Aaronson, S., Bouland, A., Chua, L., and Lowther, G. (2013).
ψ-epistemic theories: The role of symmetry.
Physical Review A
88, 032111.
Adler, S. L. (2002). Environmental influence on the measurement process in stochastic reduction models.
Journal of Physics A: Mathematical and General
35, 841–858.
Adler, S. L. (2004).
Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory
. Cambridge: Cambridge University Press.
Adler, S. L. (2016). Gravitation and the noise needed in objective reduction models. In Bell, M. and Gao, S. (eds.),
Quantum Nonlocality and Reality: 50 Years of Bell's Theorem
. Cambridge: Cambridge University Press.
Adler, S. L., and Bassi, A. (2009). Is quantum theory exact?
Science
325, 275–276.
Aharonov, Y., and Cohen, E. (2014). Protective measurement, postselection and the Heisenberg representation. In Gao (2014a), pp. 28–38.
Aharonov, Y., and Vaidman, L. (1993). Measurement of the Schrödinger wave of a single particle.
Physics Letters A
178, 38.
Aharonov, Y., and Vaidman, L. (1996). About position measurements which do not show the Bohmian particle position. In Cushing, J. T., Fine, A., and Goldstein, S. (eds.),
Bohmian Mechanics and Quantum Theory: An Appraisal
. Dordrecht: Kluwer Academic, pp. 141–154.
Aharonov, Y., and Vaidman, L. (2008). The two-state vector formalism: An updated review.
Lecture Notes in Physics
734, 399–447.
Aharonov, Y., Anandan, J. S., and Vaidman, L. (1993). Meaning of the wave function.
Physical Review A
47, 4616.
Aharonov, Y., Anandan, J. S., and Vaidman, L. (1996). The meaning of protective measurements.
Foundations of Physics
26, 117.
Aharonov, Y., Englert, B. G., and Scully, M. O. (1999). Protective measurements and Bohm trajectories.
Physics Letters A
263, 137.
Aharonov, Y., Erez, N., and Scully, M. O. (2004). Time and ensemble averages in Bohmian mechanics.
Physica Scripta
69, 81–83.
Aharonov, Y., Cohen, E., Gruss, E., and Landsberger, T. (2014). Measurement and collapse within the two-state vector formalism. Quantum Studies: Mathematics and Foundations 1, 133–146.
Aicardi, F., Borsellino, A., Ghirardi, G. C., and Grassi, R. (1991). Dynamical models for state-vector reduction: Do they ensure that measurements have outcomes?
Foundations of Physics Letters
4, 109–128.
Albert, D. Z. (1992).
Quantum Mechanics and Experience
. Cambridge, MA: Harvard University Press.
Albert, D. Z. (1996). Elementary Quantum Metaphysics. In Cushing, J., Fine, A., and Goldstein, S. (eds.),
Bohmian Mechanics and Quantum Theory: An Appraisal
. Dordrecht: Kluwer, pp. 277–284.
Albert, D. Z. (2013). Wave function realism. In Ney and Albert (2013), pp. 52–57.
Albert, D. Z. (2015).
After Physics
. Cambridge, MA: Harvard University Press.
Albert, D. Z., and Loewer, B. (1988). Interpreting the many worlds interpretation.
Synthese
77, 195–213.
Albert, D. Z., and Loewer, B. (1996). Tails of Schrödinger's cat. In Clifton, R. (ed.),
Perspectives on Quantum Reality
. Dordrecht: Kluwer Academic Publishers.
Allori, V., Goldstein, S., Tumulka, R., and Zanghì, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory.
British Journal for the Philosophy of Science
59(3), 353–389.
Anandan, J. S. (1993). Protective measurement and quantum reality.
Foundations of Physics Letters
6, 503–532.
Anandan, J. S. (1998). Quantum measurement problem and the gravitational field. In Huggett, S. A., Mason, L. J., Tod, K. P., Tsou, S. T., and Woodhouse, N. M. J. (eds.),
The Geometric Universe: Science, Geometry, and the Work of Roger Penrose
. Oxford: Oxford University Press, pp. 357–368.
Anderson, E. (2012). The problem of time in quantum gravity. In Frignanni, V. R. (ed.),
Classical and Quantum Gravity: Theory, Analysis and Applications
. New York: Nova Science, ch. 4.
Bacciagaluppi, G. (1999). Nelsonian mechanics revisited.
Foundations of Physics Letters
12, 1–16.
Bacciagaluppi, G. (2008). The role of decoherence in quantum mechanics. In
The Stanford Encyclopedia of Philosophy
(fall 2008 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/fall2008/entries/qm-decoherence/.
Bacciagaluppi, G., and Valentini, A. (2009).
Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference
. Cambridge: Cambridge University Press.
Bain, J. (2011). Quantum field theories in classical spacetimes and particles.
Studies in History and Philosophy of Modern Physics
42, 98–106.
Baker, D. J. (2009). Against field interpretations of quantum field theory.
British Journal for the Philosophy of Science
60, 585–609.
Barrett, J., Leifer, M., and Tumulka, R. (2005). Bell's jump process in discrete time.
Europhysics Letters
72, 685.
Barrett, J., Cavalcanti, E. G., Lal, R., and Maroney, O. J. E. (2014). No ψ-epistemic model can fully explain the indistinguishability of quantum states.
Physical Review Letters
112, 250403.
Barrett, J., and Kent, A. (2004). Non-contextuality, finite precision measurement and the Kochen-Specker theorem.
Studies in History and Philosophy of Modern Physics
35, 151–176.
Barrett, J. A. (1999).
The Quantum Mechanics of Minds and Worlds
. Oxford: Oxford University Press.
Barrett, J. A. (2005). The preferred basis problem and the quantum mechanics of everything.
British Journal for the Philosophy of Science
56 (2), 199–220.
Barrett, J. A. (2014). Everett's relative-state formulation of quantum mechanics. In
The Stanford Encyclopedia of Philosophy
(fall 2014 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/fall2014/entries/qm-everett/.
Barrett, J. A., and Byrne, P. (eds.) (2012).
The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary
. Princeton, NJ: Princeton University Press.
Bartlett, S. D., Rudolph, T., and Spekkens, R. W. (2012). Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction.
