Book contents
- Intensification of Liquid–Liquid Processes
- Cambridge Series in Chemical Engineering
- Intensification of Liquid–Liquid Processes
- Copyright page
- Contents
- 1 Introduction
- 2 Droplets and Dispersions
- 3 Mass Transfer
- 4 Membrane-Based and Emulsion-Based Intensifications
- 5 High Gravity Fields
- 6 Electrically Driven Intensification of Liquid–Liquid Processes
- 7 Intensification of Liquid–Liquid Coalescence
- 8 Ionic Liquid Solvents and Intensification
- 9 Liquid–Liquid Phase-Transfer Catalysis
- Index
- References
1 - Introduction
Published online by Cambridge University Press: 12 May 2020
- Intensification of Liquid–Liquid Processes
- Cambridge Series in Chemical Engineering
- Intensification of Liquid–Liquid Processes
- Copyright page
- Contents
- 1 Introduction
- 2 Droplets and Dispersions
- 3 Mass Transfer
- 4 Membrane-Based and Emulsion-Based Intensifications
- 5 High Gravity Fields
- 6 Electrically Driven Intensification of Liquid–Liquid Processes
- 7 Intensification of Liquid–Liquid Coalescence
- 8 Ionic Liquid Solvents and Intensification
- 9 Liquid–Liquid Phase-Transfer Catalysis
- Index
- References
Summary
The principles of process intensification and the positive impacts for process safety, economics, and the exploitation of novel chemistry are described. The nexus between process intensification and sustainability is explained. The role of novel solvents such as ionic liquids in process intensification is discussed. The principles of liquid–liquid contact and phase separation are described, followed by a review of current engineering technologies for liquid–liquid processes which embrace the principles of process intensification. A brief overview of state-of-the-art mixing technology for liquid–liquid systems and for mixer settlers precedes a summary of current column contactor types and rotary contactors. Established designs of column contactors are briefly reviewed. The chapter includes some description of industrial coalescence equipment, showing how the design of coalescence equipment has been improved to enhance performance. A final section dealing with recent oscillatory baffled contactor technology is included, demonstrating how they meet the criteria for process intensification.
Keywords
- Type
- Chapter
- Information
- Intensification of Liquid–Liquid Processes , pp. 1 - 42Publisher: Cambridge University PressPrint publication year: 2020