Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T08:43:39.646Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2015

David Burgess
Affiliation:
Queen Mary University of London
Manfred Scholer
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Collisionless Shocks in Space Plasmas
Structure and Accelerated Particles
, pp. 335 - 352
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimoto, K., Papadopoulos, K. and Winske, D. 1985a. Ion-acoustic instabilities driven by an ion velocity ring. J. Plasma Phys., 34, 467.Google Scholar
Akimoto, K., Papadopoulos, K. and Winske, D. 1985b. Lower-hybrid instabilities driven by an ion velocity ring. J. Plasma Phys., 34, 445.Google Scholar
Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M. and André, M. 2006. Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock. J. Geophys. Res., 111(A10), 12208.Google Scholar
Amano, T. and Hoshino, M. 2007. Electron injection at high Mach number quasi-perpendicular shocks: surfing and drift acceleration. Astrophys. J., 661, 190.Google Scholar
Amano, T. and Hoshino, M. 2012. Recent Progress in the theory of electron injection in collisionless shocks. Leubner, M. P. and Vörös, Z. (eds), Multiscale Dynamical Processes in Space and Astrophysical Plasmas. Berlin: Springer, p. 143.
Anderson, J. E. 1963. Magnetohydrodynamic Shock Waves. Cambridge, MA: MIT Press.
Anderson, K. A., Lin, R. P., Martel, F., Lin, C. S., Parks, G.K. and Réme, H. 1979. Thin sheets of energetic electrons upstream from the Earth's bow shock. Geophys. Res. Lett., 6, 401.Google Scholar
Axford, W. I. 1981a. Acceleration of cosmic rays by shock waves. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 12, p. 155.Google Scholar
Axford, W. I. 1981b. Late paper: Acceleration of cosmic rays by shock waves. In S. A., Colgate (ed.), ESA Special Publication. ESA Special Publication, vol. 161, p. 125.
Axford, W. I., Leer, E. and Skadron, G. 1977. The acceleration of cosmic rays by shock waves. In International Cosmic Ray Conference. InternationalCosmicRay Conference, vol. 11, p. 132.Google Scholar
Axford, W. I., Leer, E. and McKenzie, J. F. 1982. The structure of cosmic ray shocks. Astron. Astrophys., 111, 317Google Scholar
Bale, S.D., Reiner, M. J., Bougeret, J.-L., et al. 1999. The source region of an interplanetary type II radio burst. Geophys. Res. Lett., 26, 1573.Google Scholar
Bale, S.D., Mozer, F. S. and Horbury, T. S. 2003. Density-transition scale at quasiperpendicular collisionless shocks. Phys. Rev. Lett., 91(26), 265004.Google Scholar
Bale, S.D., Balikhin, M. A., Horbury, T. S., et al. 2005. Quasi-perpendicular shock structure and processes. Space Sci. Rev., 118, 161.Google Scholar
Balikhin, M., Krasnosselskikh, V. and Gedalin, M. 1995. The scales in quasiperpendicular shocks. Adv. Space Res., 15, 247–260.Google Scholar
Balikhin, M., Walker, S., Treumann, R., et al. 2005. Ion sound wave packets at the quasiperpendicular shock front. Geophys. Res. Lett., 32, 24106.Google Scholar
Baring, M. G., Ellison, D. C. and Jones, F. C. 1993. The injection and acceleration of particles in oblique shocks–A unified Monte Carlo description. Astrophys. J., 409, 327.Google Scholar
Barnes, C.W. and Simpson, J. A. 1976. Evidence for interplanetary acceleration of nucleons in corotating interaction regions. Astrophys. J. Lett., 210, L91.Google Scholar
Bell, A. R. 1978a. The acceleration of cosmic rays in shock fronts. I. MNRAS, 182, 147.Google Scholar
Bell, A. R. 1978b. The acceleration of cosmic rays in shock fronts. II. MNRAS, 182, 443.Google Scholar
Bell, A. R. 2004. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS, 353, 550.Google Scholar
Bellan, P. M. 2006. Fundamentals of Plasma Physics. Cambridge: Cambridge University Press.
Birdsall, C. K. and Langdon, A. B. 2004. Plasma Physics via Computer Simulation. Abingdon: Taylor and Francis Group.
Biskamp, D. 1973. Collisionless shock waves in plasmas. Nucl. Fusion, 13(5), 719.Google Scholar
Biskamp, D. and Chodura, R. 1973. Collisionless dissipation of a cross-field electric current. Phys. Fluids, 16, 893–901.Google Scholar
Biskamp, D and Welter, H. 1972a. Numerical studies of magnetosonic collisionless shock-waves. Nucl. Fusion</jt., 12(6), 663.Google Scholar
Biskamp, D. and Welter, H. 1972b. Structure of the earth's bow shock. J. Geophys. Res., 77, 6052.Google Scholar
Blanco-Cano, X., Omidi, N. and Russell, C. T. 2006. Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. J. Geophys. Res., 111(A10), 10205.Google Scholar
Blandford, R. and Eichler, D. 1987. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep., 154, 1.Google Scholar
Blandford, R. D. and Ostriker, J. P. 1978. Particle acceleration by astrophysical shocks. Astrophys. J. Lett., 221, L29.Google Scholar
Bonifazi, C. and Moreno, G. 1981. Reflected and diffuse ions backstreaming from the earth's bow shock. I Basic properties. J. Geophys. Res., 86, 4397.Google Scholar
Boyd, T. J. M. and Sanderson, J. J. 2003. The Physics of Plasmas. Cambridge: Cambridge University Press.
Buneman, O. 1958. Instability, turbulence, and conductivity in current-carrying plasma. Phys. Rev. Lett., 1, 8.Google Scholar
Burgess, D. 1987a. Shock drift acceleration at lowenergies. J. Geophys. Res., 92, 1119.Google Scholar
Burgess, D. 1987b. Simulations of backstreaming ion beams formed at oblique shocks by direct reflection. Ann. Geophys., 5, 133.Google Scholar
Burgess, D. 1989. Cyclical behavior at quasiparallel collisionless shocks. Geophys. Res. Lett., 16, 345.Google Scholar
Burgess, D. 1995. Foreshock-shock interaction at collisionless quasi-parallel shocks. Adv. Space Res., 15, 159.Google Scholar
Burgess, D. 2006. Simulations of electron acceleration at collisionless shocks: The effects of surface fluctuations. Astrophys. J., 653, 316.Google Scholar
Burgess, D. and Scholer, M. 2007. Shock front instability associated with reflected ions at the perpendicular shock. Phys. Plasmas, 14(1), 012108.Google Scholar
Burgess, D., Wilkinson, W. P. and Schwartz, S. J. 1989. Ion distributions and thermalization at perpendicular and quasi-perpendicular supercritical collisionless shocks. J. Geophys. Res., 94, 8783.Google Scholar
Burlaga, L. F., Ness, N. F., Acuña, M.H., et al. 2005. Crossing the termination shock into the heliosheath: Magnetic fields. Science, 309, 2027.Google Scholar
Burlaga, L. F., Ness, N. F., Acuña, M.H., Lepping, R. P., Connerney, J. E. P. and Richardson, J. D. 2008. Magnetic fields at the solar wind termination shock. Nature, 454, 75.Google Scholar
Burrows, R.H., Zank, G. P., Webb, G. M., Burlaga, L. F. and Ness, N. F. 2010. Pickup ion dynamics at the heliospheric termination shock observed by Voyager 2. Astrophys. J., 715, 1109.Google Scholar
Cairns, I.H. and Robinson, P. A. 1999. Strong evidence for stochastic growth of Langmuir-likewaves in Earth's foreshock. Phys. Rev. Lett., 82, 3066.Google Scholar
Cairns, I.H., Robinson, P. A. and Zank, G. P. 2000. Progress on coronal, interplanetary, foreshock, and outer heliospheric radio emissions. Publ. Astron. Soc. Aust., 17, 22.Google Scholar
Cargill, P. J. and Papadopoulos, K. 1988. A mechanism for strong shock electron heating in supernova remnants. Astrophys. J. Lett., 329, L29.Google Scholar
Chalov, S.V. 2012. Influence of large-scale variations in the magnetic field direction on the acceleration of interstellar pickup protons at the heliospheric termination shock. Astron. Lett., 38, 191.Google Scholar
Chapman, S. and Cowling, T. G. 1970. The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3rd edn. Cambridge: Cambridge University Press.