Physical Review A
86, 012103.
Barut, A. O. (1988). Quantum-electrodynamics based on self-energy.
Physica Scripta
T21, 18–21.
Bassi, A. (2007). Dynamical reduction models: Present status and future developments.
Journal of Physics: Conference Series
67, 012013.
Bassi, A., and Hejazi, K. (2015). No-faster-than-light-signaling implies linear evolutions. A re-derivation.
European Journal of Physics
36, 055027.
Bassi, A., Ippoliti, E., and Vacchini, B. (2005). On the energy increase in space-collapse models.
Journal of Physics A: Mathematical and General
38, 8017.
Bassi, A., Lochan, K., Satin, S., Singh, T. P., and Ulbricht, H. (2013). Models of wave-function collapse, underlying theories, and experimental tests.
Reviews of Modern Physics
85, 471–527.
Bedard, K. (1999). Material objects in Bohm's interpretation.
Philosophy of Science
66, 221–242.
Bedingham, D. J. (2011). Relativistic state reduction dynamics.
Foundations of Physics
41, 686–704.
Bedingham, D. J., Dürr, D., Ghirardi, G. C., Goldstein, S., Tumulka, R., and Zanghì, N. (2014). Matter density and relativistic models of wave function collapse.
Journal of Statistical Physics
154, 623.
Bell, J. S. (1981). Quantum mechanics for cosmologists. In Isham, C. J., Penrose, R., and Sciama, D. W. (eds.),
Quantum Gravity 2: A Second Oxford Symposium
. Oxford: Oxford University Press, pp. 611–637.
Bell, J. S. (1986a). In Davies, P. C. W., and Brown, J. R. (eds.),
The Ghost in the Atom. Transcript of radio interview with John Bell
. Cambridge: Cambridge University Press, pp. 45–57.
Bell, J. S. (1986b). Beables for quantum field theory.
Physics Reports
137, 49–54.
Bell, J. S. (1987).
Speakable and Unspeakable in Quantum Mechanics
. Cambridge: Cambridge University Press.
Bell, J. S. (1990). Against “measurement.” In Miller, A. I. (ed.),
Sixty-Two Years of Uncertainty: Historical Philosophical and Physics Enquiries into the Foundations of Quantum Mechanics
. Berlin: Springer, pp. 17–33.
Bell, M., and Gao, S. (eds.) (2016).
Quantum Nonlocality and Reality: 50 Years of Bell's Theorem
. Cambridge: Cambridge University Press.
Belot, G. (2012). Quantum states for primitive ontologists: A case study. European Journal for Philosophy of Science 2, 67–83.
Belousek, D. (2003). Formalism, ontology and methodology in Bohmian mechanics.
Foundations of Science
8, 109–172.
Bohm, D. (1952).A suggested interpretation of quantum theory in terms of “hidden” variables, I and II.
Physical Review
85, 166–193.
Bohm, D. (1957).
Causality and Chance in Modern Physics
. London: Routledge and Kegan Paul.
Bohm, D., and Hiley, B. J. (1993).
The Undivided Universe: An Ontological Interpretation of Quantum Theory
. London: Routledge.
Bohr, N. (1913). On the constitution of atoms and molecules.
Philosophical Magazine
26, 1–25.
Bohr, N. (1948). On the notions of causality and complementarity.
Dialectica
2, 312–319.
Boughn, S. (2009). Nonquantum gravity.
Foundations of Physics
39, 331.
Branciard, C. (2014). How ψ-epistemic models fail at explaining the indistinguishability of quantum states.
Physical Review Letters
113, 020409.
Brown, H. R. (1996). Mindful of quantum possibilities.
British Journal for the Philosophy of Science
47, 189–200.
Brown, H. R., and Wallace, D. (2005). Solving the measurement problem: De Broglie–Bohm loses out to Everett.
Foundations of Physics
35, 517–540.
Buffa, M., Nicrosini, G., and Rimini, A. (1995). Dissipation and reduction effects of spontaneous localization on superconducting states.
Foundations of Physics Letters
8, 105–125.
Butterfield, J. (1996). Whither the minds?
British Journal for the Philosophy of Science
47, 200–221.
Camilleri, K., and Schlosshauer, M. (2015). Niels Bohr as philosopher of experiment: Does decoherence theory challenge Bohr's doctrine of classical concepts?
Studies in History and Philosophy of Modern Physics
49, 73–83.
Cao, T. Y. (ed.) (1999).
Conceptual Foundations of Quantum Field Theories
. Cambridge: Cambridge University Press.
Carlip, S. (2008). Is quantum gravity necessary?
Classical and Quantum Gravity
25, 154010–1.
Caves, C. M., Fuchs, C. A., and Schack, R. (2002). Subjective probability and quantum certainty.
Studies in History and Philosophy of Modern Physics
38, 255.
Christian, J. (2001). Why the quantum must yield to gravity. In Callender, C. and Huggett, N. (eds.),
Physics Meets Philosophy at the Planck Scale
. Cambridge: Cambridge University Press, p. 305.
Cohen, E. (2016). Personal communication.
Colbeck, R., and Renner, R. (2012). Is a system's wave function in one-to-one correspondence with its elements of reality?
Physical Review Letters
108, 150402.
Combes, J., Ferrie, C., Leifer, M. S., and Pusey, M. F. (2015). Why protective measurement does not establish the reality of the quantum state. arXiv:1509.08893 [quant-ph].
Dass, N. D. H., and Qureshi, T. (1999). Critique of protective measurements.
Physical Review A
59, 2590.
de Broglie, L. (1928). La nouvelle dynamique des fields quanta. In Bordet, J. (ed.),
Electrons et photons: Rapports et discussions du cinquime Conseil de Physique
. Paris: Gauthier-Villars, pp. 105–132. English translation: The new dynamics of quanta, in Bacciagaluppi and Valentini (2009), pp. 341–371.
Deotto, E., and Ghirardi, G. C. (1998). Bohmian mechanics revisited.
Foundations of Physics
28, 1–30.
DeWitt, B. S., and Graham, N. (eds.) (1973).
The Many-Worlds Interpretation of Quantum Mechanics
. Princeton, NJ: Princeton University Press.
