Akimoto, K., Papadopoulos, K. and Winske, D. 1985a. Ion-acoustic instabilities driven by an ion velocity ring. J. Plasma Phys., 34, 467.
Akimoto, K., Papadopoulos, K. and Winske, D. 1985b. Lower-hybrid instabilities driven by an ion velocity ring. J. Plasma Phys., 34, 445.
Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M. and André, M. 2006. Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock. J. Geophys. Res., 111(A10), 12208.
Amano, T. and Hoshino, M. 2007. Electron injection at high Mach number quasi-perpendicular shocks: surfing and drift acceleration. Astrophys. J., 661, 190.
Amano, T. and Hoshino, M. 2012. Recent Progress in the theory of electron injection in collisionless shocks. Leubner, M. P. and Vörös, Z. (eds), Multiscale Dynamical Processes in Space and Astrophysical Plasmas. Berlin: Springer, p. 143.
Anderson, J. E. 1963. Magnetohydrodynamic Shock Waves. Cambridge, MA: MIT Press.
Anderson, K. A., Lin, R. P., Martel, F., Lin, C. S., Parks, G.K. and Réme, H. 1979. Thin sheets of energetic electrons upstream from the Earth's bow shock. Geophys. Res. Lett., 6, 401.
Axford, W. I. 1981a. Acceleration of cosmic rays by shock waves. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 12, p. 155.
Axford, W. I. 1981b. Late paper: Acceleration of cosmic rays by shock waves. In S. A., Colgate (ed.), ESA Special Publication. ESA Special Publication, vol. 161, p. 125.
Axford, W. I., Leer, E. and Skadron, G. 1977. The acceleration of cosmic rays by shock waves. In International Cosmic Ray Conference. InternationalCosmicRay Conference, vol. 11, p. 132.
Axford, W. I., Leer, E. and McKenzie, J. F. 1982. The structure of cosmic ray shocks. Astron. Astrophys., 111, 317
Bale, S.D., Reiner, M. J., Bougeret, J.-L., et al. 1999. The source region of an interplanetary type II radio burst. Geophys. Res. Lett., 26, 1573.
Bale, S.D., Mozer, F. S. and Horbury, T. S. 2003. Density-transition scale at quasiperpendicular collisionless shocks. Phys. Rev. Lett., 91(26), 265004.
Bale, S.D., Balikhin, M. A., Horbury, T. S., et al. 2005. Quasi-perpendicular shock structure and processes. Space Sci. Rev., 118, 161.
Balikhin, M., Krasnosselskikh, V. and Gedalin, M. 1995. The scales in quasiperpendicular shocks. Adv. Space Res., 15, 247–260.
Balikhin, M., Walker, S., Treumann, R., et al. 2005. Ion sound wave packets at the quasiperpendicular shock front. Geophys. Res. Lett., 32, 24106.
Baring, M. G., Ellison, D. C. and Jones, F. C. 1993. The injection and acceleration of particles in oblique shocks–A unified Monte Carlo description. Astrophys. J., 409, 327.
Barnes, C.W. and Simpson, J. A. 1976. Evidence for interplanetary acceleration of nucleons in corotating interaction regions. Astrophys. J. Lett., 210, L91.
Bell, A. R. 1978a. The acceleration of cosmic rays in shock fronts. I. MNRAS, 182, 147.
Bell, A. R. 1978b. The acceleration of cosmic rays in shock fronts. II. MNRAS, 182, 443.
Bell, A. R. 2004. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS, 353, 550.
Bellan, P. M. 2006. Fundamentals of Plasma Physics. Cambridge: Cambridge University Press.
Birdsall, C. K. and Langdon, A. B. 2004. Plasma Physics via Computer Simulation. Abingdon: Taylor and Francis Group.
Biskamp, D. 1973. Collisionless shock waves in plasmas. Nucl. Fusion, 13(5), 719.
Biskamp, D. and Chodura, R. 1973. Collisionless dissipation of a cross-field electric current. Phys. Fluids, 16, 893–901.
