Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T13:06:36.792Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Eric Poisson
Affiliation:
University of Guelph, Ontario
Clifford M. Will
Affiliation:
University of Florida
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Gravity
Newtonian, Post-Newtonian, Relativistic
, pp. 760 - 770
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I.A. 1975. Handbook of Mathematical Functions. Dover.Google Scholar
Alcock, C., Allsman, R.A., Alves, D.R., et al. 2000. The MACHO project: Microlensing results from 5.7 years of Large Magellanic Cloud observations. Astrophys. J. 542, 281–307.CrossRefGoogle Scholar
Alväger, T., Farley, F.J.M., Kjellman, J., and Wallin, I. 1964. Test of the second postulate of special relativity in the GeV region. Phys. Lett. 12, 260–262.CrossRefGoogle Scholar
Antoci, S. and Loinger, A. 1999. On the gravitational field of a mass point according to Einstein's theory (English translation of Schwarzschild's 1916 paper). arXiv.org/abs/physics/9905030.Google Scholar
Arfken, G.B., Weber, H.J., and Harris, F.E. 2012. Mathematical Methods for Physicists. Seventh Edition: A Comprehensive Guide. Academic Press.Google Scholar
Arnowitt, R., Deser, S., and Misner, C.W. 1962. The dynamics of general relativity, in Gravitation: An Introduction to Current Research, edited by Witten, L., 227–265. Wiley.Google Scholar
Ashby, N. 2003. Relativity in the Global Positioning System. Living Rev. Relativity 6.CrossRefGoogle ScholarPubMed
Baessler, S., Heckel, B.R., Adelberger, E.G., et al. 1999. Improved test of the equivalence principle for gravitational self-energy. Phys. Rev. Lett. 83, 3585–3588.CrossRefGoogle Scholar
Baker, J.G., Centrella, J., Choi, D.I., et al. 2006. Getting a kick out of numerical relativity. Astrophys. J. 653, L93–L96.CrossRefGoogle Scholar
Barker, B.M. and O'Connell, R.F. 1974. Nongeodesic motion in general relativity. Gen. Relativ. Gravit. 5, 539–554.CrossRefGoogle Scholar
Bekenstein, J.D. 1973. Gravitational-radiation recoil and runaway black holes. Astrophys. J. 183, 657–664.CrossRefGoogle Scholar
Bender, C.M. and Orzag, S.A. 1978. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Bertotti, B., Brill, D.R., and Krotkov, R.D. 1962. Experiments on gravitation, in Gravitation: An Introduction to Current Research, edited by Witten, L., 1–48. Wiley.Google Scholar
Bertotti, B., Iess, L., and Tortora, P. 2003. A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376.CrossRefGoogle ScholarPubMed
Black, E.D. and Gutenkunst, R.N. 2003. An introduction to signal extraction in interferometric gravitational wave detectors. Am. J. Phys. 71, 365–378.CrossRefGoogle Scholar
Blanchet, L. 2006. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativity 9.CrossRefGoogle ScholarPubMed
Blanchet, L., and Faye, G. 2000. Hadamard regularization. Math. Phys. 41, 7675–7714.CrossRefGoogle Scholar
Blanchet, L., Iyer, B.R., Will, C.M., and Wiseman, A.G. 1996. Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order. Class. Quantum Grav. 13, 575–584.CrossRefGoogle Scholar
Blandford, R. and Teukolsky, S.A. 1976. Arrival-time analysis for a pulsar in a binary system. Astrophys. J. 205, 580–591.CrossRefGoogle Scholar
Bolton, A.S., Rappaport, S., and Burles, S. 2006. Constraint on the post-Newtonian parameter γ on galactic size scales. Phys. Rev.D 74, 061501(R) (5 pages).Google Scholar
Bond, I.A., Udalski, A., Jaroszynski, M., et al., and OGLE Collaboration. 2004. OGLE 2003-BLG-235/MOA 2003-BLG-53: A planetary microlensing event. Astrophys. J. 606, L155–L158.CrossRefGoogle Scholar
Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K. 1962. Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc. Roy. Soc. London A269, 21–52.Google Scholar
Braginskii, V.B., Caves, C.M., and Thorne, K.S. 1977. Laboratory experiments to test relativistic gravity. Phys. Rev.D 15, 2047–2068.Google Scholar
Brans, C.H. and Dicke, R.H. 1961. Mach's principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935.CrossRefGoogle Scholar
Brecher, K. 1977. Is the speed of light independent of the velocity of the source?Phys. Rev. Lett. 39, 1051–1054.CrossRefGoogle Scholar
Brooker, R.A. and Olle, T.W. 1955. Apsidal-motion constants for polytropic models. Mon. Not. R. Astr. Soc. 115, 101–106.CrossRefGoogle Scholar
Brouwer, D. and Clemence, G.M. 1961. Methods of Celestial Mechanics. Academic Press.Google Scholar
Brown, E.W. 1960. An Introductory Treatise on the Lunar Theory. Dover.Google Scholar