DeWitt, C., and Rickles, D. (eds.) (2011).
The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference
. Max Planck Research Library for the History and Development of Knowledge, volume 5.
Dickson, M. (1995). An empirical reply to empiricism: Protective measurement opens the door for quantum realism.
Philosophy of Science
62, 122–126.
Díosi, L. (1984). Gravitation and the quantum-mechanical localization of macro-objects.
Physics Letters A
105, 199–202.
Díosi, L. (1987). A universal master equation for the gravitational violation of quantum mechanics.
Physics Letters A
120, 377–381.
Díosi, L. (1989). Models for universal reduction of macroscopic quantum fluctuations.
Physical Review A
40, 1165–1173.
Díosi, L. (2007). Notes on certain Newton gravity mechanisms of wave function localisation and decoherence.
Journal of Physics A: Mathematical and General
40, 2989–2995.
Díosi, L. (2015). Testing spontaneous wave-function collapse models on classical mechanical oscillators.
Physical Review Letters
114, 050403.
Dirac, P. A. M. (1930).
The Principles of Quantum Mechanics
. Oxford: Clarendon Press.
Dorato, M. (2015). Laws of nature and the reality of the wave function.
Synthese
192, 3179–3201.
Dorato, M., and Laudisa, F. (2014). Realism and instrumentalism about the wave function: How should we choose?
In Gao (2014a), pp. 119–134.
Dowker, F., and Kent, A. (1995). Properties of consistent histories.
Physical Review Letters
75, 3038–3041.
Dowker, F., and Kent, A. (1996). On the consistent histories approach to quantum mechanics.
Journal of Statistical Physics
82, 1575–1646.
Drezet, A. (2006). Comment on “Protective measurements and Bohm trajectories.”
Physics Letters A
350, 416.
Drezet, A. (2015). The PBR theorem seen from the eyes of a Bohmian.
International Journal of Quantum Foundations
1, 25–43.
Duff, M. J., Okun, L. B., and Veneziano, G. (2002). Trialogue on the number of fundamental constants.
Journal of High Energy Physics
0203, 23.
Dürr, D., and Teufel, S. (2009).
Bohmian Mechanics: The Physics and Mathematics of Quantum Theory
. Berlin: Springer-Verlag.
Dürr, D., Goldstein, S., and Zanghì, N. (1992). Quantum equilibrium and the origin of absolute uncertainty.
Journal of Statistical Physics
67, 843–907.
Dürr, D., Goldstein, S., and Zanghì, N. (1997). Bohmian mechanics and the meaning of the wave function. In Cohen, R. S., Horne, M., and Stachel, J. (eds.),
Experimental Metaphysics: Quantum Mechanical Studies for Abner Shimony
, volume 1. Boston Studies in the Philosophy of Science 193. Boston: Kluwer Academic Publishers.
Dürr, D., Goldstein, S., and Zanghì, N. (2012).
Quantum Physics without Quantum Philosophy
. Berlin: Springer-Verlag.
Edwards, W. F. (1963). Special relativity in anisotropic space.
American Journal of Physics
31, 482–489.
Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik 17, 891–921. English translation in Stachel, J. (ed.),
Einstein's Miraculous Year
. Princeton, NJ: Princeton University Press, 1998, pp. 123–160.
Einstein, A. (1926). Einstein to Paul Ehrenfest, June 18, 1926, EA 10-138. Translated in Howard (1990), p. 83.
Einstein, A. (1948). Einstein to Walter Heitler. Translated in Fine (1993), p. 262.
Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete?
Physical Review
47, 777.
Englert, W. G. (1987).
Epicurus on the Swerve and Voluntary Action
. Atlanta, GA: Scholars Press.
Englert, B. G., Scully, M. O., Süssmann, G., and Walther, H. (1992). Surrealistic Bohm trajectories.
Zeitschrift für Naturforschung
47a, 1175.
Esfeld, M., and Gisin, N. (2014). The GRW flash theory: A relativistic quantum ontology of matter in space-time?
Philosophy of Science
81, 248–264.
Esfeld, M., Lazarovici, D., Hubert, M., and Dürr, D. (2014). The ontology of Bohmian mechanics.
British Journal for the Philosophy of Science
65, 773–796.
Everett, H. (1957). “Relative state” formulation of quantum mechanics.
Reviews of Modern Physics
29, 454–462.
Faye, J. (1991).
Niels Bohr: His Heritage and Legacy. An Antirealist View of Quantum Mechanics
. Dordrecht: Kluwer Academic Publishers.
Faye, J. (2014). Copenhagen interpretation of quantum mechanics. In
The Stanford Encyclopedia of Philosophy
(fall 2014 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/fall2014/entries/qm-copenhagen/. Accessed on June 18, 2016.
Faye, J. (2015). Backward causation. In
The Stanford Encyclopedia of Philosophy
(winter 2015 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/win2015/entries/causation-backwards/. Accessed on June 18, 2016.
Feintzeig, B. (2014). Can the ontological models framework accommodate Bohmian mechanics?
Studies in History and Philosophy of Modern Physics
48, 59–67.
Feynman, R. (1995).
Feynman Lectures on Gravitation
. Hatfield, B. (ed.), Reading, MA: Addison-Wesley.
Feynman, R. (2001).
The Character of Physical Law
(Messenger Lectures, 1964). Cambridge: MIT Press.
Fine, A. (1993). Einstein's interpretations of the quantum theory.
Science in Context
6, 257–273.
Fine, A. (1996).
The Shaky Game: Einstein Realism and the Quantum Theory
. Chicago, IL: University of Chicago Press.
Forrest, P. (1988).
Quantum Metaphysics
. Oxford: Blackwell.
Fraser, D. (2008). The fate of “Particles” in quantum field theories with interactions.
Studies in History and Philosophy of Modern Physics
, 39, 841–859.
French, S. (2013). Whither wave function realism?
In Ney and Albert (2013), pp. 76–90.
French, S., and Krause, D. (2006).
Identity in Physics: A Historical, Philosophical, and Formal Analysis
. Oxford: Oxford University Press.
Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K., and Lukens, J. E. (2000). Quantum superposition of distinct macroscopic states.
Nature
406, 43.
