Book contents
- Frontmatter
- Contents
- List of participants
- Noeuds rigidement inversables
- The classification of Seifert fibred 3-orbifolds
- Exchangeable braids
- Nilpotent coverings of links and Milnor's invariant
- Presentation en ponts des noeuds rationelles
- Piecewise linear I-equivalence of links
- Some closed incompressible surfaces in knot complements which survive surgery
- Simple elements of π2(M3, x0)
- A note on the mapping class group of surfaces and planar discontinuous groups
- ‘Zur Klassifikation höherdimensionaler Seifertscher Faserräume’
- Problem list
Noeuds rigidement inversables
Published online by Cambridge University Press: 04 May 2010
- Frontmatter
- Contents
- List of participants
- Noeuds rigidement inversables
- The classification of Seifert fibred 3-orbifolds
- Exchangeable braids
- Nilpotent coverings of links and Milnor's invariant
- Presentation en ponts des noeuds rationelles
- Piecewise linear I-equivalence of links
- Some closed incompressible surfaces in knot complements which survive surgery
- Simple elements of π2(M3, x0)
- A note on the mapping class group of surfaces and planar discontinuous groups
- ‘Zur Klassifikation höherdimensionaler Seifertscher Faserräume’
- Problem list
Summary
Abstract. A knot is called invertible if there is an orientation preserving homeomorphism of space which reverses the orientation of the knot. It is called rigidly invertible if the homeomorphism is an involution.
There are knots known to be invertible but not rigidly so (the Montesinos conjecture). In this paper, the author shows that they all have companions of a specific type. In particular, the invertible fibred knots are rigidly invertible.
Un noeud K est une sous-variété lisse, connexe, close de dimension 1, plongée dans la sphère orientée S3.
Un noeud K est dit inversible s'il existe un homéomorphisme du couple (S3, K) qui est de degré +1 dans S3 et de degré -1 sur K (arbitrairement orienté). Le noeud K est dit “rigidement inversible” s'il est inversible et s'il peut être inversé par une involution de S3; cette involution admet alors un cercle de points fixes non noué qui rencontre K en deux points (cf. Montesinos, J.M., 1975).
J.M. Montesinos a conjecturé (cf. Montesinos, J.M., 1975, et Kirby, R., 1978, pb.1-6) que: “tout noeud inversible est rigidement inversible”.
Des contre-exemples à cette conjecture ont été exhibés indépendamment par R. Hartley (1980) et W. Whitten (1981) (1980). Ces contre-exemples K ont tous la propriété suivante : ils admettent tous un compagnon non inversible K0, pour lequel K a un “nombre de tours” (ou “winding number”) nul.
- Type
- Chapter
- Information
- Low Dimensional Topology , pp. 1 - 18Publisher: Cambridge University PressPrint publication year: 1985
- 1
- Cited by