Brumberg, V.A. 1991. Essential Relativistic Celestial Mechanics. IOP Publishing.Google Scholar
Burke, W.L. 1971. Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions. J. Math. Phys. 12, 401–418.CrossRefGoogle Scholar
Carroll, S. 2003. Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley.Google Scholar
Chandrasekhar, S. 1931. The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82.CrossRefGoogle Scholar
Chandrasekhar, S. 1958. An Introduction to the Study of Stellar Structure. Dover.Google Scholar
Chandrasekhar, S. 1965. The post-Newtonian equations of hydrodynamics in general relativity. Astrophys. J. 142, 1488–1512.CrossRefGoogle Scholar
Chandrasekhar, S. 1969. Conservation laws in general relativity and in the post-Newtonian approximation. Astrophys. J. 158, 45–54.Google Scholar
Chandrasekhar, S. 1987. Ellipsoidal Figures of Equilibrium. Dover.Google Scholar
Chandrasekhar, S. and Contopoulos, G. 1967. On a post-Galilean transformation appropriate to the post-Newtonian theory of Einstein, Infeld, and Hoffmann. Proc. Roy. Soc. London A298, 123–141.Google Scholar
Chandrasekhar, S. and Esposito, F.P. 1970. The 5/2-post-Newtonian equations of hydrodynamics and radiation reaction in general relativity. Astrophys. J. 160, 153–179.CrossRefGoogle Scholar
Chandrasekhar, S. and Nutku, Y. 1969. The second post-Newtonian equations of hydrodynamics in general relativity. Astrophys. J. 158, 55–79.Google Scholar
Ciufolini, I. and Pavlis, E.C. 2004. A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960.CrossRefGoogle ScholarPubMed
Cowling, T.G. 1941. The non-radial oscillations of polytropic stars. Mon. Not. R. Astr. Soc. 101, 367–375.CrossRefGoogle Scholar
Cox., A.N. 2001. Allen's Astrophysical Quantities. Fourth Edition. Springer.Google Scholar
Cox, J.P. 1980. Theory of Stellar Pulsation. Princeton University Press.CrossRefGoogle Scholar
Creighton, J.D.E. and Anderson, W.G. 2011. Gravitational-wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis. Wiley-VCH.CrossRefGoogle Scholar
Crelinsten, J. 2006. Einstein's Jury: The Race to Test Relativity. Princeton University Press.Google Scholar
D'Eath, P.D. 1975. Interaction of two black holes in the slow-motion limit. Phys. Rev.D 12, 2183–2199.Google Scholar
Damour, T. 1983. Gravitational radiation and the motion of compact bodies. in Rayonnement Gravitationnel, edited by Deruelle, N. and Piran, T., 59–144. North-Holland.Google Scholar
Damour, T. 1987. The problem of motion in Newtonian and Einsteinian gravity, in Three Hundred Years of Gravitation, edited by Hawking, S.W. and Israel, W., 128–198. Cambridge University Press.Google Scholar
Damour, T. and Deruelle, N. 1981. Radiation reaction and angular momentum loss in small angle gravitational scattering. Phys. Lett.A 87, 81–84.Google Scholar
Damour, T. and Deruelle, N. 1985. General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. Inst. H. Poincaré, A43, 107–132.Google Scholar
Damour, T. and Deruelle, N. 1986. General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. Inst. H. Poincaré, A44, 263–292.Google Scholar
Damour, T. and Esposito-Farèse, G. 1992. Tensor–multi-scalar theories of gravitation. Class. Quantum Grav. 9, 2093–2176.CrossRefGoogle Scholar
Damour, T. and Iyer, B.R. 1991. Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors. Phys. Rev.D 43, 3259–3272.Google ScholarPubMed
Damour, T., Soffel, M., and Xu, C. 1991. General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys. Rev.D 43, 3273–3307.Google ScholarPubMed
Damour, T., Soffel, M., and Xu, C. 1992. General-relativistic celestial mechanics. II. Translational equations of motion. Phys. Rev.D 45, 1017–1044.Google ScholarPubMed
Damour, T., Soffel, M., and Xu, C. 1993. General-relativistic celestial mechanics. III. Rotational equations of motion. Phys. Rev.D 47, 3124–3135.Google ScholarPubMed
Demianski, M. and Grishchuck, L.P. 1974. Note on the motion of black holes. Gen. Relativ. Gravit. 5, 673–679.CrossRefGoogle Scholar
Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E., and Hessels, J.W.T. 2010. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083.CrossRefGoogle ScholarPubMed
de Sitter, W. 1916. On Einstein's theory of gravitation, and its astronomical consequences. Second paper. Mon. Not. R. Astr. Soc. 27, 155–184.Google Scholar
De Witt, B. 2011. Bryce De Witt's Lectures on Gravitation. Lecture Notes in Physics, Volume 826, edited by Christensen, S.M.Springer-Verlag.CrossRefGoogle Scholar
Dicke, R.H. 1970. Gravitation and the Universe — Jayne Lectures for 1969. American Philosophical Society.