Frigg, R., and Hoefer, C. (2007). Probability in GRW Theory.
Studies in the History and Philosophy of Modern Physics
38, 371–389.
Fuchs, C. A. (2011).
Coming of Age with Quantum Information: Notes on a Paulian Idea
. Cambridge: Cambridge University Press.
Gao, S. (1993). A suggested interpretation of quantum mechanics in terms of discontinuous motion. Unpublished manuscript.
Gao, S. (1999). The interpretation of quantum mechanics (I) and (II). arXiv: physics/t9907001[physics.gen-ph], arXiv: physics/9907002 [physics.gen-ph].
Gao, S. (2000).
Quantum Motion and Superluminal Communication
. Beijing: Chinese Broadcasting and Television Publishing House (in Chinese).
Gao, S. (2003).
Quantum: A Historical and Logical Journey
. Beijing: Tsinghua University Press (in Chinese).
Gao, S. (2004). Quantum collapse, consciousness and superluminal communication.
Foundations of Physics Letters
17, 167–182.
Gao, S. (2005). A conjecture on the origin of dark energy.
Chinese Physics Letters
22, 783.
Gao, S. (2006a). A model of wave-function collapse in discrete space-time. International Journal of Theoretical Physics
45, 1943–1957.
Gao, S. (2006b).
Quantum Motion: Unveiling the Mysterious Quantum World
. Bury St Edmunds, UK: Arima Publishing.
Gao, S. (2008).
God Does Play Dice with the Universe?
Bury St Edmunds, UK: Arima Publishing.
Gao, S. (2010). On Díosi-Penrose criterion of gravity-induced quantum collapse.
International Journal of Theoretical Physics
49, 849–853.
Gao, S. (2011a). The wave function and quantum reality. In Khrennikov, A., Jaeger, G., Schlosshauer, M., and Weihs, G. (eds.),
Proceedings of the International Conference on Advances in Quantum Theory
. AIP Conference Proceedings 1327, 334–338.
Gao, S. (2011b). Meaning of the wave function.
International Journal of Quantum Chemistry
111, 4124–4138.
Gao, S. (2013a). A discrete model of energy-conserved wave-function collapse.
Proceedings of the Royal Society A
469, 20120526.
Gao, S. (2013b). Does gravity induce wave-function collapse? An examination of Penrose's conjecture.
Studies in History and Philosophy of Modern Physics
44, 148–151.
Gao, S. (2013c). Explaining holographic dark energy.
Galaxies special issue “Particle Physics and Quantum Gravity Implications for Cosmology,” Cleaver, Gerald B. (eds). 1, 180–191.
Gao, S. (2013d). On Uffink's criticism of protective measurements.
Studies in History and Philosophy of Modern Physics
44, 513–518.
Gao, S. (ed.) (2014a).
Protective Measurement and Quantum Reality: Toward a New Understanding of Quantum Mechanics
. Cambridge: Cambridge University Press.
Gao, S. (2014b). Reality and meaning of the wave function. In Gao (2014a), pp. 211–229.
Gao, S. (2014c). Three possible implications of spacetime discreteness. In Licata, Ignazio (ed.),
Space-Time Geometry and Quantum Events
. New York: Nova Science Publishers, pp. 197–214.
Gao, S. (2014d). On the possibility of nonlinear quantum evolution and superluminal communication.
International Journal of Modern Physics: Conference Series
33, 1–6.
Gao, S. (2014e). Comments on “Physical theories in Galilean space-time and the origin of Schrdinger-like equations.” www.academia.edu/24138227. Accessed April 7, 2016.
Gao, S. (2015a). How do electrons move in atoms? From the Bohr model to quantum mechanics. In Aaserud, F. and Kragh, H. (eds.),
One Hundred Years of the Bohr Atom: Proceedings from a Conference, Scientia Danica. Series M: Mathematica et physica,
vol. 1. Copenhagen: Royal Danish Academy of Sciences and Letters, pp. 450–464.
Gao, S. (2015b). An argument for ψ-ontology in terms of protective measurements.
Studies in History and Philosophy of Modern Physics
52, 198–202.
Gao, S. (2016). What does it feel like to be in a quantum superposition? http://philsciarchive.pitt.edu/11811/. Accessed on June 18, 2016.
Gao, S., and Guo, G. C. (2009).
Einstein's Ghost: The Puzzle of Quantum Entanglement
. Beijing: Beijing Institute of Technology Press (in Chinese).
Garay, L. J. (1995). Quantum gravity and minimum length.
International Journal of Modern Physics A
10, 145.
Ghirardi, G. C. (1997). Quantum dynamical reduction and reality: Replacing probability densities with densities in real space.
Erkenntnis
45, 349.
Ghirardi, G. C. (1999). Quantum superpositions and definite perceptions: Envisaging new feasible experimental tests.
Physics Letters A
262, 1–14.
Ghirardi, G. C. (2016). Collapse theories. In
The Stanford Encyclopedia of Philosophy
(spring 2016 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2016/entries/qm-collapse/. Accessed on June 18, 2016.
Ghirardi, G. C., Grassi, R., and Benatti, F. (1995). Describing the macroscopic world: Closing the circle within the dynamical reduction program.
Foundations of Physics
25, 313–328.
Ghirardi, G. C., Grassi, R., and Rimini, A. (1990). Continuous spontaneous reduction model involving gravity.
Physical Review A
42, 1057.
Ghirardi, G. C., Pearle, P., and Rimini, A. (1990). Markov-processes in Hilbert-space and continuous spontaneous localization of systems of identical particles.
Physical Review A
42, 78.
Ghirardi, G. C., Rimini, A., and Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review
D 34, 470.
Gisin, N. (1989). Stochastic quantum dynamics and relativity.
Helvetica Physica Acta
62, 363–371.
Gisin, N. (1990). Weinberg's non-linear quantum mechanics and superluminal communications.
Physics Letters A
143, 1–2.
Giulini, D., and Großardt, A. (2011). Gravitationally induced inhibitions of dispersion according to the Schrödinger-Newton equation.
Classical and Quantum Gravity
28, 195026.
Giulini, D., and Großardt, A. (2012). The Schrödinger-Newton equation as non-relativistic limit of self-gravitating Klein–Gordon and Dirac fields.