Cipolla, Jr., J.W., Silevitch, M. B. and Golden, K. I. 1977. Ion cyclotron beam mode-whistler mode plasma instabilities and their role in parallel shock wave structures. Phys. Fluids, 20, 282.Google Scholar
Comişel, H., Scholer, M., Soucek, J. and Matsukiyo, S. 2011. Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations. Ann. Geophys., 29, 263.Google Scholar
Coroniti, F.V. 1970. Dissipation discontinuities in hydromagnetic shock waves. J. Plasma Phys., 4, 265.Google Scholar
Courant, R., Friedrichs, K. and Lewy, H. 1928. Ǘber die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 100, 32.Google Scholar
Davidson, R. C. 1972. Methods in Nonlinear Plasma Theory. New York: Academic Press.
Davidson, R. C., Gladd, N. T., Wu, C. S. and Huba, J.D. 1977. Effects of finite plasma beta on the lower-hybrid-drift instability. Phys. Fluids, 20, 301.Google Scholar
Dawson, J. 1962. One-dimensional plasma model. Phys. Fluids, 5, 445.Google Scholar
de Hoffmann, F. and Teller, E. 1950. Magneto-hydrodynamic shocks. Phys. Rev., 80, 692.Google Scholar
Decker, R. B. 1983. Formation of shockspike events at quasi-perpendicular shocks. J. Geophys. Res., 88, 9959.Google Scholar
Decker, R. B., Krimigis, S. M., Roelof, E.C., et al. 2008. Mediation of the solar wind termination shock by non-thermal ions. Nature, 454, 67.Google Scholar
Drake, J. F., Opher, M., Swisdak, M. and Chamoun, J. N. 2010. A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J., 709, 963.Google Scholar
Drury, L. O. 1983. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys., 46, 973.Google Scholar
Drury, L. O. 1995. Particle acceleration in shocks. 233, 251.Google Scholar
Drury, L. O. 2004. Current status of shock acceleration theory. J. Korean Astron. Soc., 37, 393.Google Scholar
Drury, L. O. and Voelk, J.H. 1981. Hydromagnetic shock structure in the presence of cosmic rays. Astrophys. J., 248, 344.Google Scholar
Dubouloz, N. and Scholer, M. 1995. Twodimensional simulations of magnetic pulsations upstream of the Earth's bowshock. J. Geophys. Res., 100, 9461.Google Scholar
Earl, J.A. 1974. The diffusive idealization of charged-particle transport in random magnetic fields. Astrophys. J., 193, 231.Google Scholar
Eastwood, J. P., Balogh, A., Lucek, E.A., Mazelle, C. and Dandouras, I. 2005a. Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 1. Statistical properties. J. Geophys. Res., 110, 11219.Google Scholar
Eastwood, J. P., Lucek, E.A., Mazelle, C., et al. 2005b. The foreshock. Space Sci. Rev., 118, 41.Google Scholar
Edmiston, J. P., Kennel, C. F. and Eichler, D. 1982. Escape of heated ions upstream of quasi-parallel shocks. Geophys. Res. Lett., 9, 531.Google Scholar
Eichler, D. 1984. On the theory of cosmicray- mediated shocks with variable compression ratio. Astrophys. J., 277, 429.Google Scholar
Ellison, D. C. 1981. Monte Carlo simulation of charged particles upstream of the earth's bow shock. Geophys. Res. Lett., 8, 991.Google Scholar
Ellison, D. C. 1985. Shock acceleration of diffuse ions at the earth's bow shock Acceleration efficiency and A/Z enhancement. J. Geophys. Res., 90, 29.Google Scholar
Ellison, D. C. and Eichler, D. 1984. Monte Carlo shock-like solutions to the Boltzmann equation with collective scattering. Astrophys. J., 286, 691.Google Scholar
Ellison, D. C. and Moebius, E. 1987. Diffusive shock acceleration–Comparison of a unified shock model to bow shock observations. Astrophys. J., 318, 474.Google Scholar
Ellison, D. C., Moebius, E. and Paschmann, G. 1990. Particle injection and acceleration at earth's bow shock–Comparison of upstream and downstream events. Astrophys. J., 352, 376.Google Scholar
Ellison, D. C., Giacalone, J., Burgess, D. and Schwartz, S. J. 1993. Simulations of particle acceleration in parallel shocks: Direct comparison between Monte Carlo and one-dimensional hybrid codes. J.Geophys. Res., 982, 21085.
Ellison, D. C., Baring, M. G. and Jones, F. C. 1996. Nonlinear Particle Acceleration in Oblique Shocks. Astrophys. J., 473, 1029.
Fahr, H. J., Kausch, T. and Scherer, H. 2000. A 5-fluid hydrodynamic approach to model the solar system-interstellar medium interaction. Astron. Astrophys., 357, 268.Google Scholar
Fairfield, D.H. 1969. Bow shock associated waves observed in the far upstream interplanetary medium.J. Geophys. Res., 74, 3541.Google Scholar
Feldman, W. C., Bame, S. J., Gary, S. P., et al. 1982. Electron heating within the Earth's bow shock. Phys. Rev. Lett., 49(3), 199.Google Scholar
Feldman, W. C., Anderson, R. C., Bame, S. J., et al. 1983. Electron velocity distributions near the earth's bow shock. J. Geophys. Res., 88, 96.Google Scholar
Filbert, P. C. and Kellogg, P. J. 1979. Electrostatic noise at the plasma frequency beyond the earth's bow shock. J. Geophys. Res., 84, 1369.Google Scholar
Fisk, L.A. and Gloeckler, G. 2006. The common spectrum for accelerated ions in the quiet-time solar wind. Astrophys. J. Lett., 640, L79.Google Scholar
Fisk, L.A. and Gloeckler, G. 2009. The acceleration of anomalous cosmic rays by stochastic acceleration in the heliosheath. Adv. Space Res., 43, 1471.Google Scholar
Fisk, L.A., Kozlovsky, B. and Ramaty, R. 1974. An interpretation of the observed oxygen and nitrogen enhancements in low-energy cosmic rays. Astrophys. J. Lett., 190, L35.Google Scholar
Fitzenreiter, R. J. 1995. The electron foreshock. Adv. Space Res., 15, 9.Google Scholar
Fitzenreiter, R. J., Scudder, J. D. and Klimas, A. J. 1990. Three-dimensional analytical model for the spatial variation of the foreshock electron distribution function–Systematics and comparisons with ISEE observations. J. Geophys. Res., 95, 4155.Google Scholar
Florinski, V. 2009. Pickup ion acceleration at the termination shock and in the heliosheath. Space Sci. Rev., 143, 111.Google Scholar
Florinski, V., Zank, G. P., Jokipii, J. R., Stone, E.C. and Cummings, A.C. 2004. Do anomalous cosmic rays modify the termination shock?Astrophys. J., 610, 1169.Google Scholar
Florinski, V., Decker, R. B. and Le Roux, J. A. 2008. Pitch angle distributions of energetic particles near the heliospheric termination shock. J. Geophys. Res., 113, 7103.Google Scholar
Florinski, V., Decker, R. B. and Zank, G. P. 2010. Mediation of the heliospheric termination shock by termination-shockaccelerated particles. Twelfth International Solar Wind Conference Proceedings, 1216, 576.Google Scholar
Forman, M. A. and Morfill, G. E. 1979. Timedependent acceleration of solar wind plasma to mev energies at corotating interplanetary shocks. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 5, p. 328.Google Scholar
Formisano, V. and Kennel, C. F. 1969. Small amplitude waves in high β plasmas. J. Plasma Phys., 3, 55.Google Scholar
Forslund, D., Morse, R., Nielson, C. and Fu, J. 1972. Electron cyclotron drift instability and turbulence. Phys. Fluids, 15, 1303–1318.Google Scholar
Fuselier, S. A. 1995. Ion distributions in the Earth's foreshock upstream from the bow shock. Adv. Space Res., 15, 43.Google Scholar
Fuselier, S. A., Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1986. Gyrating and intermediate ion distributions upstream from the earth's bowshock. J. Geophys. Res., 91, 91.Google Scholar
Garcia-Munoz, M., Mason, G. M. and Simpson, J. A. 1973. The anomalous 1972 low energy galactic cosmic ray proton and helium spectra. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 2, p. 1304.Google Scholar
Gargaté, L. and Spitkovsky, A. 2012. Ion acceleration in non-relativistic astrophysical shocks. Astrophys. J., 744, 67.Google Scholar
Gary, S. P. 1978. The electromagnetic ion beam instability and energy loss of fast alpha particles. Nucl. Fusion, 18, 327.Google Scholar
Gary, S. P. 1992. The mirror and ion cyclotron anisotropy instabilities. J. Geophys. Res., 97, 8519.Google Scholar
Gary, S. P. 1993. Theory of Space Plasma Microinstabilities. Cambridge: Cambridge University Press.