Dicke, R.H. and Goldenberg, H.M. 1967. Solar oblateness and general relativity. Phys. Rev. Lett. 18, 313–316.CrossRefGoogle Scholar
Dyson, F.W., Eddington, A.S., and Davidson, C., 1920. A determination of the deflection of light by the Sun's gravitational field, from observations made at the total eclipse of May 29, 1919. Phil. Trans. Roy. Soc. London A220, 291–333.Google Scholar
Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V., and Will, C.M. 1973. Gravitational-wave observations as a tool for testing relativistic gravity. Phys. Rev. Lett. 30, 884–886.CrossRefGoogle Scholar
Eddington, A.S. 1922. The Mathematical Theory of Relativity. Cambridge University Press.Google Scholar
Eddington, A.S. and Clark, G.L. 1938. The problem of n bodies in general relativity theory. Proc. Roy. Soc. London A166, 465–475.Google Scholar
Ehlers, J., Rosenblum, A., Goldberg, J.N., and Havas, P. 1976. Comments on gravitational radiation damping and energy loss in binary systems. Astrophys. J. 208, L77–L81.CrossRefGoogle Scholar
Einstein, A. and Rosen, N. 1937. On gravitational waves. J. of the Franklin Institute 223, 143–154.CrossRefGoogle Scholar
Einstein, A., Infeld, L., and Hoffmann, B. 1938. The gravitational equations and the problem of motion. Annals of Mathematics 39, 65–100.CrossRefGoogle Scholar
Everitt, C.W.F., Debra, D.B., Parkinson, B.W., et al. 2011. Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (4 pages).CrossRefGoogle ScholarPubMed
Farley, F.J.M., Bailey, J., Brown, R.C.A., et al. 1966. The anomalous magnetic moment of the negative muon. Nuovo Cimento 45, 281–286.CrossRefGoogle Scholar
Favata, M., Hughes, S.A., and Holz, D.E. 2004. How black holes get their kicks: Gravitational radiation recoil revisited. Astrophys. J. 607, L5–L8.CrossRefGoogle Scholar
Faye, G., Marsat, S., Blanchet, L., and Iyer, B.R. 2012. The third and a half-post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries. Class. Quantum Grav. 29, 175004 (16 pages).CrossRefGoogle Scholar
Fierz, M, 1956. Über die physikalische Deutung der erweiterten Gravitationstheorie P. Jordans. Helv. Phys. Acta 29, 128–134.Google Scholar
Fitchett, M.J. 1983. The influence of gravitational momentum losses on the centre of mass motion of a Newtonian binary system. Mon. Not. R. Astr. Soc. 203, 1049–1062.CrossRefGoogle Scholar
Flanagan, E.E. and Hughes, S.A. 2005. The basics of gravitational wave theory. New J. Phys. 7, 204 (52 pages).CrossRefGoogle Scholar
Fock, V.A. 1959. Theory of Space, Time and Gravitation. Pergamon.Google Scholar
French, A.P. 1968. Special Relativity. W.W. Norton & Company.Google Scholar
French, A.P. 1971. Newtonian Mechanics. W.W. Norton & Company.