Classical and Quantum Gravity
29, 215010.
Goldstein, S. (2013). Bohmian mechanics. In
The Stanford Encyclopedia of Philosophy
(spring 2013 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2013/entries/qm-bohm/. Accessed on June 18, 2016.
Goldstein, S., and Teufel, S. (2001). Quantum spacetime without observers: Ontological clarity and the conceptual foundations of quantum gravity. In Callender, C., and Huggett, N. (eds.),
Physics Meets Philosophy at the Planck Scale
. Cambridge: Cambridge University Press, pp. 275–289.
Goldstein, S., and Zanghì, N. (2013). Reality and the role of the wave function in quantum theory. In Ney and Albert (2013), pp. 91–109.
Grabert, H., Hanggi, P., and Talkner, P. (1979). Is quantum mechanics equivalent to a classical stochastic process?
Physical Review A
19, 2440–2445.
Greiner, W. (1994).
Quantum Mechanics: An Introduction
. New York: Springer.
Griffiths, R. B. (1984). Consistent histories and the interpretation of quantum mechanics.
Journal of Statistical Physics
36, 219–272.
Griffiths, R. B. (2002).
Consistent Quantum Theory
. Cambridge: Cambridge University Press.
Griffiths, R. B. (2013). A consistent quantum ontology.
Studies in History and Philosophy of Modern Physics
44, 93–114.
Griffiths, R. B. (2015). Consistent quantum measurements.
Studies in History and Philosophy of Modern Physics
52, 188–197.
Grünbaum, A. (1973).
Philosophical Problems of Space and Time
. Boston Studies in the Philosophy of Science, volume 12, 2nd enlarged edition. Dordrecht and Boston: D. Reidel.
Hardy, L. (2013). Are quantum states real?
International Journal of Modern Physics B
27, 1345012.
Hàjek, A. (2012). Interpretations of probability. In
The Stanford Encyclopedia of Philosophy
(winter 2012 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/win2012/entries/probability-interpret/. Accessed on June 18, 2016.
Harrigan, N., and Spekkens, R. (2010). Einstein, incompleteness, and the epistemic view of quantum states.
Foundations of Physics
40, 125–157.
Hartle, J. B., and Gell-Mann, M. (1993). Classical equations for quantum systems.
Physical Review D
47, 3345–3358.
Hetzroni, G., and Rohrlich, D. (2014). Protective measurements and the PBR theorem. In Gao (2014a), pp. 135–144.
Hiley, B. J., Callaghan, R. E., and Maroney, O. J. (2000). Quantum trajectories, real, surreal or an approximation to a deeper process? arxiv: quant-ph/0010020.
Holland, P. (1993).
The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics
. Cambridge: Cambridge University Press.
Holland, P., and Philippidis, C. (2003). Implications of Lorentz covariance for the guidance equation in two-slit quantum interference.
Physical Review A
67, 062105.
Hughston, L. P. (1996). Geometry of stochastic state vector reduction.
Proceedings of the Royal Society A
452, 953.
Isham, C. J. (1993). Canonical Quantum Gravity and the Problem of Time. In Ibort, L. A. and Rodriguez, M. A. (eds.),
Integrable Systems, Quantum Groups, and Quantum Field Theories
. London: Kluwer Academic, pp. 157–288.
Isham, C. J., and Butterfield, J. (1999). On the emergence of time in quantum gravity. In Butterfield, J. (ed.),
The Arguments of Time
. Oxford: Oxford University Press. pp. 111–168.
Ismael, J. (2015). Quantum mechanics. In
The Stanford Encyclopedia of Philosophy
(spring 2015 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2015/entries/qm/. Accessed on June 18, 2016.
Jammer, M. (1974).
The Philosophy of Quantum Merchanics.
New York: John Wiley and Sons.
Janis, A. (2014). Conventionality of simultaneity. In
The Stanford Encyclopedia of Philosophy
(fall 2014 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/fall2014/entries/spacetime-convensimul/. Accessed on June 18, 2016.
Jànossy, L. (1952). The physical aspects of the wave-particle problem.
Acta Physica Academiae Scientiarum Hungaricae
1 (4), 423–467.
Jànossy, L. (1962). Zum hydrodynamischen Modell der Quantenmechanik.
Zeitschrift für Physik
169, 79–89.
Jaynes, E. T. (1973). Survey of the present status of neoclassical radiation theory. In Mandel, L. and Wolf, E. (eds.),
Coherence and Quantum Optics
. New York: Plenum, p. 35.
Joos, E., and Zeh, H. D. (1985). The emergence of classical properties through interaction with the environment.
Zeitschrift fr Physik B
59, 223–243.
Kàrolyhàzy, F. (1966). Gravitation and quantum mechanics of macroscopic objects.
Nuovo Cimento A
42, 390–402.
Kàrolyhàzy, F., Frenkel, A., and Lukàcs, B. (1986). On the possible role of gravity on the reduction of the wavefunction. In Penrose, R. and Isham, C. J. (eds.),
Quantum Concepts in Space and Time
. Oxford: Clarendon Press, pp. 109–128.
Kent, A. (2010). One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation. In Saunders, S., Barrett, J. A., Kent, A., and Wallace, D. (eds.),
Many Worlds? Everett, Quantum Theory, and Reality
. Oxford: Oxford University Press, pp. 307–354.
Kiefer, C. (2007).
Quantum Gravity
, second edition. Oxford: Oxford University Press.
Kline, M. (1990).
Mathematical Thought from Ancient to Modern Times.
Oxford: Oxford University Press.
Kochen, S., and Specker, E. (1967). The problem of hidden variables in quantum mechanics.
Journal of Mathematics and Mechanics
17, 59–87.
Kuchar, K. V. (1992). Time and interpretations of quantum gravity. In Kunstatter, G., Vincent, D., and Williams, J. (eds.),
Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics
. Singapore: World Scientific.
Kuhlmann, M. (2015). Quantum field theory. In
The Stanford Encyclopedia of Philosophy
(summer 2015 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/sum2015/entries/quantum-field-theory/. Accessed on June 18, 2016.
Landau, L., and Lifshitz, E. (1977).
Quantum Mechanics
. Oxford: Pergamon Press.
