.CrossRefGoogle Scholar
Penrose, R. (1981). Time-asymmetry and quantum gravity. In Isham, C. J., Penrose, R., and Sciama, D. W. (eds.), Quantum Gravity 2: A Second Oxford Symposium . Oxford: Oxford University Press, pp. 244–272.
Penrose, R. (1986). Gravity and state-vector reduction. In Penrose, R. and Isham, C. J. (eds.), Quantum Concepts in Space and Time . Oxford: Clarendon Press, pp. 129–146.
Penrose, R. (1989). The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics . Oxford: Oxford University Press.
Penrose, R. (1994). Shadows of the Mind: An Approach to the Missing Science of Consciousness . Oxford: Oxford University Press.
Penrose, R. (1996). On gravity's role in quantum state reduction. General Relativity and Gravitation 28, 581.CrossRefGoogle Scholar
Penrose, R. (1998). Quantum computation, entanglement and state reduction. Philosophical Transactions, The Royal Society of London A 356, 1927.Google Scholar
Penrose, R. (2000). Wavefunction collapse as a real gravitational effect. In Fokas, A., Kibble, T.W. B., Grigouriou, A., and Zegarlinski, B. (eds.), Mathematical Physics 2000 . London: Imperial College Press, pp. 266–282.
Penrose, R. (2002) Gravitational collapse of the wavefunction: An experimentally testable proposal. In Gurzadyan, V. G., Jantzen, R. T., and Runi, R. (eds.), Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity . Singapore: World Scientific, pp. 3–6.
Penrose, R. (2004). The Road to Reality: A Complete Guide to the Laws of the Universe . London: Jonathan Cape.
Percival, I. C. (1995). Quantum space-time fluctuations and primary state diffusion. Proceedings of the Royal Society A 451, 503.CrossRefGoogle Scholar
Percival, I. C. (1998a). Quantum State Diffusion . Cambridge: Cambridge University Press.
Percival, I. C. (1998b). Quantum transfer function, weak nonlocality and relativity. Physics Letters A 244, 495–501.Google Scholar
Price, H. (2008). Toy models for retrocausality. Studies in History and Philosophy of Modern Physics 39, 752–761.CrossRefGoogle Scholar
Price, H., and Wharton, K. (2016). Dispelling the quantum spooks: A clue that Einstein missed? In Bouton, Christophe and Huneman, Philippe (eds.), The Time of Nature, the Nature of Time . Springer, 2016.
Pusey, M., Barrett, J., and Rudolph, T. (2012). On the reality of the quantum state. Nature Physics 8, 475–478.CrossRefGoogle Scholar
Rae, A. I. M. (1990) Can GRW theory be tested by experiments on SQUIDS? Journal of Physics A: Mathematical and General 23, L57.Google Scholar
Reichenbach, H. (1958). The Philosophy of Space and Time . New York: Dover.
Rosenfeld, L. (1963). On quantization of fields. Nuclear Physics 40, 353–356.Google Scholar
Rovelli, C. (1994). Comment on “Meaning of the wave function,” Physical Review A 50, 2788.Google Scholar
Rovelli, C. (2004). Quantum Gravity . Cambridge: Cambridge University Press.CrossRef
Rovelli, C. (2011). “Forget time”: Essay written for the FQXi contest on the Nature of Time. Foundations of Physics 41, 1475–1490.CrossRefGoogle Scholar
Salzman, P. J., and Carlip, S. (2006). A possible experimental test of quantized gravity. arXiv: gr-qc/0606120.
Saunders, S., Barrett, J. A., Kent, A., and Wallace, D. (eds.) (2010). Many Worlds? Everett, Quantum Theory, and Reality . Oxford: Oxford University Press.CrossRef
Schiff, L. (1968). Quantum Mechanics . New York: McGraw-Hill.