Friedman, J.L. and Stergioulas, N. 2013. Rotating Relativistic Stars. Cambridge University Press.CrossRefGoogle Scholar
Froeschlé, M., Mignard, F., and Arenou, F. 1997. Determination of the PPN parameter γ with the Hipparcos data, in Proceedings from the Hipparcos Venice 97 Symposium, edited by Battrick, B., 49–52. European Space Agency.Google Scholar
Gibbons, G. and Will, C.M. 2008. On the multiple deaths of Whitehead's theory of gravity. Stud. Hist. Philos. Mod. Phys. 39, 41–61.CrossRefGoogle Scholar
Glendenning, N.K. 2000. Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, Second Edition. Springer.CrossRefGoogle Scholar
Goldstein, H., Poole, C.P. Jr., and Safko, J.L. 2001. Classical Mechanics. Third Edition. Addison-Wesley
Gonzalez, J.A., Sperhake, U., Bruegmann, B., Hannam, M., and Husa, S. 2007. Total recoil: the maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (4 pages).CrossRefGoogle Scholar
Gralla, S.E., Harte, A.I., and Wald, R.M. 2009. A rigorous derivation ofelectromagnetic self-force. Phys. Rev.D 80, 024031 (22 pages).Google Scholar
Gullstrand, A. 1922. Allegemeine Losung des statischen Einkorper-problems in der Ein-steinschen Gravitations Theorie. Arkiv. Mat. Astron. Fys. 16(8), 1–15.Google Scholar
Hansen, C.J., Kawaler, S.D., and Trimble, V. 2004. Stellar Interiors – Physical Principles, Structure, and Evolution. Second Edition. Springer.Google Scholar
Hartle, J.B. 2003. Gravity: An Introduction to Einstein's General Relativity. Addison-Wesley.Google Scholar
Havas, P. 1989. The early history of the ‘problem of motion’ in general relativity, in Einstein and the History of General Relativity, edited by Howard, D. and Stachel, J.Birkhäuser.Google Scholar
Havas, P. and Goldberg, J.N. 1962. Lorentz-invariant equations of motion of point masses in the general theory of relativity. Phys. Rev. 128, 398–414.CrossRefGoogle Scholar
Hawking, S.W. 1972. Blackholes in the Brans–Dicke theory of gravitation. Commun. Math. Phys. 25, 167–171.Google Scholar
Hawking, S.W. 1998. A Brief History of Time. 10th Anniversary Edition. Bantam.Google Scholar
Hulse, R.A. and Taylor, J.H. 1975. Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53.CrossRefGoogle Scholar
Isaacson, R.A. 1968a. Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics. Phys. Rev. 166, 1263–1271.CrossRefGoogle Scholar
Isaacson, R.A. 1968b. Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Phys. Rev. 166, 1272–1279.CrossRefGoogle Scholar
Ives, H.E., and Stilwell, G.R. 1938. An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am. 28, 215–226.CrossRefGoogle Scholar
Iyer, B.R. and Will, C.M. 1995. Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies. Phys. Rev.D 52, 6882–6893.Google ScholarPubMed
Jackson, J.D. 1998. Classical Electrodynamics. Third Edition. Wiley.Google Scholar
Jordan, P. 1959. Zum gegenwartigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112–121.CrossRefGoogle Scholar
Kennefick, D. 2005. Einstein versus the Physical Review. Physics Today 58(9), 43–48.CrossRefGoogle Scholar
Kennefick, D. 2007. Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves. Princeton University Press.CrossRefGoogle Scholar
Kennefick, D. 2009. Testing relativity from the 1919 eclipse – A question of bias. Physics Today 62(3), 37–42.CrossRefGoogle Scholar
Kidder, L.E. 1995. Coalescing binary systems of compact objects to 2.5 post-Newtonian order. V Spin effects. Phys. Rev.D 52, 821–847.Google Scholar
Kopal, Z. 1959. Close Binary Systems. Chapman and Hall.Google Scholar
Kopal, Z. 1978. Dynamics of Close Binary Systems. Reidel.CrossRefGoogle Scholar
Kozai, Y. 1962. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598.Google Scholar
Kramer, M., Stairs, I.H., Manchester, R.N., et al. 2006. Tests of general relativity from timing the double pulsar. Science 314, 97–102.CrossRefGoogle ScholarPubMed
Kundu, P.K., Cohen, I.M., and Dowling, D.R. 2011. Fluid Mechanics. Fifth Edition. Academic Press.Google Scholar
Landau, L.D. 1932. On the theory of stars. Phys. Z. Sowjetunion 1, 285–288.Google Scholar
