Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:30:11.256Z Has data issue: false hasContentIssue false

52 - Immunobiology and host response to KSHV infection

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Dimitrios Lagos
Affiliation:
Cancer Research UK Viral Oncology Group, Wolfson Institute for Biomedical Research, University College London, London, UK
Chris Boshoff
Affiliation:
Cancer Research UK Viral Oncology Group, Wolfson Institute for Biomedical Research, University College London, London, UK
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

The interplay between malignancy, infection and immunity is best illustrated by the neoplasms related to KSHV (Boshoff and Weiss, 2002): Kaposi sarcoma (KS) is approximately 100 times more common during immunosuppression and can be resolved when iatrogenic immunosuppression is stopped (Euvrard et al., 2003) and during highly active antiretroviral treatment (HAART) of HIV-1 infected individuals (Boshoff and Weiss, 2002). Primary effusion lymphoma (PEL) and plasmablastic multicentric Castleman's disease (MCD) also occur predominantly during immunosuppression. Like other gammaherpesviruses, KSHV persists as a latent episome in B-lymphocytes (Ambroziak et al., 1995; Cesarman et al., 1995; Renne et al., 1996), without provoking host responses that would eliminate infected cells. KSHV acquired a fascinating repertoire of decoys to trick the host immune response enabling establishment of lifelong infection in humans with very few clinical manifestations. When the balance between viral infection and host immunity is disturbed, some of the molecular pathways employed by KSHV to evade host immune responses are directly involved in driving oncogenesis (Moore and Chang, 2003). KSHV is an excellent model to study the coevolution of pathogen attack and mechanisms of host counter attack.

KS is most aggressive in the immunosuppressed and resolves with partial restoration of the immune system (Gill et al., 2002). Since the introduction of HAART, there has also been a dramatic fall in the incidence of KS (Jacobson et al., 1999).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 915 - 928
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barozzi, P., Luppi, M., Facchetti, F.et al. (2003). Post-transplant Kaposi's sarcoma originates from the seeding of donor-derived progenitors. Nat. Med., 9, 554–561.CrossRefGoogle ScholarPubMed
Birkeland, S. A. and Storm, H. H. (2002). Risk for tumor and other disease transmission by transplantation: a population-based study of unrecognized malignancies and other diseases in organ donors. Transplantation, 74, 1409–1413.CrossRefGoogle ScholarPubMed
Fitzgerald, P. J. (2000) From Demons and Evil Spirits to Cancer Genes. Washington: American Registry of Pathology Publications.Google Scholar
Ablashi, D., Chatlynne, L., Cooper, H.et al. (1999). Seroprevalence of human herpesvirus-8 (HHV-8) in countries of Southeast Asia compared to the USA, the Caribbean and Africa. Br. J. Cancer, 81, 893–897.CrossRefGoogle ScholarPubMed
Akula, S. M., Pramod, N. P., Wang, F. Z., and Chandran, B. (2002). Integrin alpha3beta1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell, 108, 407–419.CrossRefGoogle ScholarPubMed
Ambroziak, J. A., Blackbourn, D. J., Herndier, B. G.et al. (1995). Herpes-like sequences in HIV-infected and uninfected Kaposi's sarcoma patients. Science, 268, 582–583.CrossRefGoogle ScholarPubMed
Amyes, E., Hatton, C., Montamat-Sicotte, D.et al. (2003). Characterization of the CD4+ T cell response to Epstein–Barr virus during primary and persistent infection. J. Exp. Med., 198, 903–911.CrossRefGoogle ScholarPubMed