Landsman, N. P. (2009). The Born rule and its interpretation. In Greenberger, D., Hentschel, K., and Weinert, F. (eds.),
Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy
. Berlin: Springer-Verlag, pp. 64–70.
Leggett, A. J. (2002). Testing the limits of quantum mechanics: Motivation, state of play, prospects.
Journal of Physics: Condensed Matter
14, R414–R451.
Leifer, M. S. (2014a). Is the quantum state real? An extended review of ψ-ontology theorems.
Quanta
3, 67–155.
Leifer, M. S. (2014b).
ψ-Epistemic models are exponentially bad at explaining the distinguishability of quantum states.
Physical Review Letters
112, 160404.
Leifer, M. S., and Maroney, O. J. E. (2013). Maximally epistemic interpretations of the quantum state and contextuality.
Physical Review Letters
110, 120401.
Lewis, P. J. (2004). Life in configuration space.
British Journal for the Philosophy of Science
55, 713–729.
Lewis, P. J. (2007). How Bohm's theory solves the measurement problem.
Philosophy of Science
74, 749–760.
Lewis, P. J. (2013). Dimension and illusion. In Ney and Albert (2013), pp. 110–125.
Lewis, P. J. (2016).
Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics
. Oxford: Oxford University Press.
Lewis, P. G., Jennings, D., Barrett, J., and Rudolph, T. (2012). Distinct quantum states can be compatible with a single state of reality.
Physical Review Letters
109, 150404.
Lombardi, O., and Dieks, D. (2012). Modal interpretations of quantum mechanics. In
The Stanford Encyclopedia of Philosophy
(spring 2016 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2016/entries/qm-modal/. Accessed on June 18, 2016.
Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C., and Bamber, C. (2011). Direct measurement of the quantum wavefunction.
Nature
474, 188–191.
Madelung, E. (1926). Eine anschauliche Deutung der Gleichung von Schrdinger.
Naturwissenschaften
14, 1004.
Madelung, E. (1927). Quantentheorie in hydrodynamischer Form.
Zeitschrift für Physik
40, 322.
Marchildon, L. (2004). Why should we interpret quantum mechanics?
Foundations of Physics
34, 1453–66.
Maroney, O. J. E. (2012). How statistical are quantum states? arXiv:1207.6906.
Marshall, W., Simon, C., Penrose, R., and Bouwmeester, D. (2003). Towards quantum superpositions of a mirror.
Physical Review Letters
91, 130401.
Maudlin, T. (1995a). Three measurement problems.
Topoi
14, 7–15.
Maudlin, T. (1995b). Why Bohm's theory solves the measurement problem.
Philosophy of Science
62, 479–483.
Maudlin, T. (2002).
Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics.
Oxford: Blackwell.
Maudlin, T. (2013). The nature of the quantum state. In Ney and Albert (2013), pp. 126–153.
Maxwell, N. (1976). Towards a micro realistic version of quantum mechanics. Part I and Part II.
Foundations of Physics
6, 275–92 and 661–76.
Maxwell, N. (2011). Is the quantum world composed of propensitons?, In Probabilities, Causes and Propensities in Physics, edited by Suarez, M., Synthese Library, Springer, Dordrecht, pp. 221–243.
McQueen, K. J. (2015). Four tails problems for dynamical collapse theories.
Studies in History and Philosophy of Modern Physics
49, 10–18.
Monton, B. (2002). Wave function ontology.
Synthese
130, 265–277.
Monton, B. (2006). Quantum mechanics and 3N-dimensional space.
Philosophy of Science
73, 778–789.
Monton, B. (2013). Against 3N-dimensional space. In Ney and Albert (2013), pp. 154–167.
Moore, W. J. (1989).
Schrödinger: Life and Thought
. Cambridge: Cambridge University Press.
Mott, N. F. (1929). The wave mechanics of α-ray tracks.
Proceedings of the Royal Society of London A
126, 79–84.
Musielak, Z. E., and Fry, J. L. (2009a). Physical theories in Galilean space-time and the origin of Schrödinger-like equations.
Annals of Physics
324, 296–308.
Musielak, Z. E., and Fry, J. L. (2009b) General dynamical equations for free particles and their Galilean invariance.
International Journal of Theoretical Physics
48, 1194–1202.
Myrvold, W. C. (2015). What is a wave-function?
Synthese
192, 3247–3274.
Nakamura, K., et al (Particle Data Group) (2010). Review of Particle Physics.
Journal of Physics G: Nuclear and Particle Physics
37, 075021.
Nelson, E. (1966). Derivation of the Schrödinger equation from Newtonian mechanics.
Physical Review
150, 1079–1085.
Nelson, E. (2001).
Dynamical Theories of Brownian Motion
, second edition. Princeton, NJ: Princeton University Press. Available at https://web.math.princeton.edu/nelson/books/bmotion.pdf. Accessed on June 18, 2016.
Nelson, E. (2005). The mystery of stochastic mechanics. Unpublished manuscript.
Ney, A. (2012). The status of our ordinary three dimensions in a quantum universe.
Noûs
46, 525–560.
Ney, A., and Albert, D. Z. (eds.) (2013).
The Wave Function: Essays on the Metaphysics of Quantum Mechanics.
Oxford: Oxford University Press.
Nicrosini, O., and Rimini, A. (2003). Relativistic spontaneous localization: A proposal.
Foundations of Physics
33, 1061.
Norsen, T. (2016). Quantum solipsism and non-locality. In Bell, M. and Gao, S. (eds.),
Quantum Nonlocality and Reality: 50 Years of Bell's Theorem.
Cambridge: Cambridge University Press.
Okon, E., and Sudarsky, D. (2014a). Measurements according to Consistent Histories.
Studies in History and Philosophy of Modern Physics
48, 7–12.
Okon, E., and Sudarsky, D. (2014b). On the consistency of the consistent histories approach to quantum mechanics.
Foundations of Physics
44, 19–33.
Okon, E., and Sudarsky, D. (2015). The consistent histories formalism and the measurement problem.
Studies in History and Philosophy of Modern Physics
52, 217–222.
Omnès, R. (1988). Logical reformulation of quantum mechanics. I. Foundations.
Journal of Statistical Physics
53, 893–932.