Landau, L.D. and Lifshitz, E.M. 1976. Mechanics. Third Edition. Butterworth-Heinemann.Google Scholar
Landau, L.D. and Lifshitz, E.M. 1987. Fluid Mechanics. Second Edition. Butterworth-Heinemann.Google Scholar
Landau, L.D. and Lifshitz, E.M. 2000. The Classical Theory of Fields. Fourth Edition. Butterworth-Heinemann.Google Scholar
Lattimer, J.M. and Prakash, M. 2001. Neutron star structure and the equation of state. Astrophys. J. 550, 426–442.CrossRefGoogle Scholar
Lattimer, J.M. and Prakash, M. 2007. Neutron star observations: Prognosis for equation of state constraints. Phys. Report 442, 109–165.CrossRefGoogle Scholar
Lidov, M.L. 1962. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planetary and Space Science 9, 719–759.CrossRefGoogle Scholar
Lincoln, C.W. and Will, C.M. 1990. Coalescing binary systems of compact objects to 2.5 post-Newtonian order: Late-time evolution and gravitational-radiation emission. Phys. Rev.D 42, 1123–1144.Google Scholar
Lorentz, H.A. and Droste, J. 1917. The motion of a system of bodies under the influence of their mutual attraction, according to Einstein's theory. Versl. K. Akad. Wetensch. Amsterdam 26, 392. English translation in Lorentz H.A. 1937. Collected papers, Vol.5, edited by Zeeman P. and Fokker A.D. Martinus Nijhoff.Google Scholar
Love, A.E.H. 1911. Some Problems of Geodynamics. Cambridge University Press.Google Scholar
Maggiore, M. 2007. Gravitational Waves. Volume 1: Theory and Experiments. Oxford University Press.CrossRefGoogle Scholar
Martel, K. and Poisson, E. 2001. Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys. 69, 476–480.CrossRefGoogle Scholar
Mathisson, M. 1937. Neue Mechanik materieller Systeme. Acta Phys. Polon. 6, 163–200.Google Scholar
Mccully, J.G. 2006. Beyond the Moon: A Conversational, Common Sense Guide to Understanding the Tides. World Scientific.CrossRefGoogle Scholar
Merkowitz, S. 2010. Tests of gravity using lunar laser ranging. Living Rev. Relativity 13. http://www.livingreviews.org/lrr-2010-7.CrossRefGoogle ScholarPubMed
Mikheev, S.P. and Smirnov, A.Yu. 1985. Resonant amplification of neutrino oscillations in matter and spectroscopy of solar neutrinos. Yad. Fiz. 42, 1441–1448. [Sov. J. Nucl. Phys. 42, 913–917.]Google Scholar
Mikheev, S.P. and Smirnov, A.Yu. 1986. Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy. Nuovo CimentoC 9, 17–26.Google Scholar
Misner, C.W., Thorne, K.S., and Wheeler, J.A. 1973. Gravitation. Freeman.Google Scholar
Mora, T. and Will, C.M. 2004. Post-Newtonian diagnostic of quasiequilibrium binary configurations of compact objects. Phys. Rev.D 69, 104021 (25 pages).Google Scholar
Moulton, F.R. 1984. An Introduction to Celestial Mechanics. Second Revised Edition. Dover.Google Scholar
Murray, C.D. and Dermott, S.F. 2000. Solar System Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Narayanan, A.S. 2012. An Introduction to Waves and Oscillations in the Sun. Springer.Google Scholar
Newton, I. 1999. The Principia: Mathematical Principles of Natural Philosophy. Translated and edited by Cohen, I.B., Whitman, A., and Budenz, J.University of California Press.Google Scholar
Nordström, G. 1913. Zur Theorie des Gravitation vom Standpunkt des Relativitatsmechanik. Ann. Physik 42, 533–554.Google Scholar
Nordtvedt, K. Jr. 1968a. Equivalence principle for massive bodies. I. Phenomenology. Phys. Rev. 169, 1014–1016.Google Scholar
Nordtvedt, K. Jr. 1968b. Equivalence principle for massive bodies. II. Theory. Phys. Rev. 169, 1017–1025.Google Scholar
Nordtvedt, K. Jr. 1968c. Testing relativity with laser ranging to the Moon. Phys. Rev. 170, 1186–1187.CrossRefGoogle Scholar
Nordtvedt, K. Jr. 1999. 30 years of lunar laser ranging and the gravitational interaction. Class. Quantum Grav. 16, A101–A112.CrossRefGoogle Scholar
Owen, B.J. 2005. Maximum elastic deformations of compact stars with exotic equations of state. Phys. Rev. Lett. 95, 211101 (4 pages).CrossRefGoogle ScholarPubMed
