Published online by Cambridge University Press: 04 May 2010
Abstract. A knot is called invertible if there is an orientation preserving homeomorphism of space which reverses the orientation of the knot. It is called rigidly invertible if the homeomorphism is an involution.
There are knots known to be invertible but not rigidly so (the Montesinos conjecture). In this paper, the author shows that they all have companions of a specific type. In particular, the invertible fibred knots are rigidly invertible.
Un noeud K est une sous-variété lisse, connexe, close de dimension 1, plongée dans la sphère orientée S3.
Un noeud K est dit inversible s'il existe un homéomorphisme du couple (S3, K) qui est de degré +1 dans S3 et de degré -1 sur K (arbitrairement orienté). Le noeud K est dit “rigidement inversible” s'il est inversible et s'il peut être inversé par une involution de S3; cette involution admet alors un cercle de points fixes non noué qui rencontre K en deux points (cf. Montesinos, J.M., 1975).
J.M. Montesinos a conjecturé (cf. Montesinos, J.M., 1975, et Kirby, R., 1978, pb.1-6) que: “tout noeud inversible est rigidement inversible”.
Des contre-exemples à cette conjecture ont été exhibés indépendamment par R. Hartley (1980) et W. Whitten (1981) (1980). Ces contre-exemples K ont tous la propriété suivante : ils admettent tous un compagnon non inversible K0, pour lequel K a un “nombre de tours” (ou “winding number”) nul.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.