Biskamp, D and Welter, H. 1972a. Numerical studies of magnetosonic collisionless shock-waves. Nucl. Fusion</jt., 12(6), 663.
Biskamp, D. and Welter, H. 1972b. Structure of the earth's bow shock. J. Geophys. Res., 77, 6052.
Blanco-Cano, X., Omidi, N. and Russell, C. T. 2006. Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. J. Geophys. Res., 111(A10), 10205.
Blandford, R. and Eichler, D. 1987. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep., 154, 1.
Blandford, R. D. and Ostriker, J. P. 1978. Particle acceleration by astrophysical shocks. Astrophys. J. Lett., 221, L29.
Bonifazi, C. and Moreno, G. 1981. Reflected and diffuse ions backstreaming from the earth's bow shock. I Basic properties. J. Geophys. Res., 86, 4397.
Boyd, T. J. M. and Sanderson, J. J. 2003. The Physics of Plasmas. Cambridge: Cambridge University Press.
Buneman, O. 1958. Instability, turbulence, and conductivity in current-carrying plasma. Phys. Rev. Lett., 1, 8.
Burgess, D. 1987a. Shock drift acceleration at lowenergies. J. Geophys. Res., 92, 1119.
Burgess, D. 1987b. Simulations of backstreaming ion beams formed at oblique shocks by direct reflection. Ann. Geophys., 5, 133.
Burgess, D. 1989. Cyclical behavior at quasiparallel collisionless shocks. Geophys. Res. Lett., 16, 345.
Burgess, D. 1995. Foreshock-shock interaction at collisionless quasi-parallel shocks. Adv. Space Res., 15, 159.
Burgess, D. 2006. Simulations of electron acceleration at collisionless shocks: The effects of surface fluctuations. Astrophys. J., 653, 316.
Burgess, D. and Scholer, M. 2007. Shock front instability associated with reflected ions at the perpendicular shock. Phys. Plasmas, 14(1), 012108.
Burgess, D., Wilkinson, W. P. and Schwartz, S. J. 1989. Ion distributions and thermalization at perpendicular and quasi-perpendicular supercritical collisionless shocks. J. Geophys. Res., 94, 8783.
Burlaga, L. F., Ness, N. F., Acuña, M.H., et al. 2005. Crossing the termination shock into the heliosheath: Magnetic fields. Science, 309, 2027.
Burlaga, L. F., Ness, N. F., Acuña, M.H., Lepping, R. P., Connerney, J. E. P. and Richardson, J. D. 2008. Magnetic fields at the solar wind termination shock. Nature, 454, 75.
Burrows, R.H., Zank, G. P., Webb, G. M., Burlaga, L. F. and Ness, N. F. 2010. Pickup ion dynamics at the heliospheric termination shock observed by Voyager 2. Astrophys. J., 715, 1109.
Cairns, I.H. and Robinson, P. A. 1999. Strong evidence for stochastic growth of Langmuir-likewaves in Earth's foreshock. Phys. Rev. Lett., 82, 3066.
Cairns, I.H., Robinson, P. A. and Zank, G. P. 2000. Progress on coronal, interplanetary, foreshock, and outer heliospheric radio emissions. Publ. Astron. Soc. Aust., 17, 22.
Cargill, P. J. and Papadopoulos, K. 1988. A mechanism for strong shock electron heating in supernova remnants. Astrophys. J. Lett., 329, L29.
Chalov, S.V. 2012. Influence of large-scale variations in the magnetic field direction on the acceleration of interstellar pickup protons at the heliospheric termination shock. Astron. Lett., 38, 191.
Chapman, S. and Cowling, T. G. 1970. The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3rd edn. Cambridge: Cambridge University Press.
Cipolla, Jr., J.W., Silevitch, M. B. and Golden, K. I. 1977. Ion cyclotron beam mode-whistler mode plasma instabilities and their role in parallel shock wave structures. Phys. Fluids, 20, 282.