Gary, S. P. and Mellott, M. M. 1985. Whistler damping at oblique propagation–Laminar shock precursors. J. Geophys. Res., 90, 99.Google Scholar
Gary, S. P. and Tokar, R. L. 1985. The second-order theory of electromagnetic hot ion beam instabilities. J. Geophys. Res., 90, 65.Google Scholar
Gary, S. P., Foosland, D.W., Smith, C.W., Lee, M. A. and Goldstein, M. L. 1984. Electromagnetic ion beam instabilities. Phys. Fluids, 27, 1852.Google Scholar
Gary, S. P., Tokar, R. L. and Winske, D. 1987. Ion/ion and electron/ion cross-field instabilities near the lower hybrid frequency. J. Geophys. Res., 92, 10029.Google Scholar
Gary, S. P., Fuselier, S. A. and Anderson, B. J. 1993. Ion anisotropy instabilities in the magnetosheath. J. Geophys. Res., 98, 1481.Google Scholar
Gedalin|M. 1996. Transmitted ions and ion heating in nearly perpendicular low-Mach number shocks. J. Geophys. Res., 101, 15569.
Gedalin, M. and Gri, E. 1999. Role of overshoots in the formation of the downstream distribution of adiabatic electrons. J. Geophys. Res., 104, 14821–14826.Google Scholar
Giacalone, J. 2004. Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J., 609, 452.Google Scholar
Giacalone, J. 2005. The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. Lett., 628, L37.Google Scholar
Giacalone, J. and Decker, R. 2010. The origin of low-energy anomalous cosmic rays at the solar-wind termination shock. Astrophys. J., 710, 91.Google Scholar
Giacalone, J. and Jokipii, J. R. 1999. The transport of cosmic rays across a turbulent magnetic field. Astrophys. J., 520, 204.Google Scholar
Giacalone, J. and Jokipii, J. R. 2007. Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. Lett., 663, L41.
Giacalone, J. and Kóta, J. 2006. Acceleration of Solar-Energetic Particles by Shocks. Space Sci. Rev., 124, 277.Google Scholar
Giacalone, J., Burgess, D., Schwartz, S. J. and Ellison, D. C. 1992. Hybrid simulations of protons strongly accelerated by a parallel collisionless shock. Geophys. Res. Lett., 19, 433.Google Scholar
Giacalone, J., Burgess, D., Schwartz, S. J. and Ellison, D. C. 1993. Ion injection and acceleration at parallel shocks – Comparisons of self-consistent plasma simulations with existing theories. Astrophys. J., 402, 550.Google Scholar
Giacalone, J., Burgess, D., Schwartz, S. J., Ellison, D. C. and Bennett, L. 1997. Injection and acceleration of thermal protons at quasi-parallel shocks: A hybrid simulation parameter survey. J. Geophys. Res., 102, 19789.Google Scholar
Gloeckler, G., Hovestadt, D. and Fisk, L. A. 1979. Observed distribution functions of H, He, C, O, and Fe in corotating energetic particle streams – Implications for interplanetary acceleration and propagation. Astrophys. J. Lett., 230, L191.Google Scholar
Goedbloed, J. P., Keppens, R. and Poedts, S. 2010. Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge: Cambridge University Press.
Golden, K. I., Linson, L. M. and Mani, S. A. 1973. Ion streaming instabilities with application to collisionless shock wave structure. Phys. Fluids, 16, 2319.Google Scholar
Goodrich, C. C. and Scudder, J. D. 1984. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionlessmagnetosonic shock waves. J. Geophys. Res., 89, 6654.Google Scholar
Gordon, B. E., Lee, M. A., Möbius, E. and Trattner, K. J. 1999. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth's bow shock revisited. J. Geophys. Res., 104, 28263.Google Scholar
Gosling, J. T. and Thomsen, M. F. 1985. Specularly reflected ions, shock foot thicknesses, and shock velocity determinations in space. J. Geophys. Res., 90, 9893.Google Scholar
Gosling, J. T., Asbridge, J. R., Bame, S. J., et al. 1981. Interplanetary ions during an energetic storm particle event – The distribution function from solar wind thermal energies to 1.6 MeV. J. Geophys. Res., 86, 547.Google Scholar
Gosling, J. T., Thomsen, M. F., Bame, S. J., Feldman, W. C., Paschmann, G. and Sckopke, N. 1982. Evidence for specularly reflected ions upstream from the quasiparallel bow shock. Geophys. Res. Lett., 9, 1333.Google Scholar
Gosling, J. T., Thomsen, M. F., Bame, S. J. and Russell, C. T. 1989a. Ion reflection and downstream thermalization at the quasiparallel bow shock. J. Geophys. Res., 94, 10027.Google Scholar
Gosling, J. T., Thomsen, M. F., Bame, S. J. and Russell, C. T. 1989b. Suprathermal electrons at earth's bowshock. J. Geophys. Res., 94, 10011.Google Scholar
Greenstadt, E.W., Fredricks, R.W., Scarf, F. L., Russell, C. T., Anderson, R. R. and GurnettD. A. 1981. Whistler mode wave propagation in the solar wind near the bow shock. J. Geophys. Res., 86, 4511–4516.Google Scholar
Greenstadt, E.W., Coroniti, F.V., Moses, S. L., et al. 1991. Weak, quasiparallel profiles of earth's bow shock – A comparison between numerical simulations and ISEE 3 observations on the far flank. Geophys. Res. Lett., 18, 2301.Google Scholar
Greenstadt, E.W., Coroniti, F.V., Moses, S. L. and Smith, E. J. 1992. Plasma wave profiles of earth's bow shock at low Mach numbers – ISEE 3 observations on the far flank. J. Geophys. Res., 97, 10841.Google Scholar
Gurnett, D. A. 1985. Plasmawaves and instabilities. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research. Geophysical Monograph Series, vol. 35. Washington DC: American Geophysical Union, pp. 207–224.