Schlosshauer, M., and Claringbold, T. V. B. (2014). Entanglement, scaling, and the meaning of the wave function in protective measurement. In Gao (2014a), pp. 180–194.CrossRef
Schmelzer, I. (2011). An answer to the Wallstrom objection against Nelsonian stochastics. arXiv: 1101.5774 [quant-ph].
Schrödinger, E. (1926a). Quantisierung als Eigenwertproblem (Zweite Mitteilung). Annalen der Physik 79, 489–527. English translation: Quantisation as a problem of proper values. Part II. Reprinted in Schrödinger (1982), pp. 13–40.Google Scholar
Schrodinger, E. (1926b). Uber das Verhältnis der Heisenberg–Born–Jordanschen Quantenmechanik zu der meinen. Annalen der Physik 79, 734–756. English translation: On the relation between the quantum mechanics of Heisenberg, Born, and Jordan, and that of Schrödinger. Reprinted in Schrödinger (1982), pp. 45–61.Google Scholar
Schrödinger, E. (1926c). Quantisierung als Eigenwertproblem (Dritte Mitteilung). Annalen der Physik 80, 437–490. English translation: Quantisation as a problem of proper values. Part II. Reprinted in Schrödinger (1982), pp. 62–101.Google Scholar
Schrödinger, E. (1926d). Quantizierung als Eigenwertproblem (VierteMitteilung). Annalen der Physik 81, 109–139. English translation: Quantisation as a problem of proper values. Part IV. Reprinted in Schrödinger (1982), pp. 102–123.Google Scholar
Schrödinger, E. (1928). Wellenmechanik. In Bordet, J. (eds.), Electrons et photons: Rapports et discussions du cinquime Conseil de Physique . Paris: Gauthier-Villars. English translation: Wave Mechanics, in Bacciagaluppi and Valentini (2009), pp. 406–431.
Schrödinger, E. (1935a). Schrödinger to Einstein, August 19, 1935. Translated in Fine (1996), p. 82.
Schrödinger, E. (1935b). Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society 31, 555–563.Google Scholar
Schrödinger, E. (1982). Collected Papers on Wave Mechanics . New York: Chelsea Publishing.
Shankar, R. (1994). Principles of Quantum Mechanics , second edition. New York: Plenum.CrossRef
Smolin, L. (2012). A real ensemble interpretation of quantum mechanics. Foundations of Physics 42, 1239–1261.CrossRefGoogle Scholar
Sole, A. (2013). Bohmian mechanics without wave function ontology. Studies in History and Philosophy of Modern Physics 44, 365–378.CrossRefGoogle Scholar
Sonego, S., and Pin, M. (2005). Deriving relativistic momentum and energy. European Journal of Physics 26, 33–45.CrossRefGoogle Scholar
Spekkens, R. W. (2005). Contextuality for preparations, transformations, and unsharp measurements. Physical Review A 71, 052108.CrossRefGoogle Scholar
Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory. Physical Review A 75, 032110.CrossRefGoogle Scholar
Squires, E. J. (1992). Explicit collapse and superluminal signaling. Physics Letters A 163, 356–358.CrossRefGoogle Scholar
Stone, A. D. (1994). Does the Bohm theory solve the measurement problem? Philosophy of Science 62, 250–266.Google Scholar
Suàrez, M. (2004). Quantum selections, propensities and the problem of measurement. British Journal for the Philosophy of Science 55(2), 219–255.CrossRefGoogle Scholar
Suàrez, M. (2007). Quantum propensities. Studies in the History and Philosophy of Modern Physics 38, 418–438.CrossRefGoogle Scholar
Teller, P. (1986). Relational holism and quantum mechanics. British Journal for the Philosophy of Science 37, 71–81.CrossRefGoogle Scholar
Timpson, C. G. (2008). Quantum Bayesianism: A study. Studies in History and Philosophy of Modern Physics 39, 579–609.CrossRefGoogle Scholar
Tooley, M. (1988). In defence of the existence of states of motion. Philosophical Topics 16, 225–254.Google Scholar
Tumulka, R. (2006). A relativistic version of the Ghirardi–Rimini–Weber model. Journal of Statistical Physics 125, 825–844.CrossRefGoogle Scholar