Andreoni, M., Sarmati, L., Nicastri, E.et al. (2002). Primary human herpesvirus 8 infection in immunocompetent children. J. Am. Med. Assoc., 287, 1295–1300.CrossRefGoogle ScholarPubMed
Appay, V., Dunbar, P. R., Callan, M.et al. (2002). Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med., 8, 379–385.CrossRefGoogle ScholarPubMed
Banchereau, J. and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.CrossRefGoogle ScholarPubMed
Bani-Sadr, F., Fournier, S., and Molina, J. M. (2003). Relapse of Kaposi's sarcoma in HIV-infected patients switching from a protease inhibitor to a non-nucleoside reverse transcriptase inhibitor-based highly active antiretroviral therapy regimen. AIDS, 17, 1580–1581.CrossRefGoogle ScholarPubMed
Bechtel, J. T., Liang, Y., , Hvidding J., and Ganem, D. (2003). Host range of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol., 77, 6474–6481.CrossRefGoogle ScholarPubMed
Birkmann, A., Mahr, K., Ensser, A.et al. (2001). Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J. Virol., 75, 11583–11593.CrossRefGoogle ScholarPubMed
Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P., and Salazar-Mather t5 T. P. (1999). Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol., 17, 189–220.CrossRefGoogle ScholarPubMed
Boshoff, C. and Weiss, R. (2002). AIDS-related malignancies. Nat Rev. Cancer, 2, 373–382.CrossRefGoogle ScholarPubMed
Bourboulia, D., Aldam, D. M., Lagos, D.et al. (2004). Short- and long-term effects of highly active antiretroviral therapy on Kaposi sarcoma-associated herpesvirus immune responses and viraemia. AIDS, 18, 485–493.CrossRefGoogle Scholar
Brander, C., O'Connor, P., Suscovich, T.et al. (2001). Definition of an optimal cytotoxic T lymphocyte epitope in the latently expressed Kaposi's sarcoma-associated herpesvirus kaposin protein. J. Infect. Dis., 184, 119–126.CrossRefGoogle ScholarPubMed
Browning, P. J., Sechler, J. M., Kaplan, M.et al. (1994). Identification and culture of Kaposi's sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood, 84, 2711–2720.Google ScholarPubMed
Burton, D. R. (2002). Antibodies, viruses and vaccines. Nat. Rev. Immunol., 2, 706–713.CrossRefGoogle ScholarPubMed
Cannon, M. J., Dollard, S. C., Black, J. B.et al. (2003). Risk factors for Kaposi's sarcoma in men seropositive for both human herpesvirus 8 and human immunodeficiency virus. AIDS, 17, 215–222.CrossRefGoogle ScholarPubMed
Caux, C., Massacrier, C., Vanbervliet, B.et al. (1997). CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood, 90, 1458–1470.Google ScholarPubMed
Cesarman, E., Moore, P. S., Rao, P. H., Inghirami, G., Knowles, D. M., and Chang, Y. (1995). In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood, 86, 2708–2714.Google ScholarPubMed
Chandran, B., Bloomer, C., Chan, S. R., Zhu, L., Goldstein, E., and Horvat, R. (1998). Human herpesvirus-8 ORF K8.1 gene encodes immunogenic glycoproteins generated by spliced transcripts. Virology, 249, 140–149.CrossRefGoogle ScholarPubMed
Crowe, S. M., Carlin, J. B., Stewart, K. I., Lucas, C. R., and Hoy, J. F. (1991). Predictive value of CD4 lymphocyte numbers for the development of opportunistic infections and malignancies in HIV-infected persons. J. Acquir. Immune Defic. Syndr., 4, 770–776.Google ScholarPubMed
Dedicoat, M. and , Newton R. (2002). Review of the distribution of Kaposi's sarcoma-associated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi's sarcoma. Br. J. Cancer, 88, 1–3.CrossRefGoogle Scholar