Comişel, H., Scholer, M., Soucek, J. and Matsukiyo, S. 2011. Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations. Ann. Geophys., 29, 263.
Coroniti, F.V. 1970. Dissipation discontinuities in hydromagnetic shock waves. J. Plasma Phys., 4, 265.
Courant, R., Friedrichs, K. and Lewy, H. 1928. Ǘber die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 100, 32.
Davidson, R. C. 1972. Methods in Nonlinear Plasma Theory. New York: Academic Press.
Davidson, R. C., Gladd, N. T., Wu, C. S. and Huba, J.D. 1977. Effects of finite plasma beta on the lower-hybrid-drift instability. Phys. Fluids, 20, 301.
Dawson, J. 1962. One-dimensional plasma model. Phys. Fluids, 5, 445.
de Hoffmann, F. and Teller, E. 1950. Magneto-hydrodynamic shocks. Phys. Rev., 80, 692.
Decker, R. B. 1983. Formation of shockspike events at quasi-perpendicular shocks. J. Geophys. Res., 88, 9959.
Decker, R. B., Krimigis, S. M., Roelof, E.C., et al. 2008. Mediation of the solar wind termination shock by non-thermal ions. Nature, 454, 67.
Drake, J. F., Opher, M., Swisdak, M. and Chamoun, J. N. 2010. A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J., 709, 963.
Drury, L. O. 1983. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys., 46, 973.
Drury, L. O. 1995. Particle acceleration in shocks. 233, 251.
Drury, L. O. 2004. Current status of shock acceleration theory. J. Korean Astron. Soc., 37, 393.
Drury, L. O. and Voelk, J.H. 1981. Hydromagnetic shock structure in the presence of cosmic rays. Astrophys. J., 248, 344.
Dubouloz, N. and Scholer, M. 1995. Twodimensional simulations of magnetic pulsations upstream of the Earth's bowshock. J. Geophys. Res., 100, 9461.
Earl, J.A. 1974. The diffusive idealization of charged-particle transport in random magnetic fields. Astrophys. J., 193, 231.
Eastwood, J. P., Balogh, A., Lucek, E.A., Mazelle, C. and Dandouras, I. 2005a. Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 1. Statistical properties. J. Geophys. Res., 110, 11219.
Eastwood, J. P., Lucek, E.A., Mazelle, C., et al. 2005b. The foreshock. Space Sci. Rev., 118, 41.
Edmiston, J. P., Kennel, C. F. and Eichler, D. 1982. Escape of heated ions upstream of quasi-parallel shocks. Geophys. Res. Lett., 9, 531.
Eichler, D. 1984. On the theory of cosmicray- mediated shocks with variable compression ratio. Astrophys. J., 277, 429.
Ellison, D. C. 1981. Monte Carlo simulation of charged particles upstream of the earth's bow shock. Geophys. Res. Lett., 8, 991.
Ellison, D. C. 1985. Shock acceleration of diffuse ions at the earth's bow shock Acceleration efficiency and A/Z enhancement. J. Geophys. Res., 90, 29.
Ellison, D. C. and Eichler, D. 1984. Monte Carlo shock-like solutions to the Boltzmann equation with collective scattering. Astrophys. J., 286, 691.
Ellison, D. C. and Moebius, E. 1987. Diffusive shock acceleration–Comparison of a unified shock model to bow shock observations. Astrophys. J., 318, 474.
Ellison, D. C., Moebius, E. and Paschmann, G. 1990. Particle injection and acceleration at earth's bow shock–Comparison of upstream and downstream events. Astrophys. J., 352, 376.
Ellison, D. C., Giacalone, J., Burgess, D. and Schwartz, S. J. 1993. Simulations of particle acceleration in parallel shocks: Direct comparison between Monte Carlo and one-dimensional hybrid codes. J.Geophys. Res., 982, 21085.