Painlevé, P. 1921. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris), 173, 677–680.Google Scholar
Papapetrou, A. 1951. Spinning test-particles in general relativity. I. Proc. Roy. Soc. London A209, 248–258.Google Scholar
Pati, M.E. and Will, C.M. 2000. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations. Phys. Rev.D 62, 124015 (28 pages).Google Scholar
Pati, M.E. and Will, C.M. 2001. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order. Phys. Rev.D 65, 104008 (21 pages).Google Scholar
Peters, P.C. 1964. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, B1224–B1232.CrossRefGoogle Scholar
Peters, P.C. and Mathews, J. 1963. Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131, 435–440.CrossRefGoogle Scholar
Pirani, F.A.E. 1964. Introduction to gravitational radiation theory, in Lectures on General Relativity, edited by Trautman, A., Pirani, F.A.E., and Bondi, H., 249–273. Prentice-Hall.Google Scholar
Pound, A. 2010. Motion of small bodies in general relativity: Foundations and implementations of the self-force. PhD thesis, University of Guelph. Available online at arXiv.org/abs/1006.3903.Google Scholar
Pugh, G.E. 1959. Proposal for a satellite test of the Coriolis predictions of general relativity. Weapons System Evaluation Group, Research Memorandum No. 111, Department of Defense (unpublished). Reprinted (2003) in Nonlinear Gravitodynamics. The Lense–Thirring Effect, edited by Ruffini, R.J. and Sigismondi, C., 414–426. World Scientific.Google Scholar
Racine, E. and Flanagan, E.E. 2005. Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies. Phys. Rev.D 71, 044010 (44 pages).Google Scholar
Reif, F. 2008. Fundamentals of Statistical and Thermal Physics. Waveland Pr. Inc.Google Scholar
Rindler, W. 1991. Introduction to Special Relativity. Second Edition. Oxford University Press.Google Scholar
Robertson, H.P. and Noonan, T.W. 1968. Relativity and Cosmology. W.B. Saunders.Google Scholar
Rosenblum, A. 1978. Gravitational radiation energy loss in scattering problems and the Einstein quadrupole formula. Phys. Rev. Lett. 41, 1003–1005.Google Scholar
Rossi, B. and Hall, D.B. 1941. Variation of the rate of decay of mesotrons with momentum. Phys. Rev. 59, 223–228.CrossRefGoogle Scholar
Sachs, R.K. 1961. Gravitational waves in general relativity. VI. The outgoing radiation condition. Proc. Roy. Soc. London A264, 309–338.Google Scholar
Sachs, R.K. 1962. Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-time. Proc. Roy. Soc. London A270, 103–126.Google Scholar
Saulson, P.R. 1994. Fundamentals of Interferometric Gravitational Wave Detectors. World Scientific.CrossRefGoogle Scholar
Schäfer, G. 1983. On often used gauge transformations in gravitational radiation-reaction calculations. Lett. Nuovo Cimento 36, 105–108.CrossRefGoogle Scholar
Schiff, L.I. 1960. Motion of a gyroscope according to Einstein's theory of gravitation. Proc. Nat. Acad. Sci. U.S. 46, 871–882.CrossRefGoogle ScholarPubMed
Schneider, P., Ehlers, J., and Falco, E.E. 1992. Gravitational Lenses. Springer.Google Scholar
Schutz, B.F. 2003. Gravity from the Ground Up. Cambridge University Press.CrossRefGoogle Scholar
Schutz, B.F. 2009. A First Course in General Relativity. Second Edition. Cambridge University Press.CrossRefGoogle Scholar
Schwarzschild, K. 1916. Uber das Gravitationsfeld eines Massenpunktes nach der Einstein-schen Theorie. Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech., 189–196. For an English translation, see arXiv.org/abs/physics/9905030.Google Scholar
Sellier, A. 1994. Hadamard's finite part concept in dimension n ≥ 2, distributional definition, regularization forms and distributional derivatives. Proc. R. Soc. London, A445, 69–98.Google Scholar
Shapiro, I.I. 1964. Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791.CrossRefGoogle Scholar
Shapiro, I.I.Pettengill, G.H., Ash, M.E., et al. 1968. Fourth test of general relativity: Preliminary results. Phys. Rev. Lett. 20, 1265–1269.CrossRefGoogle Scholar
