Book contents
- Frontmatter
- Dedication
- Contents
- List of contributors
- Editor's preface
- PART I INTRODUCTION AND GENERAL PRINCIPLES
- PART II DISORDERS OF HIGHER FUNCTION
- PART III DISORDERS OF MOTOR CONTROL
- PART IV DISORDERS OF THE SPECIAL SENSES
- PART V DISORDERS OF SPINE AND SPINAL CORD
- PART VI DISORDERS OF BODY FUNCTION
- PART VII HEADACHE AND PAIN
- PART VIII NEUROMUSCULAR DISORDERS
- PART IX EPILEPSY
- PART X CEREBROVASCULAR DISORDERS
- PART XI NEOPLASTIC DISORDERS
- PART XII AUTOIMMUNE DISORDERS
- PART XIII DISORDERS OF MYELIN
- PART XIV INFECTIONS
- 101 Host responses in central nervous system infection
- 102 Viral diseases of the nervous system
- 103 Neurological manifestations of HIV infection
- 104 Neurological manifestations of HTLV-I infection
- 105 Clinical features of human prion diseases
- 106 Bacterial infections
- 107 Parasitic disease
- 108 Lyme disease
- 109 Neurosyphilis
- 110 Tuberculosis
- PART XV TRAUMA AND TOXIC DISORDERS
- PART XVI DEGENERATIVE DISORDERS
- PART XVII NEUROLOGICAL MANIFESTATIONS OF SYSTEMIC CONDITIONS
- Complete two-volume index
- Plate Section
101 - Host responses in central nervous system infection
from PART XIV - INFECTIONS
Published online by Cambridge University Press: 05 August 2016
- Frontmatter
- Dedication
- Contents
- List of contributors
- Editor's preface
- PART I INTRODUCTION AND GENERAL PRINCIPLES
- PART II DISORDERS OF HIGHER FUNCTION
- PART III DISORDERS OF MOTOR CONTROL
- PART IV DISORDERS OF THE SPECIAL SENSES
- PART V DISORDERS OF SPINE AND SPINAL CORD
- PART VI DISORDERS OF BODY FUNCTION
- PART VII HEADACHE AND PAIN
- PART VIII NEUROMUSCULAR DISORDERS
- PART IX EPILEPSY
- PART X CEREBROVASCULAR DISORDERS
- PART XI NEOPLASTIC DISORDERS
- PART XII AUTOIMMUNE DISORDERS
- PART XIII DISORDERS OF MYELIN
- PART XIV INFECTIONS
- 101 Host responses in central nervous system infection
- 102 Viral diseases of the nervous system
- 103 Neurological manifestations of HIV infection
- 104 Neurological manifestations of HTLV-I infection
- 105 Clinical features of human prion diseases
- 106 Bacterial infections
- 107 Parasitic disease
- 108 Lyme disease
- 109 Neurosyphilis
- 110 Tuberculosis
- PART XV TRAUMA AND TOXIC DISORDERS
- PART XVI DEGENERATIVE DISORDERS
- PART XVII NEUROLOGICAL MANIFESTATIONS OF SYSTEMIC CONDITIONS
- Complete two-volume index
- Plate Section
Summary
Infections of the central nervous system (CNS) can occur in two anatomically distinct tissue compartments: the subarachnoid and leptomeningeal spaces (meningitis) and the parenchyma of the brain and spinal cord (encephalomyelitis). While an intact blood–brain barrier (BBB) ordinarily deters microorganisms from invading either tissue compartment, it also excludes most circulating components of the immune system, making the CNS susceptible to infection once such invasion does occur. Cells of the immune system can extravasate into the CNS in response to infection, but they appear to do so in a tightly regulated manner. Within the brain, neural cells have restricted immunological function, and the local microenvironment of the CNS can also down-modulate various effector responses of recruited inflammatory cells. In general, a successful host immune response against a CNS infection must overcome these structural and functional barriers to eradicate infectious organisms without causing excessive damage to non-renewable neural cell populations. In some cases, however, the host response is not fully controlled and actually contributes to the neurologic deficits associated with CNS infection. This chapter will review these concepts by citing examples from both human disease states and laboratory-based experimental systems.
Anatomical considerations
There are several anatomical features of the nervous system that influence how local and systemic immune responses are mounted in response to CNS infection. These include: (i) the BBB which stands as a physical barrier against the passage of immune elements from the periphery into the CNS, (ii) the Virchow–Robin spaces immediately surrounding blood vessels that penetrate into the brain where important immunologic reactions can take place, and (iii) cerebrospinal fluid (CSF) recirculation pathways, which may disseminate microorganisms throughout the neuraxis and cause infectious antigens to be carried out of the CNS via particular routes, therefore influencing how they are detected by the immune system in the periphery.
Under normal circumstances, structures that comprise the BBB generally prevent the entry of infectious pathogens, inflammatory cells, and circulating proteins such as antibodies and cytokines into the CNS. Cerebrovascular endothelial cells maintain tight intercellular junctions and very low rates of vesicular transport that differentiate them from the more permeable endothelium found in other tissues. A dense basement membrane ensheathes the cerebrovascular endothelium which is itself surrounded by a network of pericytes and astrocytic foot processes that collectively maintain the integrity of the BBB.
- Type
- Chapter
- Information
- Diseases of the Nervous SystemClinical Neuroscience and Therapeutic Principles, pp. 1651 - 1659Publisher: Cambridge University PressPrint publication year: 2002
- 1
- Cited by