Bella, Della S., Nicola, S., Brambilla, L.et al. (2006). Quantitative and functional defects of dendritic cells in classic Kaposi's sarcoma. Clin. Immunol., 119, 317–329.CrossRefGoogle ScholarPubMed
Dialyna, I. A., Graham, D., Rezaee, R.et al. (2004). Anti-HHV-8/KSHV antibodies in infected individuals inhibit infection in vitro. AIDS, 18, 1263–1270.CrossRefGoogle ScholarPubMed
Dittmer, D., Stoddart, C., Renne, R.et al. (1999). Experimental transmission of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J. Exp. Med., 190, 1857–1868.CrossRefGoogle Scholar
Donaghy, H., Pozniak, A., Gazzard, B.et al. (2001). Loss of blood CD11c(+) myeloid and CD11c(-) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood, 98, 2574–2576.CrossRefGoogle ScholarPubMed
Donaghy, H., Gazzard, B., Gotch, F., and Patterson, S. (2003). Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood, 101, 4505–4511.CrossRefGoogle ScholarPubMed
Dukers, N. H. and Rezza, G. (2003). Human herpesvirus 8 epidemiology: what we do and do not know. Aids, 17, 1717–1730.CrossRefGoogle Scholar
Dupin, N., Fisher, C., Kellam, P.et al. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl Acad. Sci. USA, 96, 4546–4551.CrossRefGoogle ScholarPubMed
Enbom, M., Sheldon, J., Lennette, E.et al. (2000). Antibodies to human herpesvirus 8 latent and lytic antigens in blood donors and potential high-risk groups in Sweden: variable frequencies found in a multicenter serological study. J. Med. Virol., 62, 498–504.3.0.CO;2-B>CrossRefGoogle Scholar
Engels, E. A., Biggar, R. J., Marshall, V. A.et al. (2003). Detection and quantification of Kaposi's sarcoma-associated herpesvirus to predict AIDS-associated Kaposi's sarcoma. AIDS, 17, 1847–1851.CrossRefGoogle ScholarPubMed
Ensoli, B., Barillari, G., Salahuddin, S. Z., Gallo, R. C., and Wong, S. F. (1990). Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature, 345, 84–86.CrossRefGoogle ScholarPubMed
Euvrard, S., Kanitakis, J. and Claudy, A. (2003). Skin cancers after organ transplantation. N. Engl. J. Med., 348, 1681–1691.CrossRefGoogle ScholarPubMed
Gallo, R. C. (1998). The enigmas of Kaposi's sarcoma. Science, 282, 1837–1839.CrossRefGoogle ScholarPubMed
Gao, S. J., Kingsley, L., Hoover, D. R.et al. (1996). Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. N. Engl. J. Med., 335, 233–241.CrossRefGoogle ScholarPubMed
Gill, J., Bourboulia, D., Wilkinson, J.et al. (2002). Prospective study of the effects of antiretroviral therapy on Kaposi sarcoma-associated herpesvirus infection in patients with and without Kaposi sarcoma. J. Acquir. Immune Defic. Syndr., 31, 384–390.CrossRefGoogle ScholarPubMed
Goudsmit, J., Renwick, N., Dukers, N. H.et al. (2000). Human herpesvirus 8 infections in the Amsterdam Cohort Studies (1984–1997): analysis of seroconversions to ORF65 and ORF73. Proc. Natl Acad. Sci. USA, 97, 4838–4843.CrossRefGoogle ScholarPubMed
Jacobson, L. P., Yamashita, T. E., Detels, R.et al. (1999). Impact of potent anti-retroviral therapy on the incidence of Kaposi's sarcoma and non-Hodgkin's lymphomas among HIV-1 infected individuals. Multicenter AIDS Cohort Study. J. Acquir. Immune Defic. Syndr., 21, s34–s41.Google Scholar
Kapadia, S. B., Levine, B., , Speck S. H., , and t.Virgin, H. W. (2002). Critical role of complement and viral evasion of complement in acute, persistent, and latent gamma-herpesvirus infection. Immunity, 17, 143–155.CrossRefGoogle ScholarPubMed
Kedes, D. H., Operskalski, E., Busch, M., Kohn, R., , Flood J., and Ganem, D. (1996). The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat. Med., 2, 918–924.CrossRefGoogle ScholarPubMed