Shapiro, I.I.Reasenberg, R.D., Chandler, J.F., and Babcock, R.W. 1988. Measurement of the de Sitter precession of the Moon: A relativistic three-body effect. Phys. Rev. Lett. 61, 2643–2646.CrossRefGoogle Scholar
Shapiro, S.L. and Teukolsky, S.A. 1983. Black Holes, White Dwarfs and Neutron Stars: The Physics ofCompact Objects. Wiley.CrossRefGoogle Scholar
Shapiro, S.S., Davis, J.L., Lebach, D.E., and Gregory, J.S. 2004. Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979–1999. Phys. Rev. Lett. 92, 121101 (4 pages).CrossRefGoogle Scholar
Smith, S.F. and Havas, P. 1965. Effects of gravitational radiation reaction in the general relativistic two-body problem by a Lorentz-invariant approximation method. Phys. Rev. 138, B495–B508.CrossRefGoogle Scholar
Soffel, M.H. 1989. Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer-Verlag.CrossRefGoogle Scholar
Sotiriou, T.P. and Faraoni, V. 2012. Black holes in scalar–tensor gravity. Phys. Rev. Lett. 108, 081103 (4 pages).CrossRefGoogle ScholarPubMed
Stairs, I.H., Faulkner, A.J., Lyne, A.G., et al. 2005. Discovery of three wide-orbit binary pulsars: Implications for binary evolution and equivalence principles. Astrophys. J. 632, 1060–1068.CrossRefGoogle Scholar
Steiner, A.W., Lattimer, J.M., and Brown, E.F. 2010. The equation of state from observed masses and radii of neutron stars. Astrophys. J. 722, 33–54.CrossRefGoogle Scholar
Steves, B.A. and Maciejewski, A.J. 2001. The Restless Universe: Applications of Gravitational N-Body Dynamics to Planetary, Stellar and Galactic Systems. Institute of Physics.CrossRefGoogle Scholar
Su, Y., Heckel, B.R., Adelberger, E.G., et al. 1994. New tests of the universality of free fall. Phys. Rev.D 50, 3614–3636.Google ScholarPubMed
Tassoul, J.L. 1978. Theory of Rotating Stars. Princeton University Press.Google Scholar
Taylor, J.H., Fowler, L.A., and McCulloch, P.M. 1979. Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature 277, 437–440.CrossRefGoogle Scholar
Taylor, S. and Poisson, E. 2008. Nonrotating black hole in a post-Newtonian tidal environment. Phys. Rev.D 78, 084016 (26 pages).Google Scholar
Thirring, H. and Lense, J. 1918. Uber den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach des Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163.Google Scholar
Thorne, K.S. 1969. Nonradial pulsation of general-relativistic stellar models. IV The weak-field limit. Astrophys. J. 158, 997–1019.Google Scholar
Thorne, K.S. 1980. Multipole expansions of gravitational radiation, Rev. Mod. Phys. 52, 299–340.CrossRefGoogle Scholar
Thorne, K.S. and Kovacs, S.J. 1975. The generation of gravitational waves. I. Weak-field sources. Astrophys. J. 200, 245–262.CrossRefGoogle Scholar
Thorne, K.S. and Will, C.M. 1970. Theoretical frameworks for testing relativistic gravity. I. Foundations. Astrophys. J. 163, 595–610.Google Scholar
Tooper, R.F. 1965. Adiabatic fluid spheres in general relativity. Astrophys. J. 142, 1541–1562.CrossRefGoogle Scholar
Turner, M. 1977. Tidal generation of gravitational waves from orbiting Newtonian stars. I. General formalism. Astrophys. J. 216, 914–929.CrossRefGoogle Scholar
Ushomirsky, G., Cutler, C., and Bildsten, L. 2000. Deformations of accreting neutron star crusts and gravitational wave emission. Mon. Not. R. Astr. Soc. 319, 902–932.Google Scholar
Wagoner, R.V. and Will, C.M. 1976. Post-Newtonian gravitational radiation from orbiting point masses, Astrophys. J. 210, 764–775.CrossRefGoogle Scholar
Wahlquist, H. 1987. The Doppler response to gravitational waves from a binary star source. Gen. Relativ. Gravit. 19, 1101–1113.CrossRefGoogle Scholar
Wald, R.M. 1984. General Relativity. University of Chicago Press.CrossRefGoogle Scholar
Walker, M. and Will, C.M. 1980. The approximation of radiative effects in relativistic gravity: Gravitational radiation reaction and energy loss in nearly Newtonian systems. Astrophys. J. 242, L129–L133.CrossRefGoogle Scholar
Walsh, D., Carswell, R.F., and Weymann, R.J. 1979. 0957 + 561 A, B – Twin quasistellar objects or gravitational lens. Nature 279, 381–384.CrossRefGoogle ScholarPubMed