Ellison, D. C., Baring, M. G. and Jones, F. C. 1996. Nonlinear Particle Acceleration in Oblique Shocks. Astrophys. J., 473, 1029.
Fahr, H. J., Kausch, T. and Scherer, H. 2000. A 5-fluid hydrodynamic approach to model the solar system-interstellar medium interaction. Astron. Astrophys., 357, 268.
Fairfield, D.H. 1969. Bow shock associated waves observed in the far upstream interplanetary medium.J. Geophys. Res., 74, 3541.
Feldman, W. C., Bame, S. J., Gary, S. P., et al. 1982. Electron heating within the Earth's bow shock. Phys. Rev. Lett., 49(3), 199.
Feldman, W. C., Anderson, R. C., Bame, S. J., et al. 1983. Electron velocity distributions near the earth's bow shock. J. Geophys. Res., 88, 96.
Filbert, P. C. and Kellogg, P. J. 1979. Electrostatic noise at the plasma frequency beyond the earth's bow shock. J. Geophys. Res., 84, 1369.
Fisk, L.A. and Gloeckler, G. 2006. The common spectrum for accelerated ions in the quiet-time solar wind. Astrophys. J. Lett., 640, L79.
Fisk, L.A. and Gloeckler, G. 2009. The acceleration of anomalous cosmic rays by stochastic acceleration in the heliosheath. Adv. Space Res., 43, 1471.
Fisk, L.A., Kozlovsky, B. and Ramaty, R. 1974. An interpretation of the observed oxygen and nitrogen enhancements in low-energy cosmic rays. Astrophys. J. Lett., 190, L35.
Fitzenreiter, R. J. 1995. The electron foreshock. Adv. Space Res., 15, 9.
Fitzenreiter, R. J., Scudder, J. D. and Klimas, A. J. 1990. Three-dimensional analytical model for the spatial variation of the foreshock electron distribution function–Systematics and comparisons with ISEE observations. J. Geophys. Res., 95, 4155.
Florinski, V. 2009. Pickup ion acceleration at the termination shock and in the heliosheath. Space Sci. Rev., 143, 111.
Florinski, V., Zank, G. P., Jokipii, J. R., Stone, E.C. and Cummings, A.C. 2004. Do anomalous cosmic rays modify the termination shock?Astrophys. J., 610, 1169.
Florinski, V., Decker, R. B. and Le Roux, J. A. 2008. Pitch angle distributions of energetic particles near the heliospheric termination shock. J. Geophys. Res., 113, 7103.
Florinski, V., Decker, R. B. and Zank, G. P. 2010. Mediation of the heliospheric termination shock by termination-shockaccelerated particles. Twelfth International Solar Wind Conference Proceedings, 1216, 576.
Forman, M. A. and Morfill, G. E. 1979. Timedependent acceleration of solar wind plasma to mev energies at corotating interplanetary shocks. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 5, p. 328.
Formisano, V. and Kennel, C. F. 1969. Small amplitude waves in high β plasmas. J. Plasma Phys., 3, 55.
Forslund, D., Morse, R., Nielson, C. and Fu, J. 1972. Electron cyclotron drift instability and turbulence. Phys. Fluids, 15, 1303–1318.
Fuselier, S. A. 1995. Ion distributions in the Earth's foreshock upstream from the bow shock. Adv. Space Res., 15, 43.
Fuselier, S. A., Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1986. Gyrating and intermediate ion distributions upstream from the earth's bowshock. J. Geophys. Res., 91, 91.
Garcia-Munoz, M., Mason, G. M. and Simpson, J. A. 1973. The anomalous 1972 low energy galactic cosmic ray proton and helium spectra. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 2, p. 1304.
Gargaté, L. and Spitkovsky, A. 2012. Ion acceleration in non-relativistic astrophysical shocks. Astrophys. J., 744, 67.
Gary, S. P. 1978. The electromagnetic ion beam instability and energy loss of fast alpha particles. Nucl. Fusion, 18, 327.