Hada, T., Oonishi, M., Lembège, B. and Savoini, P. 2003. Shock front nonstationarity of supercritical perpendicular shocks. J. Geophys. Res., 108, 1233.Google Scholar
Hamza, A. M. and Meziane, K. 2011. On turbulence in the quasi-perpendicular bow shock. Planet. Space Sci., 59, 475.Google Scholar
Helder, E.A., Vink, J., Bykov, A. M., Ohira, Y., Raymond, J. C. and Terrier, R. 2012. Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev., 173, 369.Google Scholar
Hellinger, P. and Mangeney, A. 1999. Electromagnetic ion beam instabilities: Oblique pulsations. J. Geophys. Res., 104, 4669.Google Scholar
Hellinger|P. and Trávníček, P. 2005. Magnetosheath compression: Role of characteristic compression time, alpha particle abundance, and alpha/proton relative velocity. J. Geophys. Res., 110, 4210.Google Scholar
Hellinger, P., Trčvníček|P. and Matsumoto, H. 2002. Reformation of perpendicular shocks: Hybrid simulations. Geophys. Res. Lett., 29(24), 2234.Google Scholar
Hellinger, P., Trávníček, P., Lembège, B. and Savoini, P. 2007. Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations. Geophys. Res. Lett., 34, 14109.Google Scholar
Hobara, Y., Balikhin, M., Krasnoselskikh, V., Gedalin, M. and Yamagishi, H. 2010. Statistical study of the quasi-perpendicular shock ramp widths. J. Geophys. Res., 115(A14), 11106.Google Scholar
Hoppe, M. M., Russell, C. T., Frank, L. A., Eastman, T. E. and Greenstadt, E.W. 1981. Upstream hydromagneticwaves and their association with backstreaming ion populations – ISEE 1 and 2 observations. J. Geophys. Res., 86, 4471.Google Scholar
Horbury, T. S., Cargill, P. J., Lucek, E.A., et al. 2001. Cluster magnetic field observations of the bowshock: Orientation, motion and structure. Ann. Geophys., 19, 1399.Google Scholar
Hovestadt, D., Vollmer, O., Gloeckler, G. and Fan, C.Y. 1973. Differential energy spectra of low-energy (<8.5 MeV per nucleon) heavy cosmic rays during solar quiet times. Phys. Rev. Lett., 31, 650.Google Scholar
Huba, J.D. and Wu, C. S. 1976. Effects of a magnetic field gradient on the lower hybrid drift instability. Phys. Fluids, 19, 988.Google Scholar
Hubert, D., Lacombe, C., Harvey, C. C., Moncuquet, M., Russell, C. T. and Thomsen, M. F. 1998. Nature, properties, and origin of low-frequency waves from an oblique shock to the inner magnetosheath. J. Geophys. Res., 103, 26783.Google Scholar
Hull, A. J. and Scudder, J. D. 2000. Model for the partition of temperature between electrons and ions across collisionless, fast mode shocks. J. Geophys. Res., 105, 27323.Google Scholar
Hull, A. J., Scudder, J. D., Fitzenreiter, R. J., Ogilvie, K.W., Newbury, J. A. and Russell, C. T. 2000. Electron temperature and de Hoffmann-Teller potential change across the Earth's bow shock: New results from ISEE 1.J. Geophys. Res., 105, 20957.Google Scholar
Hull, A. J., Larson, D. E., Wilber, M., et al. 2006. Large-amplitude electrostaticwaves associated with magnetic ramp substructure at Earth's bow shock. Geophys. Res. Lett., 33, 15104.Google Scholar
Ipavich, F. M., Gloeckler, G., Fan, C.Y., et al. 1979. Initial observations of low energy charged particles near the earth's bow shock on ISEE-1. Space Sci. Rev., 23, 93.Google Scholar
Isenberg, P.A. 1997. A hemispherical model of anisotropic interstellar pickup ions. J. Geophys. Res., 102, 4719.Google Scholar
Jokipii, J. R. 1971. Deceleration and acceleration of cosmic rays in the solar wind. Phys. Rev. Lett., 26, 666.Google Scholar
Jokipii, J. R. 1982. Particle drift, diffusion, and acceleration at shocks. Astrophys. J., 255, 716.Google Scholar
Jokipii, J. R. 1986. Particle acceleration at a termination shock. I – Application to the solar wind and the anomalous component. J. Geophys. Res., 91, 2929.Google Scholar
Jokipii, J. R. 1987. Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J., 313, 842.Google Scholar
Jokipii, J. R., Kota, J. and Giacalone, J. 1993. Prependicular transport in 1- and 2- dimensional shock simulations. Geophys. Res. Lett., 20, 1759.Google Scholar
Jones, F. C. and Ellison, D. C. 1991. The plasma physics of shock acceleration. Space Sci. Rev., 58, 259.Google Scholar
Kallenbach, R., Hilchenbach, M., Chalov, S.V., Le Roux, J. A. and Bamert, K. 2005. On the ‘injection problem’ at the solar wind termination shock. Astron. Astrophys., 439, 1.Google Scholar
Kan, J. R., Lyu, L. H. and Mandt, M. E. 1991. Quasi-parallel collisionless shocks. Space Sci. Rev., 57, 201.Google Scholar
Kantrowitz, A. and Petschek, H. E. 1966. MHD Characteristics and shock waves. In Kunkel, W.B. (ed.), Plasma Physics in Theory and Application. New York: McGraw Hill, p. 148.
Kennel, C. F. 1987. Critical Mach numbers in classical magnetohydrodynamics. J. Geophys. Res., 92, 13427.Google Scholar
Kennel, C. F. and Petschek, H. E. 1966. Limit on stably trapped particle fluxes. J. Geophys. Res., 71, 1.Google Scholar
Kennel, C. F. and Sagdeev, R. Z. 1967. Collisionless shock waves in high β plasmas: 1. J. Geophys. Res., 72, 3303.Google Scholar
Kennel, C. F., Edmiston, J. P. and Hada, T. 1985. A quarter century of collisionless shock research. In Stone, R. G. and Tsurutani, B. T. (eds), Collisionless Shocks in the Heliosphere: A Tutorial Review. Geophysical Monograph Series, vol. 34. Washington DC: American Geophysical Union, p. 1.
Kis, A., Scholer, M., Klecker, B., et al. 2004. Multi-spacecraft observations of diffuse ions upstream of Earth's bow shock. Geophys. Res. Lett., 312, 20801.Google Scholar
Knock, S. A., Cairns, I. H., Robinson, P. A. and Kuncic, Z. 2003. Theoretically predicted properties of type II radio emission from an interplanetary foreshock. J. Geophys. Res., 108, 1126.Google Scholar
Krall, N. A. and Trivelpiece, A.W. 1973. Principles of Plasma Physics. New York: McGraw-Hill.
Krasnoselskikh, V.V., Lembège, B., Savoini, P. and Lobzin, V.V. 2002. Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations. Phys. Plasmas, 9, 1192.Google Scholar
Krasnoselskikh, V., Balikhin, M., Walker, S. N., et al. 2013. The dynamic quasiperpendicular shock: Cluster discoveries. Space Sci. Rev., 178, 535.Google Scholar
Krauss-Varban, D. 1995. Waves associated with quasi-parallel shocks: Generation, mode conversion and implications. Adv. Space Res., 15, 271.Google Scholar
Krauss-Varban, D. and Burgess, D. 1991. Electron acceleration at nearly perpendicular collisionless shocks. II – Reflection at curved shocks. J. Geophys. Res., 96, 143.Google Scholar
Krauss-Varban, D. and Omidi, N. 1991. Structure of medium Mach number quasiparallel shocks – Upstream and downstream waves. J. Geophys. Res., 961, 17715.Google Scholar
Krauss-Varban, D. and Omidi, N. 1993. Propagation characteristics of waves upstream and downstream of quasiparallel shocks. Geophys. Res. Lett., 20, 1007.Google Scholar
Krauss-Varban, D., Burgess, D. and Wu, C. S. 1989. Electron acceleration at nearly perpendicular collisionless shocks. I – One-dimensional simulations without electron scale fluctuations. J. Geophys. Res., 94, 15089.Google Scholar
Krymskii, G. F. 1977. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk SSSR Dokl., 234, 1306.Google Scholar
Kucharek, H. and Scholer, M. 1991. Origin of diffuse superthermal ions at quasiparallel supercritical collisionless shocks. J. Geophys. Res., 962, 21195.Google Scholar
Kucharek, H. and Scholer, M. 1995. Injection and acceleration of interstellar pickup ions at the heliospheric termination shock. J. Geophys. Res., 100, 1745–1754.Google Scholar
Kucharek, H., Möbius, E., Scholer, M., Mouikis, C., Kistler, L., Horbury, T., Balogh, A., Réme, H. and Bosqued, J. 2004. On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster. Ann. Geophys., 22, 2301.Google Scholar
Kuncic, Z., Cairns, I.H. and Knock, S. A. 2004. A Quantitative model for terrestrial foreshock radio emissions: 1. Predicted properties. J. Geophys. Res., 109, 2108.Google Scholar
Kuramitsu, Y. and Krasnoselskikh, V. 2005a. Acceleration of charged particles by gyroresonant surfing at quasiparallel shocks. Astron. Astrophys., 438, 391.Google Scholar
Kuramitsu, Y. and Krasnoselskikh, V. 2005b. Gyroresonant surfing acceleration. Phys. Rev. Lett., 94(3), 031102.Google Scholar
Lacombe, C., Mangeney, A., Harvey, C. C. and Scudder, J. D. 1985. Electron plasma waves upstream of the Earth's bow shock. J. Geophys. Res., 90(A1), 73.Google Scholar
Lampe, M., Manheimer, W. M., McBride, J. B., et al. 1972. Theory and simulation of the beam cyclotron instability. Phys. Fluids, 15, 662.Google Scholar
Landau, L. D., Lifshitz, E.M. and Pitaevskii, L. P. 1984. Electrodynamics of Continuous Media, 2nd edn. Oxford: Butterworth-Heinemann.
