Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T01:15:55.404Z Has data issue: false hasContentIssue false

7 - Flow Patterns

Published online by Cambridge University Press:  05 June 2014

Christopher E. Brennen
Affiliation:
California Institute of Technology
Get access

Summary

Introduction

From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes can be quite sensitive to the geometric distribution or topology of the components within the flow. For example, the geometry may strongly effect the interfacial area available for mass, momentum, or energy exchange between the phases. Moreover, the flow within each phase or component will clearly depend on that geometric distribution. Thus we recognize that there is a complicated two-way coupling between the flow in each of the phases or components and the geometry of the flow (as well as the rates of change of that geometry). The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done before even a superficial understanding is achieved.

An appropriate starting point is a phenomenological description of the geometric distributions or flow patterns that are observed in common multiphase flows. This chapter describes the flow patterns observed in horizontal and vertical pipes and identifies a number of the instabilities that lead to transition from one flow pattern to another.

Topologies of Multiphase Flow

Multiphase Flow Patterns

A particular type of geometric distribution of the components is called a flow pattern or flow regime and many of the names given to these flow patterns (such as annular flow or bubbly flow) are now quite standard.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Flow Patterns
  • Christopher E. Brennen, California Institute of Technology
  • Book: Fundamentals of Multiphase Flow
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511807169.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Flow Patterns
  • Christopher E. Brennen, California Institute of Technology
  • Book: Fundamentals of Multiphase Flow
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511807169.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Flow Patterns
  • Christopher E. Brennen, California Institute of Technology
  • Book: Fundamentals of Multiphase Flow
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511807169.008
Available formats
×