Kim, I. J., Flano, E., , Woodland D. L., and , Blackman M. A. (2002). Antibody-mediated control of persistent gamma-herpesvirus infection. J. Immunol., 168, 3958–3964.CrossRefGoogle ScholarPubMed
Kimball, L. E., Casper, C., Koelle, D. M.et al. (2004). Reduced levels of neutralizing antibodies to Kaposi sarcoma-associated herpesvirus in persons with a history of Kaposi sarcoma. J. Infect. Dis., 189, 2016–2022.CrossRefGoogle ScholarPubMed
Lallemand, F., Desire, N., Rozenbaum, W., , Nicolas J. C., and , Marechal V. (2000). Quantitative analysis of human herpesvirus 8 viral load using a real-time PCR assay. J. Clin. Microbiol., 38, 1404–1408.Google ScholarPubMed
Lam, L. L., Pau, C. P., Dollard, S. C., Pellett, P. E., and Spira, T. J. (2002). Highly sensitive assay for human herpesvirus 8 antibodies that uses a multiple antigenic peptide derived from open reading frame K8.1. J. Clin. Microbiol., 40, 325–329.CrossRefGoogle ScholarPubMed
Larcher, C., Nguyen, V. A., Furhapter, C.et al. (2005). Human herpesvirus-8 infection of umbilical cord-blood-derived CD34+ stem cells enhances the immunostimulatory function of their dendritic cell progeny. Exp. Dermatol., 14, 41–49.CrossRefGoogle ScholarPubMed
Lehrnbecher, T. L., Foster, C. B., Zhu, S.et al. (2000). Variant genotypes of FcgammaRIIIA influence the development of Kaposi's sarcoma in HIV-infected men. Blood, 95, 2386–2390.Google ScholarPubMed
Lin, S. F., Sun, R., Heston, L.et al. (1997). Identification, expression, and immunogenicity of Kaposi's sarcoma-associated herpesvirus-encoded small viral capsid antigen. J. Virol., 71, 3069–3076.Google ScholarPubMed
Macsween, K. F. and Crawford, D. H. (2003). Epstein–Barr virus-recent advances. Lancet Infect. Dis., 3, 131–140.CrossRefGoogle ScholarPubMed
Martin, J. N. (2003). Diagnosis and epidemiology of human herpesvirus 8 infection. Semin. Hematol., 40, 133–142.CrossRefGoogle ScholarPubMed
Mbulaiteye, S. M., Biggar, R. J., Goedert, J. J., and Engels, E. A. (2003). Immune deficiency and risk for malignancy among persons with AIDS. J. Acquir. Immune Defic. Syndr., 32, 527–533.CrossRefGoogle ScholarPubMed
Medzhitov, R. and Janeway, C. A. Jr. (2002). Decoding the patterns of self and nonself by the innate immune system. Science, 296, 298–300.CrossRefGoogle ScholarPubMed
Micheletti, F., Monini, P.Fortini, C.et al. (2002). Identification of cytotoxic T-lymphocyte epitopes of human herpesvirus 8. Immunology, 106, 395–403.CrossRefGoogle ScholarPubMed
Moore, P. S. and , Chang Y. (2003). Kaposi's Sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin?Annu. Rev. Microbiol., 57, 609–639.CrossRefGoogle ScholarPubMed
Moretta, A., Bottino, C., Mingari, M. C., Biassoni, and Moretta, L. (2002). What is a natural killer cell?Nat. Immunol., 3, 6–8.CrossRefGoogle ScholarPubMed
Murgia, C., Pritchard, J. K., Kim, S. Y.et al. (2006). Clonal origin and evolution of a transmissible cancer. Cell, 126, 477–487.CrossRefGoogle ScholarPubMed
Oksenhendler, E., Cazals-Hatem, D., Schultz, T. F.et al. (1998). Transient angiolymphoid hyperplasia and Kaposi's sarcoma after primary infection with human herpesvirus 8 in a patient with human immunodeficiency virus infection. N. Engl. J. Med., 338, 1585–1591.CrossRefGoogle Scholar
Orange, J. S., Fassett, M. S., Koopman, L. A., Boyson, J. E., and Strominger, J. L. (2002). Viral evasion of natural killer cells. Nature Immunol., 3, 1006–1012.CrossRefGoogle ScholarPubMed
Osman, M., Kubo, T., Gill, J.et al. (1999). Identification of human herpesvirus 8-specific cytotoxic T-cell responses. J. Virol., 73, 6136–6140.Google ScholarPubMed
