Book contents
- Frontmatter
- Contents
- Preface
- Prologue: A machine learning sampler
- 1 The ingredients of machine learning
- 2 Binary classification and related tasks
- 3 Beyond binary classification
- 4 Concept learning
- 5 Tree models
- 6 Rule models
- 7 Linear models
- 8 Distance-based models
- 9 Probabilistic models
- 10 Features
- 11 Model ensembles
- 12 Machine learning experiments
- Epilogue: Where to go from here
- Important points to remember
- References
- Index
4 - Concept learning
Published online by Cambridge University Press: 05 November 2012
- Frontmatter
- Contents
- Preface
- Prologue: A machine learning sampler
- 1 The ingredients of machine learning
- 2 Binary classification and related tasks
- 3 Beyond binary classification
- 4 Concept learning
- 5 Tree models
- 6 Rule models
- 7 Linear models
- 8 Distance-based models
- 9 Probabilistic models
- 10 Features
- 11 Model ensembles
- 12 Machine learning experiments
- Epilogue: Where to go from here
- Important points to remember
- References
- Index
Summary
HAVING DISCUSSED A VARIETY of tasks in the preceding two chapters, we are now in an excellent position to start discussing machine learning models and algorithms for learning them. This chapter and the next two are devoted to logical models, the hallmark of which is that they use logical expressions to divide the instance space into segments and hence construct grouping models. The goal is to find a segmentation such that the data in each segment is more homogeneous, with respect to the task to be solved. For instance, in classification we aim to find a segmentation such that the instances in each segment are predominantly of one class, while in regression a good segmentation is such that the target variable is a simple function of a small number of predictor variables. There are essentially two kinds of logical models: tree models and rule models. Rule models consist of a collection of implications or if-then rules, where the if-part defines a segment, and the then-part defines the behaviour of the model in this segment. Tree models are a restricted kind of rule model where the if-parts of the rules are organised in a tree structure.
In this chapter we consider methods for learning logical expressions or concepts from examples, which lies at the basis of both tree models and rule models. In concept learning we only learn a description for the positive class, and label everything that doesn't satisfy that description as negative.
- Type
- Chapter
- Information
- Machine LearningThe Art and Science of Algorithms that Make Sense of Data, pp. 104 - 128Publisher: Cambridge University PressPrint publication year: 2012