le Roux, J. A., Webb, G. M., Florinski, V. and Zank, G. P. 2007. A focused transport approach to pickup ion shock acceleration: Implications for the termination shock. Astrophys. J., 662, 350.Google Scholar
Lee|J. K. and Birdsall, C. K. 1979. Velocity space ring-plasma instability, magnetized, Part I: Theory. Phys. Fluids, 22, 1306.Google Scholar
Lee, M. A. 1971. Self-consistent kinetic equations and the evolution of a relativistic plasma in an ambient magnetic field. Plasma Phys., 13, 1079.Google Scholar
Lee, M. A. 1982. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock. J. Geophys. Res., 87, 5063.Google Scholar
Lee, M. A. 1983. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res., 88, 6109.Google Scholar
Lee, M. A. and Ip, W.-H. 1987. Hydromagnetic wave excitation by ionised interstellar hydrogen and helium in the solar wind. J. Geophys. Res., 92, 11041.Google Scholar
Lee, M. A., Shapiro, V.D. and Sagdeev, R. Z. 1996. Pickup ion energization by shock surfing. J. Geophys. Res., 101, 4777.Google Scholar
Lee, M. A., Mewaldt, R.A. and Giacalone, J. 2012. Shock acceleration of ions in the heliosphere. Space Sci. Rev., 173, 247.Google Scholar
Lee, R. E., Chapman, S.C. and Dendy, R. O. 2004. Numerical simulations of local shock reformation and ion acceleration in supernova remnants. Astrophys. J., 604, 187.Google Scholar
Lefebvre, B., Schwartz, S. J., Fazakerley, A. F. and Décréau, P. 2007. Electron dynamics and cross-shock potential at the quasi-perpendicular Earth's bow shock. J. Geophys. Res., 112(A11), 9212.Google Scholar
Lembège, B. 2003. Full particle electromagnetic simulation of collisionless shocks. In Büchner, J., Dum, C. and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin: Springer-Verlag, p. 54.
Lembège, B. and Dawson, J. M. 1987. Selfconsistent study of a perpendicular collisionless and nonresistive shock. Phys. Fluids, 30, 1767.Google Scholar
Lembège, B. and Savoini, P. 2002. Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res., 107, 1037.Google Scholar
Lembège, B., Giacalone, J., Scholer, M., et al. 2004. Selected problems in collisionless-shock physics. Space Sci. Rev., 110, 161.Google Scholar
Lembège, B., Savoini, P., Hellinger, P. and Trávníček, P.M. 2009. Nonstationarity of a two-dimensional perpendicular shock: Competingmechanisms. J. Geophys. Res., 114, 3217.Google Scholar
Lemons, D. S. and Gary, S. P. 1978. Currentdriven instabilities in a laminar perpendicular shock. J. Geophys. Res., 83, 1625.Google Scholar
Leroy, M. M. 1983. Structure of perpendicular shocks in collisionless plasma. Phys. Fluids, 26, 2742.Google Scholar
Leroy, M. M. and Mangeney, A. 1984. A theory of energization of solar wind electrons by the earth's bow shock. Ann. Geophys., 2, 449.Google Scholar
Leroy, M. M. and Winske, D. 1983. Backstreaming ions from oblique earth bow shocks. Ann. Geophys., 1, 527.Google Scholar
Leroy, M. M., Goodrich, C. C., Winske, D., Wu, C. S. and Papadopoulos|K. 1981. Simulation of a perpendicular bow shock. Geophys. Res. Lett., 8, 1269.Google Scholar
Leroy, M. M., Winske, D., Goodrich, C. C., Wu, C. S. and Papadopoulos, K. 1982. The structure of perpendicular bow shocks. J. Geophys. Res., 87, 5081.Google Scholar
LeVeque, R. J. 1992. Numerical Methods for Conservation Laws. Basel: Birkhäuser.
Liewer, P.C., Decyk, V. K., Dawson, J. M. and Lembège, B. 1991. Numerical studies of electron dynamics in oblique quasiperpendicular collisionless shock waves. J. Geophys. Res., 96, 9455–9465.Google Scholar
Liewer, .C., Goldstein, B. E. and Omidi, N. 1993. Hybrid simulations of the effects of interstellar pickup hydrogen on the solar wind termination shock. J. Geophys. Res., 98, 15211.Google Scholar
Lin, R. P., Meng, C.-I. and Anderson, K. A. 1974. 30- to 100-keV protons upstream from the earth's bow shock. J. Geophys. Res., 79, 489.Google Scholar
Lipatov, A. S. 2002. The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas. Berlin: Springer.
Lipatov, A. S. and Zank, G. P. 1999. Pickup Ion Acceleration at Low- βp Perpendicular Shocks. Phys. Rev. Lett., 82, 3609.Google Scholar
Liu, Y. C.-M., Lee, M. A. and Kucharek, H. 2005. Aquasilinear theory of ion ‘thermalization’ and wave excitation downstream of Earth's bow shock. J. Geophys. Res., 110, 9101.Google Scholar
Livesey, W. A., Russell, C. T. and Kennel, C. F. 1984. A comparison of specularly reflected gyrating ion orbits with observed shock foot thicknesses. J. Geophys. Res., 89, 6824.Google Scholar
Lobzin, V.V., Krasnoselskikh, V.V., Bosqued, J.-M., Pinçon, J.-L., Schwartz, S. J. and Dunlop, M. 2007. Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations. Geophys. Res. Lett., 340, L05107.Google Scholar
Lowe, R. E. and Burgess, D. 2003. The properties and causes of rippling in quasiperpendicular collisionless shock fronts. Ann. Geophys., 21, 671.Google Scholar
Lucek, E.A., Constantinescu, D., Goldstein, M. L., et al. 2005. The magnetosheath. Space Sci. Rev., 118, 95.Google Scholar
Lucek, E.A., Horbury, T. S., Dandouras, I. and Rème, H. 2008. Cluster observations of the Earth's quasi-parallel bow shock. J. Geophys. Res., 113, 7.Google Scholar
Malkov, M. A. 1998. Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation. Phys. Rev. E, 58, 4911.Google Scholar
Malkov, M. A. and Voelk, H. J. 1995. Theory of ion injection at shocks. Astron. Astrophys., 300, 605.Google Scholar
Mandt, M. E. and Kan, J. R. 1990. Dispersive and viscous scale lengths in the two-stage ion heating at quasi-parallel collisionless shocks. J. Geophys. Res., 95, 6353.Google Scholar
Matsukiyo, S. and Scholer, M. 2003. Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J. Geophys. Res., 108, 1459.Google Scholar
Matsukiyo, S. and Scholer, M. 2006a. On microinstabilities in the foot of high Mach number perpendicular shocks. J. Geophys. Res., 111, 6104.Google Scholar
Matsukiyo, S. and Scholer, M. 2006b. On reformation of quasi-perpendicular collisionless shocks. Adv. Space Res., 38, 57.Google Scholar
Matsukiyo, S. and Scholer, M. 2011. Microstructure of the heliospheric termination shock: Full particle electrodynamic simulations. J. Geophys. Res., 116, 8106.Google Scholar
Mazelle, C., Lembège, B., Morgenthaler, A., et al. 2010. Self-reformation of the quasiperpendicular shock: CLUSTER observations. Twelfth International Solar Wind Conference, 1216, 471.