Patterson, S. (2000). Flexibility and cooperation among dendritic cells. Nat. Immunol., 1, 273–274.CrossRefGoogle ScholarPubMed
Pauk, J., Huang, M.-L., Brodie, S. J.et al. (2000). Mucosal shedding of human herpesvirus 8 in men. N. Engl. J. Med., 343, 1369–1377.CrossRefGoogle ScholarPubMed
Pellett, P. E., Wright, D. J.Engels, E. A.et al. (2003). Multicenter comparison of serologic assays and estimation of human herpesvirus 8 seroprevalence among US blood donors. Transfusion, 43, 1260–1268.CrossRefGoogle ScholarPubMed
Ploegh, H. L. (1998). Viral strategies of immune evasion. Science, 280, 248–253.CrossRefGoogle ScholarPubMed
Rabkin, C. S., Schulz, T. F., Whitby, D.et al. (1998). Interassay correlation of human herpesvirus 8 serologic tests. J. Infect. Dis., 178, 304–309.CrossRefGoogle ScholarPubMed
Rappocciolo, G., Jenkins, F. J., Hensler, H. R.et al. (2006). DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J. Immunol., 176, 1741–1749.CrossRefGoogle ScholarPubMed
Renne, R., Lagunoff, M., Zhong, W., and Ganem, D. (1996). The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J. Virol., 70, 8151–8154.Google ScholarPubMed
Ribechini, E., Fortini, C., Marastoni, M.et al. (2006). Identification of CD8+ T cell epitopes within lytic antigens of human herpes virus 8. J. Immunol., 176, 923–930.CrossRefGoogle ScholarPubMed
Sallusto, F. and Lanzavecchia, A. (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med., 179, 1109–1118.CrossRefGoogle ScholarPubMed
Sarid, R., Olsen, S. J., and Moore, P. S. (1999). Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv. Virus Res., 52, 139–232.CrossRefGoogle ScholarPubMed
Schatz, O., Monini, P., Bugarini, R.et al. (2001). Kaposi's sarcoma-associated herpesvirus serology in Europe and Uganda: Multicentre study with multiple and novel assays. J. Med. Virol., 65, 123–132.CrossRefGoogle ScholarPubMed
Sgadari, C., Barillari, G., Toschi, E.et al. (2002). HIV protease inhibitors are potent anti–angiogenic molecules and promote regression of Kaposi sarcoma. Nature Med., 8, 225–232.CrossRefGoogle ScholarPubMed
Shortman, K. and Liu, Y. J. (2002). Mouse and human dendritic cell subtypes. Nat. Rev. Immunol., 2, 151–161.CrossRefGoogle ScholarPubMed
Simpson, G. R., Schulz, T. F., Whitby, D.et al. (1996). Prevalence of Kaposi's sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet, 348, 1133–1138.CrossRefGoogle ScholarPubMed
Sirianni, M. C., Uccini, S., Angeloni, A.Faggioni, A., Cottoni, F., and , Ensoli B. (1997). Circulating spindle cells: correlation with human herpesvirus-8 (HHV-8) infection and Kaposi's sarcoma. Lancet, 349, 255.CrossRefGoogle ScholarPubMed
Sirianni, M. C., Vincenzi, L., Topino, S.et al. (2002). NK cell activity controls human herpesvirus 8 latent infection and is restored upon highly active antiretroviral therapy in AIDS patients with regressing Kaposi's sarcoma. Eur. J. Immunol., 32, 2711–2720.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Sitas, F. and , Newton R. (2001). Kaposi's sarcoma in South Africa. J. Natl Cancer Inst. Monogr., 1–4.Google ScholarPubMed
Sitas, F., Carrara, H., Beral, V.et al. (1999). Antibodies against human herpesvirus 8 in black south African patients with cancer. N. Engl. J. Med., 340, 1863–1871.CrossRefGoogle ScholarPubMed
Spiller, O. B., Robinson, M., O'Donnell, E.et al. (2003). Complement regulation by Kaposi's sarcoma-associated herpesvirus ORF4 protein. J. Virol., 77, 592–599.CrossRefGoogle ScholarPubMed
Spira, T. J., Lam, L., Dollard, S. C.et al. (2000). Comparison of serologic assays and PCR for diagnosis of human herpesvirus 8 infection. J. Clin. Microbiol., 38, 2174–2180.Google ScholarPubMed