Omnès, R. (1999).
Understanding Quantum Mechanics
. Princeton, NJ: Princeton University Press.
Pais, A. (1991).
Niels Bohr's Times: In Physics, Philosophy, and Polity
. Oxford: Oxford University Press.
Patra, M. K., Pironio, S., and Massar, S. (2013). No-go theorems for ψ-epistemic models based on a continuity assumption.
Physical Review Letters
111, 090402.
Pearle, P. (1989). Combining stochastic dynamical state-vector reduction with spontaneous localization.
Physical Review A
39, 2277.
Pearle, P. (1999). Collapse models. In Petruccione, F. and Breuer, H. P. (eds.),
Open Systems and Measurement in Relativistic Quantum Theory
. New York: Springer-Verlag.
Pearle, P. (2000). Wavefunction collapse and conservation laws.
Foundations of Physics
30, 1145–1160.
Pearle, P. (2004). Problems and aspects of energy-driven wave-function collapse models.
Physical Review A
69, 42106.
Pearle, P. (2005). Review of Stephen L. Adler, Quantum theory as an emergent phenomenon.
Studies in History and Philosophy of Modern Physics
36, 716–723.
Pearle, P. (2007). How stands collapse. I.
Journal of Physics A: Mathematical and General
40, 3189–3204.
Pearle, P. (2009). How stands collapse. II. In Myrvold, W. C., and Christian, J., (eds.),
Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Essays in Honour of Abner Shimony
. The University ofWestern Ontario Series in Philosophy of Science, 73(IV), 257–292.
Pearle, P., and Squires, E. (1996). Gravity, energy conservation and parameter values in collapse models.
Foundations of Physics
26, 291.
Penrose, R. (1981). Time-asymmetry and quantum gravity. In Isham, C. J., Penrose, R., and Sciama, D. W. (eds.),
Quantum Gravity 2: A Second Oxford Symposium
. Oxford: Oxford University Press, pp. 244–272.
Penrose, R. (1986). Gravity and state-vector reduction. In Penrose, R. and Isham, C. J. (eds.),
Quantum Concepts in Space and Time
. Oxford: Clarendon Press, pp. 129–146.
Penrose, R. (1989).
The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics
. Oxford: Oxford University Press.
Penrose, R. (1994).
Shadows of the Mind: An Approach to the Missing Science of Consciousness
. Oxford: Oxford University Press.
Penrose, R. (1996). On gravity's role in quantum state reduction.
General Relativity and Gravitation
28, 581.
Penrose, R. (1998). Quantum computation, entanglement and state reduction.
Philosophical Transactions, The Royal Society of London A
356, 1927.
Penrose, R. (2000). Wavefunction collapse as a real gravitational effect. In Fokas, A., Kibble, T.W. B., Grigouriou, A., and Zegarlinski, B. (eds.),
Mathematical Physics 2000
. London: Imperial College Press, pp. 266–282.
Penrose, R. (2002) Gravitational collapse of the wavefunction: An experimentally testable proposal. In Gurzadyan, V. G., Jantzen, R. T., and Runi, R. (eds.),
Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity
. Singapore: World Scientific, pp. 3–6.
Penrose, R. (2004).
The Road to Reality: A Complete Guide to the Laws of the Universe
. London: Jonathan Cape.
Percival, I. C. (1995). Quantum space-time fluctuations and primary state diffusion.
Proceedings of the Royal Society A
451, 503.
Percival, I. C. (1998a).
Quantum State Diffusion
. Cambridge: Cambridge University Press.
Percival, I. C. (1998b). Quantum transfer function, weak nonlocality and relativity.
Physics Letters A
244, 495–501.
Price, H. (2008). Toy models for retrocausality.
Studies in History and Philosophy of Modern Physics
39, 752–761.
Price, H., and Wharton, K. (2016). Dispelling the quantum spooks: A clue that Einstein missed? In Bouton, Christophe and Huneman, Philippe (eds.),
The Time of Nature, the Nature of Time
. Springer, 2016.
Pusey, M., Barrett, J., and Rudolph, T. (2012). On the reality of the quantum state.
Nature Physics
8, 475–478.
Rae, A. I. M. (1990) Can GRW theory be tested by experiments on SQUIDS?
Journal of Physics A: Mathematical and General
23, L57.
Reichenbach, H. (1958).
The Philosophy of Space and Time
. New York: Dover.
Rosenfeld, L. (1963). On quantization of fields.
Nuclear Physics
40, 353–356.
Rovelli, C. (1994). Comment on “Meaning of the wave function,”
Physical Review A
50, 2788.
Rovelli, C. (2004).
Quantum Gravity
. Cambridge: Cambridge University Press.
Rovelli, C. (2011). “Forget time”: Essay written for the FQXi contest on the Nature of Time.
Foundations of Physics
41, 1475–1490.
Salzman, P. J., and Carlip, S. (2006). A possible experimental test of quantized gravity. arXiv: gr-qc/0606120.
Saunders, S., Barrett, J. A., Kent, A., and Wallace, D. (eds.) (2010).
Many Worlds? Everett, Quantum Theory, and Reality
. Oxford: Oxford University Press.
Schiff, L. (1968).
Quantum Mechanics
. New York: McGraw-Hill.
Schlosshauer, M., and Claringbold, T. V. B. (2014). Entanglement, scaling, and the meaning of the wave function in protective measurement. In Gao (2014a), pp. 180–194.
Schmelzer, I. (2011). An answer to the Wallstrom objection against Nelsonian stochastics. arXiv: 1101.5774 [quant-ph].
Schrödinger, E. (1926a). Quantisierung als Eigenwertproblem (Zweite Mitteilung).
Annalen der Physik
79, 489–527. English translation: Quantisation as a problem of proper values. Part II. Reprinted in Schrödinger (1982), pp. 13–40.
Schrodinger, E. (1926b). Uber das Verhältnis der Heisenberg–Born–Jordanschen Quantenmechanik zu der meinen.
Annalen der Physik
79, 734–756. English translation: On the relation between the quantum mechanics of Heisenberg, Born, and Jordan, and that of Schrödinger. Reprinted in Schrödinger (1982), pp. 45–61.