McDonald, F.B., Teegarden, B. J., Trainor, J. H. and Webber, W. R. 1974. The anomalous abundance of cosmic-ray nitrogen and oxygen nuclei at low energies. Astrophys. J. Lett., 187, L105.Google Scholar
McKean, M. E., Winske, D. and Gary, S. P. 1994. Two-dimensional simulations of ion anisotropy instabilities in the magnetosheath. J. Geophys. Res., 99, 11141.Google Scholar
McKean, M. E., Omidi, N. and Krauss-Varban, D. 1995. Wave and ion evolution downstream of quasi-perpendicular bow shocks. J. Geophys. Res., 100, 3427.Google Scholar
McKenzie, J. F. and Völk, H. J. 1982. Nonlinear theory of cosmic ray shocks including self-generated Alfven waves. Astron. Astrophys., 116, 191.Google Scholar
Mellott, M. M. 1985. Subcritical collisionless shock waves. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research. Geophysical Monograph Series, vol. 35. Washington DC: American Geophysical Union, p. 131.
Mellott, M. M. and Greenstadt, E.W. 1984. The structure of oblique subcritical bow shocks – ISEE 1 and 2 observations. J. Geophys. Res., 89, 2151.Google Scholar
Mellott, M. M. and Greenstadt, E.W. 1988. Plasma waves in the range of the lower hybrid frequency – ISEE 1 and 2 observations at the earth's bow shock. J. Geophys. Res., 93, 9695–9708.Google Scholar
Melrose, D.B. 1986. Instabilities in Space and Laboratory Plasmas. Cambridge: Cambridge University Press.
Moiseev, S. S. and Sagdeev, R. Z. 1963. Collisionless shock waves in a plasma in a weak magnetic field. J. Nucl. Energy, 5, 43.
Moullard, O., Burgess, D., Horbury, T. S. and Lucek, E.A. 2006. Ripples observed on the surface of the Earth's quasiperpendicular bow shock. J. Geophys. Res., 111(A10), 9113.Google Scholar
Muschietti, L. and Lembège, B. 2006. Electron cyclotron microinstability in the foot of a perpendicular shock:Aself-consistent PIC simulation. Adv. Space Res., 37, 483.Google Scholar
Newbury, J. A., Russell, C. T. and Gedalin, M. 1998. The ramp widths of high-Machnumber, quasi-perpendicular collisionless shocks. J. Geophys. Res., 103, 29581.Google Scholar
Ohsawa, Y. 1985. Strong ion acceleration by a collisionless magnetosonic shock wave propagating perpendicularly to a magnetic field. Phys. Fluids, 28, 2130.Google Scholar
Oka, M., Terasawa, T., Saito, Y. and Mukai, T. 2005. Field-aligned beam observations at the quasi-perpendicular bow shock: Generation and shock angle dependence. J. Geophys. Res., 110, A05101.Google Scholar
Omidi, N. and Winske, D. 1992. Kinetic structure of slow shocks – Effects of the electromagnetic ion/ion cyclotron instability. J. Geophys. Res., 97, 14801.Google Scholar
Omidi, N., Quest, K.B. and Winske, D. 1990. Low Mach number parallel and quasi-parallel shocks. J. Geophys. Res., 95, 20717.Google Scholar
Omidi, N., Blanco-Cano, X. and Russell, C. T. 2005. Macrostructure of collisionless bow shocks: 1. Scale lengths. J. Geophys. Res., 110, 12212.Google Scholar
Onsager, T. G., Holzworth, R.H., Koons, H. C., Bauer, O.H. and Gurnett, D. A. 1989. High-frequency electrostatic waves near earth's bow shock. J. Geophys. Res., 94, 13397–13408.Google Scholar
Onsager, T. G., Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1990. Survey of coherent ion reflection at the quasi-parallel bow shock. J. Geophys. Res., 95, 2261.Google Scholar
Onsager, T. G., Winske, D. and Thomsen, M. F. 1991. Interaction of a finite-length ion beam with a background plasma – Reflected ions at the quasi-parallel bow shock. J. Geophys. Res., 96, 1775.Google Scholar
Papadopoulos, K. 1985. Microinstabilities and anomalous transport. In Stone, R. G. and Tsurutani, B. T. (eds), Collisionless Shocks in the Heliosphere: A Tutorial Review. Geophysical Monograph Series, vol. 34. Washington DC: American Geophysical Union, p. 59.
Papadopoulos, K. 1988. Electron heating in superhigh Mach number shocks. 144, 535.Google Scholar
Papadopoulos, K., Davidson, R. C., Dawson, J. M., et al. 1971. Heating of counterstreaming ion beams in an external magnetic field. Phys. Fluids, 14, 849.Google Scholar
Parker, E.N. 1961. A quasi-linear model of plasma shock structure in a longitudinal magnetic field. J. Nucl. Energy, 2, 146.Google Scholar
Parker, E.N. 1965. The passage of energetic charged particles through interplanetary space. Planet. Space Sci., 13, 9.Google Scholar
Paschmann, G., Sckopke, N., Asbridge, J.R., Bame, S. J. and Gosling, J. T. 1980. Energization of solar wind ions by reflection from the earth's bow shock. J. Geophys. Res., 85, 4689.Google Scholar
Paschmann, G., Sckopke, N., Papamastorakis, I., Asbridge, J.R., Bame, S. J. and Gosling|J. T. 1981. Characteristics of reflected and diffuse ions upstream from the earth's bow shock. J. Geophys. Res., 86, 4355.Google Scholar
Pesses, M. E. 1981. On the Acceleration of Ions by Interplanetary Shock Waves. 1: Single Encounter Considerations. Tech. rept. NASA-TM-83913. NASA STI Program.
Pesses, M. E., Eichler, D. and Jokipii, J. R. 1981. Cosmic ray drift, shock wave acceleration, and the anomalous component of cosmic rays. Astrophys. J. Lett., 246, L85.Google Scholar
Pesses, M. E., Decker, R. B. and Armstrong, T. P. 1982. The acceleration of charged particles in interplanetary shock waves. Space Sci. Rev., 32, 185.Google Scholar
Pizzo, V. 1978. A three-dimensional model of corotating streams in the solar wind. I – Theoretical foundations. J. Geophys. Res., 83, 5563.Google Scholar
Pritchett, P. L. 2003. Particle-in-cell simulation of plasmas – A tutorial. In Büchner, J., Dum, C., and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin: Springer Verlag, p. 1.
Reames, D.V. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 90, 413.Google Scholar
Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J.W. and Lazarus, A. J. 2008. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature, 454, 63>/sp>.Google Scholar
Riquelme, M. A. and Spitkovsky, A. 2009. Nonlinear study of Bell's cosmic ray current-driven instability. Astrophys. J., 694,626.Google Scholar
Riquelme, M. A. and Spitkovsky, A. 2011. Electron injection by whistler waves in non-relativistic shocks. Astrophys. J., 733, 63.Google Scholar
Rodriguez, P. and Gurnett, D. A. 1975. Electrostatic and electromagnetic turbulence associated with the earth's bow shock. J. Geophys. Res., 80, 19–31.Google Scholar
Rodriguez, P. and Gurnett, D. A. 1976. Correlation of bow shock plasma wave turbulence with solar wind parameters. J. Geophys. Res., 81, 2871–2882.Google Scholar
Russell, C. T., Smith, E. J., Tsurutani, B. T., Gosling, J. T. and Bame, S. J. 1983. Multiple spacecraft observations of interplanetary shocks: Characteristics of the upstream ULF turbulence. In Neugebauer, M. (ed.), Solar Wind Five. NASA Conference Publication, vol. CP-2280. NASA, Scientific and Technical Information Branch, p. 385.