Stebbing, J., Bourboulia, D., Johnson, M.et al. (2003a). KSHV specific CTLs recognize and target Darwinian positively selected autologous K1 epitopes. J. Virol., 77, 4306–4314.CrossRefGoogle Scholar
Stebbing, J., Gazzard, B., Portsmouth, S.et al. (2003b). Disease-associated dendritic cells respond to disease-specific antigens through the common heat shock protein receptor. Blood, 102, 1806–1814.CrossRefGoogle Scholar
Strickler, H. D., Goedert, J. J.Bethke, F. R.et al. (1999). Human Herpesvirus 8 cellular immune responses in homosexual men. J. Infect. Dis., 180, 1682–1685.CrossRefGoogle ScholarPubMed
Valcuende-Cavero, F., Febrer-Bosch, M. I., and Castells-Rodellas, A. (1994). Langerhans' cells and lymphocytic infiltrate in AIDS-associated Kaposi's sarcoma. An immunohistochemical study. Acta. Derm. Venereol., 74, 183–187.Google ScholarPubMed
Walport, M. J. (2001a). Complement. First of two parts. N. Engl. J. Med., 344, 1058–1066.CrossRefGoogle Scholar
Walport, M. J. (2001b). Complement. Second of two parts. N. Engl. J. Med., 344, 1140–1144.CrossRefGoogle Scholar
Wang, Q. J., Jenkins, F. J., Jacobson, L. P.et al. (2000). CD8+ cytotoxic T lymphocyte responses to lytic proteins of human herpes virus 8 in human immunodeficiency virus type 1-infected and-uninfected Individuals. J. Infect. Dis., 182, 928–932.CrossRefGoogle ScholarPubMed
Wang, Q. J., Jenkins, F. J., Jacobson, L. P.et al. (2001). Primary human herpesvirus 8 infection generates a broadly specific CD8(+) T-cell response to viral lytic cycle proteins. Blood, 97, 2366–2373.CrossRefGoogle ScholarPubMed
Wang, Q. J., Huang, X. L., Rappocciolo, G.et al. (2002). Identification of an HLA A∗0201-restricted CD8 (+) T-cell epitope for the glycoprotein B homolog of human herpesvirus 8. Blood, 99, 3360–3366.CrossRefGoogle ScholarPubMed
Wang, H. S., , Trotter M. W., Lagos, D.et al. (2004). Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat. Gen., 36, 687–693.CrossRefGoogle ScholarPubMed
Wilkinson, J., Cope, A., Gill, J.et al. (2002). Identification of Kaposi's sarcoma-associated herpesvirus (KSHV)- specific cytotoxic T-lymphocyte epitopes and evaluation of reconstitution of KSHV-specific responses in human immunodeficiency virus type 1-Infected patients receiving highly active antiretroviral therapy. J. Virol., 76, 2634–2640.CrossRefGoogle ScholarPubMed
Woodberry, T., Suscovich, T. J., Henry, L. M.et al. (2005). Impact of Kaposi sarcoma-associated herpesvirus (KSHV) burden and HIV coinfection on the detection of T cell responses to KSHV ORF73 and ORF65 proteins. J. Infect. Dis., 192, 622–629.CrossRefGoogle ScholarPubMed
Wu, W., Vieira, J., Fiore, N.et al. (2006). KSHV/HHV-8 infection of human hematopoietic progenitor (CD34+) cells: persistence of infection during hematopoiesis in vitro and in vivo. Blood, 108, 141–151.CrossRefGoogle ScholarPubMed
Yewdell, J. W. and Hill, A. B. (2002). Viral interference with antigen presentation. Nat. Immunol., 3, 1019–1025.CrossRefGoogle ScholarPubMed
Ziegler, J., Newton, R., Bourboulia, D.et al. (2003). Risk factors for Kaposi's sarcoma: A case-control study of HIV- seronegative people in Uganda. Int. J. Cancer, 103, 233–240.CrossRefGoogle ScholarPubMed
Zong, J. C., Ciufo, D. M.Alcendor, D. J.et al. (1999). High-level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi's sarcoma-associated herpesvirus genome defines four major virus subtypes and multiple variants or clades in different human populations. J. Virol., 73, 4156–4170.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×