Schrödinger, E. (1926c). Quantisierung als Eigenwertproblem (Dritte Mitteilung).
Annalen der Physik
80, 437–490. English translation: Quantisation as a problem of proper values. Part II. Reprinted in Schrödinger (1982), pp. 62–101.
Schrödinger, E. (1926d). Quantizierung als Eigenwertproblem (VierteMitteilung).
Annalen der Physik
81, 109–139. English translation: Quantisation as a problem of proper values. Part IV. Reprinted in Schrödinger (1982), pp. 102–123.
Schrödinger, E. (1928). Wellenmechanik. In Bordet, J. (eds.),
Electrons et photons: Rapports et discussions du cinquime Conseil de Physique
. Paris: Gauthier-Villars. English translation: Wave Mechanics, in Bacciagaluppi and Valentini (2009), pp. 406–431.
Schrödinger, E. (1935a). Schrödinger to Einstein, August 19, 1935. Translated in Fine (1996), p. 82.
Schrödinger, E. (1935b). Discussion of probability relations between separated systems.
Mathematical Proceedings of the Cambridge Philosophical Society
31, 555–563.
Schrödinger, E. (1982).
Collected Papers on Wave Mechanics
. New York: Chelsea Publishing.
Shankar, R. (1994).
Principles of Quantum Mechanics
, second edition. New York: Plenum.
Smolin, L. (2012). A real ensemble interpretation of quantum mechanics.
Foundations of Physics
42, 1239–1261.
Sole, A. (2013). Bohmian mechanics without wave function ontology.
Studies in History and Philosophy of Modern Physics
44, 365–378.
Sonego, S., and Pin, M. (2005). Deriving relativistic momentum and energy.
European Journal of Physics
26, 33–45.
Spekkens, R. W. (2005). Contextuality for preparations, transformations, and unsharp measurements.
Physical Review A
71, 052108.
Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory.
Physical Review A
75, 032110.
Squires, E. J. (1992). Explicit collapse and superluminal signaling.
Physics Letters A
163, 356–358.
Stone, A. D. (1994). Does the Bohm theory solve the measurement problem?
Philosophy of Science
62, 250–266.
Suàrez, M. (2004). Quantum selections, propensities and the problem of measurement.
British Journal for the Philosophy of Science
55(2), 219–255.
Suàrez, M. (2007). Quantum propensities.
Studies in the History and Philosophy of Modern Physics
38, 418–438.
Teller, P. (1986). Relational holism and quantum mechanics.
British Journal for the Philosophy of Science
37, 71–81.
Timpson, C. G. (2008). Quantum Bayesianism: A study.
Studies in History and Philosophy of Modern Physics
39, 579–609.
Tooley, M. (1988). In defence of the existence of states of motion.
Philosophical Topics
16, 225–254.
Tumulka, R. (2006). A relativistic version of the Ghirardi–Rimini–Weber model.
Journal of Statistical Physics
125, 825–844.
Tumulka, R. (2009). The point processes of the GRW theory of wave function collapse.
Reviews in Mathematical Physics
21, 155–227.
Uffink, J. (1999). How to protect the interpretation of the wave function against protective measurements.
Physical Review A
60, 3474–3481.
Uffink, J. (2013). Reply to Gao's “On Uffink's criticism of protective measurements.”
Studies in History and Philosophy of Modern Physics
44, 519–523.
Unruh, W. G. (1994). Reality and measurement of the wave function.
Physical Review A
50, 882.
Vaidman, L. (2009). Protective measurements. In Greenberger, D., Hentschel, K., and Weinert, F. (eds.),
Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy
. Berlin: Springer-Verlag, pp. 505–507.
Vaidman, L. (2016). Many-worlds interpretation of quantum mechanics. In
The Stanford Encyclopedia of Philosophy
(spring 2016 edition), Zalta, Edward N. (ed.). http://plato.stanford.edu/archives/spr2016/entries/qm-manyworlds/. Accessed on June 18, 2016.
Valentini, A. (1992). On the pilot-wave theory of classical, quantum and subquantum physics. Ph.D. dissertation, International School for Advanced Studies.
Valentini, A., and Westman, H. (2005). Dynamical origin of quantum probabilities.
Proceedings of the Royal Society of London A
461, 187–193.
Vink, J. C. (1993). Quantum mechanics in terms of discrete beables.
Physical Review A
48, 1808.
Von Neumann, J. (1932).
Mathematische Grundlagen der Quantenmechanik
. Berlin: Springer-Verlag. English translation: Mathematical Foundations of Quantum Mechanics, translated by R. T. Beyer. Princeton, NJ: Princeton University (1955).
Wallace, D. (2012).
The Emergent Multiverse: Quantum Theory according to the Everett Interpretation
. Oxford: Oxford University Press.
Wallace, D., and Timpson, C. (2010). Quantum mechanics on spacetime I: Spacetime state realism.
British Journal for the Philosophy of Science
61, 697–727.
Wallstrom, T. (1994). Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations.
Physical Review A
49, 1613–1617.
Weinberg, S. (2012). Collapse of the state vector.
Physical Review A
85, 062116.
Werner, R. (2015). God knows where all the particles are! In
Quantum Foundations Workshop 2015
. www.ijqf.org/forums/topic/god-knows-where-all-the-particles-are. Accessed April 7, 2016.
Winnie, J. (1970). Special relativity without one-way velocity assumptions: I and II.
Philosophy of Science
37, 81–99, 223–238.
Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 58, 2059.
Zeh, H. D. (1981). The problem of conscious observation in quantum mechanical description.
Epistemological Letters of the Ferdinand-Gonseth Association in Biel
(Switzerland), 63. Also published in Foundations of Physics Letters 13 (2000), 221–233.
Zeh, H. D. (1999). Why Bohm's quantum theory?
Foundations of Physics Letters
12, 197–200.
Zeh, H. D. (2016a). The strange (hi)story of particles and waves.
Zeitschrift für Naturforschung
71a, 195–212.
Zeh, H. D. (2016b). John Bell's varying interpretations of quantum mechanics: Memories and comments. In Bell, M. and Gao, S. (eds.),
Quantum Nonlocality and Reality: 50 Years of Bell's Theorem
. Cambridge: Cambridge University Press.