Sagdeev, R. Z. 1966. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys., 4, 23.Google Scholar
Sarris, E. T., Krimigis, S. M. and Armstrong, T. P. 1976. Observations of a high-energy ion shock spike in interplanetary space. Geophys. Res. Lett., 3, 133.Google Scholar
Savoini, P. and Lembège, B. 2001. Two-dimensional simulations of a curved shock: Self-consistent formation of the electron foreshock. J. Geophys. Res., 106, 12975.Google Scholar
Savoini, P., Lembége, B. and Stienlet, J. 2010. Origin of backstreaming electrons within the quasi-perpendicular foreshock region: Two-dimensional self-consistent PIC simulation. J. Geophys. Res., 115, 9104.Google Scholar
Scholer, M. 1990. Diffuse ions at a quasiparallel collisionless shock – Simulations. Geophys. Res. Lett., 17, 1821.Google Scholar
Scholer, M. 1993. Upstream waves, shocklets, short large-amplitude magnetic structures and the cyclic behavior of oblique quasi-parallel collisionless shocks. J. Geophys. Res., 98, 47.Google Scholar
Scholer, M. and Burgess, D. 1992. The role of upstream waves in supercritical quasiparallel shock re-formation. J. Geophys. Res., 97, 8319.Google Scholar
Scholer, M. and Burgess, D. 2007. Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys. Plasmas, 14(7), 072103.Google Scholar
Scholer, M. and Fujimoto, M. 1993. Low-Mach number quasi-parallel shocks- Upstream waves. J. Geophys. Res., 98, 15275.Google Scholar
Scholer, M. and Matsukiyo, S. 2004. Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann. Geophys., 22, 2345.Google Scholar
Scholer, M. and Terasawa, T. 1990. Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys. Res. Lett., 17, 119.Google Scholar
Scholer, M., Hovestadt, D., Ipavich, F.M. and Gloeckler, G. 1983. Acceleration of low-energy protons and alpha particles at interplanetary shock waves. J. Geophys. Res., 88, 1977.Google Scholar
Scholer, M., Fujimoto, M. and Kucharek, H. 1993. Two-dimensional simulations of supercritical quasi-parallel shocks: upstream waves, downstream waves, and shock re-formation. J. Geophys. Res., 98, 18971.Google Scholar
Scholer, M., Kucharek, H. and Jayanti, V. 1997. Waves and turbulence in high Mach number nearly parallel collisionless shocks. J. Geophys. Res., 102, 9821.Google Scholar
Scholer, M., Kucharek, H. and Trattner, K.-H. 1999a. Injection and acceleration of H+ and He2C at Earth's bow shock. Ann. Geophys., 17, 583.Google Scholar
Scholer, M., Mann, G., Chalov, S., Desai, M. I., Fisk, L. A., Jokipii, J. R., Kallenbach, R., Keppler, E., Kóta, J., Kunow, H., Lee, M. A., Sanderson, T. R. and Simnett, G. M. 1999b. Origin, injection, and acceleration of CIR particles: Theory report of working group 7. Space Sci. Rev., 89, 369– 399.Google Scholar
Scholer, M., Kucharek, H., Krasnosselskikh, V.V. and Trattner, K.-H. 2000. Injection and acceleration of ions at collisionless shocks: Kinetic simulations. In Mewaldt, R. A., Jokipii, J. R., Lee, M. A., Möbius, E. and Zurbuchen, T.H. (eds), Acceleration and Transport of Energetic Particles Observed in the Heliosphere. American Institute of Physics Conference Series, vol. 528, p. 250.
Scholer, M., Shinohara, I. and Matsukiyo, S. 2003a. Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J. Geophys. Res., 108, 1014.Google Scholar
Scholer, M., Kucharek, H. and Shinohara, I. 2003b. Short large-amplitude magnetic structures and whistler wave precursors in a full-particle quasi-parallel shock simulation. J. Geophys. Res., 108, 1273.Google Scholar
Schure, K. M., Bell, A. R., O'C Drury, L. and Bykov, A.M. 2012. Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev., 173, 491.Google Scholar
Schwartz, S. J. 1985. Solar wind and the Earth's bow shock. In Priest, E. R. (ed.), Solar System Magnetic Fields. Dordrecht: Reidel, p. 190.
Schwartz, S. J. 1998. Shock and discontinuity normals, Mach numbers, and related parameters. ISSI Scientific Reports Series, 1, 249.Google Scholar
Schwartz, S. J. and Burgess, D. 1991. Quasiparallel shocks – A patchwork of threedimensional structures. Geophys. Res. Lett., 18, 373.
Schwartz, S. J., Thomsen, M. F. and Gosling, J. T. 1983. Ions upstream of the earth's bow shock – A theoretical comparison of alternative source populations. J. Geophys. Res., 88, 2039.Google Scholar
Schwartz, S. J., Thomsen, M. F., Bame, S. J. and Stansberry, J. 1988. Electron heating and the potential jump across fast mode shocks. J. Geophys. Res., 93, 12923.Google Scholar
Schwartz, S. J., Burgess, D., Wilkinson, W. P.,Kessel, R. L., Dunlop|M. and Luehr, H. 1992. Observations of short largeamplitude magnetic structures at a quasiparallel shock. J. Geophys. Res., 97, 4209.Google Scholar
Schwartz, S. J., Burgess, D. and Moses, J. J. 1996. Low-frequency waves in the Earth's magnetosheath: present status. Ann. Geophys., 14, 1134.Google Scholar
Sckopke, N., Paschmann, G., Bame, S. J., Gosling, J. T. and Russell, C. T. 1983. Evolution of ion distributions across the nearly perpendicular bow shock – Specularly and non-specularly reflected-gyrating ions. J. Geophys. Res., 88, 6121.Google Scholar
Sckopke, N., Paschmann, G., Brinca, A. L., Carlson, C.W. and Luehr, H. 1990. Ion thermalization in quasi-perpendicular shocks involving reflected ions. J. Geophys. Res., 95, 6337.Google Scholar
Scudder|J. D. 1995. A review of the physics of electron heating at collisionless shocks. Adv. Space Res., 15, 181.
Scudder, J. D., Aggson, T. L., Mangeney, A., Lacombe, C. and Harvey, C. C. 1986a. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. I – Rankine-Hugoniot geometry, currents, and stationarity. J. Geophys. Res., 91, 11019.Google Scholar
Scudder, J. D., Aggson, T. L., Mangeney, A., Lacombe, C. and Harvey, C. C. 1986b. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. II – Dissipative fluid electrodynamics. J. Geophys. Res., 91, 11053.Google Scholar
Scudder, J. D., Mangeney, A., Lacombe, C., Harvey, C. C. and Wu, C. S. 1986c. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. III – Vlasov electrodynamics. J. Geophys. Res., 91, 11075.Google Scholar
Sentman, D. D., Edmiston, J. P. and Frank, L. A. 1981. Instabilities of low frequency, parallel propagating electromagnetic waves in the earth's foreshock region. J. Geophys. Res., 86, 7487.Google Scholar
Shimada, N and Hoshino, M. 2003. The dynamics of electron-ion coupling in the shock transition region. Phys. Plasmas, 10(4), 1113.Google Scholar
Shimada, N. and Hoshino, M. 2004. Electron heating and acceleration in the shock transition region: Background plasma parameter dependence. Phys. Plasmas, 11, 1840.Google Scholar
Sonnerup, B.U.Ö. 1969. Acceleration of particles reflected at a shock front. J. Geophys. Res., 74, 1301.Google Scholar
Steenberg, C.D. and Moraal, H. 1996. An acceleration/modulation model for anomalous cosmic-ray hydrogen in the heliosphere. Astrophys. J., 463, 776.Google Scholar
Steenberg, C.D. and Moraal, H. 1999. Form of the anomalous cosmic ray spectrum at the solar wind termination shock. J. Geophys. Res., 104, 24879>.Google Scholar
Stix, T. H. 1992. Waves in Plasmas. College Park, MD: American Institute of Physics.
Stone, E.C., Cummings, A.C., McDonald, F. B., Heikkila, B. C., Lal, N. and Webber, W. R. 2005. Voyager 1 explores the termination shock region and the heliosheath beyond. Science, 309, 2017.Google Scholar
Stone, E.C., Cummings, A.C., McDonald, F. B., Heikkila, B. C., Lal, N. and Webber, W. R. 2008. An asymmetric solar wind termination shock. Nature, 454, 71.Google Scholar
Stringer, T. E. 1963. Low-frequency waves in an unbounded plasma. J. Nucl. Energy, 5, 89.Google Scholar
Sugiyama, T. 2011. Time sequence of energetic particle spectra in quasiparallel shocks in large simulation systems. Phys. Plasmas, 18(2), 022302.Google Scholar
Sugiyama|T. and Terasawa|T. 1999. A scatter-free ion acceleration process in the parallel shock. Adv. Space Res., 24, 73.