Tumulka, R. (2009). The point processes of the GRW theory of wave function collapse. Reviews in Mathematical Physics 21, 155–227.CrossRefGoogle Scholar
Uffink, J. (1999). How to protect the interpretation of the wave function against protective measurements. Physical Review A 60, 3474–3481.CrossRefGoogle Scholar
Uffink, J. (2013). Reply to Gao's “On Uffink's criticism of protective measurements.” Studies in History and Philosophy of Modern Physics 44, 519–523.CrossRefGoogle Scholar
Unruh, W. G. (1994). Reality and measurement of the wave function. Physical Review A 50, 882.CrossRefGoogle Scholar
Vaidman, L. (2009). Protective measurements. In Greenberger, D., Hentschel, K., and Weinert, F. (eds.), Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy . Berlin: Springer-Verlag, pp. 505–507.CrossRef
Vaidman, L. (2016). Many-worlds interpretation of quantum mechanics. In The Stanford Encyclopedia of Philosophy (spring 2016 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2016/entries/qm-manyworlds/. Accessed on June 18, 2016.
Valentini, A. (1992). On the pilot-wave theory of classical, quantum and subquantum physics. Ph.D. dissertation, International School for Advanced Studies.
Valentini, A., and Westman, H. (2005). Dynamical origin of quantum probabilities. Proceedings of the Royal Society of London A 461, 187–193.Google Scholar
Vink, J. C. (1993). Quantum mechanics in terms of discrete beables. Physical Review A 48, 1808.Google Scholar
Von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik . Berlin: Springer-Verlag. English translation: Mathematical Foundations of Quantum Mechanics, translated by R. T. Beyer. Princeton, NJ: Princeton University (1955).
Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett Interpretation . Oxford: Oxford University Press.CrossRef
Wallace, D., and Timpson, C. (2010). Quantum mechanics on spacetime I: Spacetime state realism. British Journal for the Philosophy of Science 61, 697–727.CrossRefGoogle Scholar
Wallstrom, T. (1994). Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Physical Review A 49, 1613–1617.CrossRefGoogle Scholar
Weinberg, S. (2012). Collapse of the state vector. Physical Review A 85, 062116.CrossRefGoogle Scholar
Werner, R. (2015). God knows where all the particles are! In Quantum Foundations Workshop 2015 . www.ijqf.org/forums/topic/god-knows-where-all-the-particles-are. Accessed April 7, 2016.
Winnie, J. (1970). Special relativity without one-way velocity assumptions: I and II. Philosophy of Science 37, 81–99, 223–238.CrossRefGoogle Scholar
Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 58, 2059.CrossRef
Zeh, H. D. (1981). The problem of conscious observation in quantum mechanical description. Epistemological Letters of the Ferdinand-Gonseth Association in Biel (Switzerland), 63. Also published in Foundations of Physics Letters 13 (2000), 221–233.CrossRefGoogle Scholar
Zeh, H. D. (1999). Why Bohm's quantum theory? Foundations of Physics Letters 12, 197–200.Google Scholar
Zeh, H. D. (2016a). The strange (hi)story of particles and waves. Zeitschrift für Naturforschung 71a, 195–212.Google Scholar
Zeh, H. D. (2016b). John Bell's varying interpretations of quantum mechanics: Memories and comments. In Bell, M. and Gao, S. (eds.), Quantum Nonlocality and Reality: 50 Years of Bell's Theorem . Cambridge: Cambridge University Press.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Shan Gao
  • Book: The Meaning of the Wave Function
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316407479.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Shan Gao
  • Book: The Meaning of the Wave Function
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316407479.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Shan Gao
  • Book: The Meaning of the Wave Function
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316407479.012
Available formats
×