Weinberg, S. 1972. Gravitation and Cosmology. Wiley.Google Scholar
Weisberg, J.M., Nice, D.J., and Taylor, J.H. 2010. Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030–1034.CrossRefGoogle Scholar
Whitehead, A.N. 1922. The Principle of Relativity, with Applications to Physical Science. Cambridge University Press.Google Scholar
Whitrow, G.J. and Morduch, G.E. 1965. Relativistic theories of gravitation: A comparative analysis with particular reference to astronomical tests. Vistas in Astronomy 6, 1–67.CrossRefGoogle Scholar
Will, C.M. 1971a. Theoretical frameworks for testing relativistic gravity. II. Parameterized post-Newtonian hydrodynamics, and the Nordtvedt effect. Astrophys. J. 163, 611–628.CrossRefGoogle Scholar
Will, C.M. 1971b. Theoretical frameworks for testing relativistic gravity. III. Conservation laws, Lorentz invariance, and values of the PPN parameters. Astrophys. J. 169, 125–140.CrossRefGoogle Scholar
Will, C.M. 1971c. Relativistic gravity in the solar system. II. Anisotropy in the Newtonian gravitational constant. Astrophys. J. 169, 141–155.CrossRefGoogle Scholar
Will, C.M. 1983. Tidal gravitational radiation from homogeneous stars. Astrophys. J. 274, 858–874.CrossRefGoogle Scholar
Will, C.M. 1988. Henry Cavendish, Johann von Soldner, and the deflection of light. Am. J. Phys. 56, 413–415.CrossRefGoogle Scholar
Will, C.M. 1993. Theory and Experiment in Gravitational Physics. Revised Edition. Cambridge University Press.CrossRefGoogle Scholar
Will, C.M. 2005. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies. Phys. Rev.D 71, 084027 (15 pages).Google Scholar
Will, C.M. 2006a. Special relativity: A centenary perspective. Einstein 1905-2005: Poincare Seminar 2005, edited by Damour, T., Darrigol, O., Duplantier, B. and Rivasseau, V, 33–58. Birkhauser Publishing.Google Scholar
Will, C.M. 2006b. The confrontation between general relativity and experiment. Living Rev. Relativity 9. http://www.livingreviews.org/lrr-2006-3/.CrossRefGoogle Scholar
Will, C.M. 2010. Resource letter PTG-1: Precision tests of gravity. Am. J. Phys. 78, 1240–1247.CrossRefGoogle Scholar
Will, C.M. and Nordtvedt, K. Jr. 1972a. Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism. Astrophys. J. 177, 757–774.CrossRefGoogle Scholar
Will, C.M. and Nordtvedt, K. Jr. 1972b. Conservation laws and preferred frames in relativistic gravity. II. Experimental evidence to rule out preferred-frame theories of gravity. Astrophys. J. 177, 775–792.CrossRefGoogle Scholar
Will, C.M. and Wiseman, A.G. 1996. Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order. Phys. Rev.D 54, 4813–4848.Google ScholarPubMed
Williams, J.G., Turyshev, S.G., and Boggs, D.H. 2009. Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys.D 18, 1129–1175.CrossRefGoogle Scholar
Wiseman, A.G. 1992. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. Phys. Rev.D 46, 1517–1539.Google ScholarPubMed
Wiseman, A.G. and Will, C.M. 1991. Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation. Phys. Rev.D 44, R2945–R2949.Google Scholar
Wolfenstein, L. 1978. Neutrino oscillations in matter. Phys. Rev.D 17, 2369–2374.Google Scholar
Zlochower, Y., Campanelli, M. and Lousto, C.O. 2011. Modeling gravitational recoil from black-hole binaries using numerical relativity. Class. Quantum Grav. 28, 114015 (11 pages).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Eric Poisson, University of Guelph, Ontario, Clifford M. Will, University of Florida
  • Book: Gravity
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139507486.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Eric Poisson, University of Guelph, Ontario, Clifford M. Will, University of Florida
  • Book: Gravity
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139507486.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Eric Poisson, University of Guelph, Ontario, Clifford M. Will, University of Florida
  • Book: Gravity
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139507486.015
Available formats
×