Sugiyama, T., Fujimoto, M. and Mukai, T. 2001. Quick ion injection and acceleration at quasi-parallel shocks. J. Geophys. Res., 106, 21657.Google Scholar
Tanaka, M., Goodrich, C. C., Winske, D. and Papadopoulos, K. 1983. A source of the backstreaming ion beams in the foreshock region. J. Geophys. Res., 88, 3046.Google Scholar
Terasawa, T. 1979. Energy spectrum and pitch angle distribution of particles reflected by MHD shock waves of fast mode. Planet. Space Sci., 27, 193.Google Scholar
Thomas, V.A. 1989. Dimensionality effects in hybrid simulations of high Mach number collisionless perpendicular shocks. J. Geophys. Res., 94, 12009.Google Scholar
Thomas, V.A., Winske, D. and Omidi, N. 1990. Re-forming supercritical quasiparallel shocks. I – One- and two-dimensional simulations. J. Geophys. Res., 951, 18809.Google Scholar
Thomsen, M. F., Gary, S. P., Feldman,W.C., Cole, T. E. and Barr, H. C. 1983. Stability of electron distributions within the earth's bow shock. J. Geophys. Res., 88, 3035–3045.Google Scholar
Thomsen, M. F., Gosling, J. T., Bame, S. J. and Mellott, M. M. 1985. Ion and electron heating at collisionless shocks near the critical Mach number. J. Geophys. Res., 90, 137.Google Scholar
Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1990a. Magnetic pulsations at the quasi-parallel shock. J. Geophys. Res., 95, 957.Google Scholar
Thomsen, M. F., Gosling, J. T., Bame, S. J., Onsager, T. G. and Russell, C. T. 1990b. Two-state ion heating at quasi-parallel shocks. J. Geophys. Res., 95, 6363.Google Scholar
Thomsen, M. F., Gosling, J. T., Onsager, T. G. and Russell, C. T. 1993. Ion and electron heating at the low-Mach-number, quasi-parallel bow shock. J. Geophys. Res., 98, 3875.Google Scholar
Tidman, D.A. and Krall, N. A. 1971. Shock Waves in Collisionless Plasmas. New York: Wiley-Interscience.
Tokar, R. L., Gurnett, D. A. and Feldman, W. C. 1984. Whistler mode turbulence generated by electron beams in earth's bowshock. J. Geophys. Res., 89, 105–114.Google Scholar
Trattner, K. J. and Scholer, M. 1991. Diffuse alpha particles upstream of simulated quasi-parallel supercritical collisionless shocks. Geophys. Res. Lett., 18, 1817.Google Scholar
Trattner, K. J., Möbius, E., Scholer, M., Klecker, B., Hilchenbach, M. and Luehr, H. 1994. Statistical analysis of diffuse ion events upstream of the Earth's bow shock. J. Geophys. Res., 99, 13389.Google Scholar
Umeda, T., Yamao, M. and Yamazaki, R. 2008. Two-dimensional full particle simulation of a perpendicular collisionless shock with a shock-rest-frame model. Astrophys. J. Lett., 681, L85.Google Scholar
Umeda, T., Kidani, Y., Yamao, M., Matsukiyo, S. and Yamazaki, R. 2010. On the reformation at quasi- and exactly perpendicular shocks: Full particle-in-cell simulations. J. Geophys. Res., 115, 10250.Google Scholar
Umeda, T., Kidani, Y., Matsukiyo, S. and Yamazaki, R. 2012. Modified two-stream instability at perpendicular collisionless shocks: Full particle simulations. J. Geophys. Res., 117, 3206.Google Scholar
Van Hollebeke, M.A. I., McDonald, F.B., Trainor, J.H. and von Rosenvinge, T. T. 1978. The radial variation of corotating energetic particle streams in the inner and outer solar system. J. Geophys. Res., 83, 4723.Google Scholar
Veltri, P., Mangeney, A. and Scudder, J. D. 1990. Electron heating in quasiperpendicular shocks – A Monte Carlo simulation. J. Geophys. Res., 95(Sept.), 14939–14959.Google Scholar
Walker, S., Alleyne, H., Balikhin, M., André, M. and Horbury, T. 2004. Electric field scales at quasi-perpendicular shocks. Ann. Geophys., 22, 2291–2300.Google Scholar
Webb, G. M., Axford, W. I. and Terasawa, T. 1983.On the drift mechanism for energetic charged particles at shocks. Astrophys. J., 270, 537.Google Scholar
Webb, G. M., Axford, W. I. and Forman, M. A. 1985. Cosmic-ray acceleration at stellar wind terminal shocks. Astrophys. J., 298, 684.Google Scholar
Winske, D. 1985. Microtheory of collisionless shock current layers. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph Series, vol. 35. Washington DC: American Geophysical Union, p. 225.
Winske, D. and Leroy, M. M. 1984. Diffuse ions produced by electromagnetic ion beam instabilities. J. Geophys. Res., 89, 2673.Google Scholar
Winske, D. and Quest, K. B. 1988. Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks. J. Geophys. Res., 93, 9681.Google Scholar
Winske, D., Giacalone, J., Thomsen, M. F. and Mellott, M. M. 1987. A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks. J. Geophys. Res., 92, 4411.Google Scholar
Winske, D., Thomas, V.A., Omidi, N. and Quest, K. B. 1990. Re-forming supercritical quasi-parallel shocks. II – Mechanism for wave generation and front re-formation. J. Geophys. Res., 95, 18821.Google Scholar
Winske, D., Yin, L., Omidi, N., et al. 2003. Hybrid simulation codes: Past, present and future – A Tutorial. In Büchner, J., Dum, C., and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin: Springer Verlag, p. 136.
Wong, H.V. 1970. Electrostatic electron–ion streaming instability. Phys. Fluids, 13, 757.Google Scholar
Woods, L.C. 1969. On the structure of collisionless magneto-plasma shock waves at super-critical Alfvén-Mach numbers. J. Plasma Phys., 3, 435.Google Scholar
Wu, C. S. 1984. A fast Fermi process – Energetic electrons accelerated by a nearly perpendicular bow shock. J. Geophys. Res., 89, 8857.Google Scholar
Wu, C. S., Winske, D., Tanaka, M., et al. 1984. Microinstabilities associated with a high Mach number, perpendicular bow shock. Space Sci. Rev., 37, 63.Google Scholar
Wu, P., Winske, D., Gary, S. P., Schwadron, N. A. and Lee, M. A. 2009. Energy dissipation and ion heating at the heliospheric termination shock. J. Geophys. Res., 114, 8103.Google Scholar
Yuan, X., Cairns, I.H. and Robinson, P. A. 2007. Simulation of energetic electron bursts upstream of re-forming shocks. Astrophys. J., 671, 439.Google Scholar
Zank, G. P., Pauls, H. L., Cairns, I.H. and Webb, G. M. 1996. Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks. J. Geophys. Res., 101, 457.Google Scholar
Zank, G. P., Heerikhuisen, J., Pogorelov, N.V., Burrows, R. and McComas, D. 2010. Microstructure of the heliospheric termination shock: Implications for energetic neutral atom observations. Astrophys. J., 708, 1092.Google Scholar
Zhou, Y. M., Wong, H. K. and Wu, C. S. 1983. Lower hybrid drift instability with temperature gradient in a perpendicular shock wave. J. Geophys. Res., 88, 3026.Google Scholar
Zilbersher, D. and Gedalin, M. 1997. Pickup ion dynamics at the structured quasiperpendicular shock. Planet. Space Sci., 45, 693.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David Burgess, Queen Mary University of London, Manfred Scholer, Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
  • Book: Collisionless Shocks in Space Plasmas
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139044097.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David Burgess, Queen Mary University of London, Manfred Scholer, Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
  • Book: Collisionless Shocks in Space Plasmas
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139044097.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David Burgess, Queen Mary University of London, Manfred Scholer, Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
  • Book: Collisionless Shocks in Space Plasmas
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139044097.012
Available formats
×