Gary, S. P. 1992. The mirror and ion cyclotron anisotropy instabilities. J. Geophys. Res., 97, 8519.
Gary, S. P. 1993. Theory of Space Plasma Microinstabilities. Cambridge: Cambridge University Press.
Gary, S. P. and Mellott, M. M. 1985. Whistler damping at oblique propagation–Laminar shock precursors. J. Geophys. Res., 90, 99.
Gary, S. P. and Tokar, R. L. 1985. The second-order theory of electromagnetic hot ion beam instabilities. J. Geophys. Res., 90, 65.
Gary, S. P., Foosland, D.W., Smith, C.W., Lee, M. A. and Goldstein, M. L. 1984. Electromagnetic ion beam instabilities. Phys. Fluids, 27, 1852.
Gary, S. P., Tokar, R. L. and Winske, D. 1987. Ion/ion and electron/ion cross-field instabilities near the lower hybrid frequency. J. Geophys. Res., 92, 10029.
Gary, S. P., Fuselier, S. A. and Anderson, B. J. 1993. Ion anisotropy instabilities in the magnetosheath. J. Geophys. Res., 98, 1481.
Gedalin|M. 1996. Transmitted ions and ion heating in nearly perpendicular low-Mach number shocks. J. Geophys. Res., 101, 15569.
Gedalin, M. and Gri, E. 1999. Role of overshoots in the formation of the downstream distribution of adiabatic electrons. J. Geophys. Res., 104, 14821–14826.
Giacalone, J. 2004. Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J., 609, 452.
Giacalone, J. 2005. The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. Lett., 628, L37.
Giacalone, J. and Decker, R. 2010. The origin of low-energy anomalous cosmic rays at the solar-wind termination shock. Astrophys. J., 710, 91.
Giacalone, J. and Jokipii, J. R. 1999. The transport of cosmic rays across a turbulent magnetic field. Astrophys. J., 520, 204.
Giacalone, J. and Jokipii, J. R. 2007. Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. Lett., 663, L41.
Giacalone, J. and Kóta, J. 2006. Acceleration of Solar-Energetic Particles by Shocks. Space Sci. Rev., 124, 277.
Giacalone, J., Burgess, D., Schwartz, S. J. and Ellison, D. C. 1992. Hybrid simulations of protons strongly accelerated by a parallel collisionless shock. Geophys. Res. Lett., 19, 433.
Giacalone, J., Burgess, D., Schwartz, S. J. and Ellison, D. C. 1993. Ion injection and acceleration at parallel shocks – Comparisons of self-consistent plasma simulations with existing theories. Astrophys. J., 402, 550.
Giacalone, J., Burgess, D., Schwartz, S. J., Ellison, D. C. and Bennett, L. 1997. Injection and acceleration of thermal protons at quasi-parallel shocks: A hybrid simulation parameter survey. J. Geophys. Res., 102, 19789.
Gloeckler, G., Hovestadt, D. and Fisk, L. A. 1979. Observed distribution functions of H, He, C, O, and Fe in corotating energetic particle streams – Implications for interplanetary acceleration and propagation. Astrophys. J. Lett., 230, L191.
Goedbloed, J. P., Keppens, R. and Poedts, S. 2010. Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge: Cambridge University Press.
Golden, K. I., Linson, L. M. and Mani, S. A. 1973. Ion streaming instabilities with application to collisionless shock wave structure. Phys. Fluids, 16, 2319.
Goodrich, C. C. and Scudder, J. D. 1984. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionlessmagnetosonic shock waves. J. Geophys. Res., 89, 6654.
Gordon, B. E., Lee, M. A., Möbius, E. and Trattner, K. J. 1999. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth's bow shock revisited. J. Geophys. Res., 104, 28263.
Gosling, J. T. and Thomsen, M. F. 1985. Specularly reflected ions, shock foot thicknesses, and shock velocity determinations in space. J. Geophys. Res., 90, 9893.
Gosling, J. T., Asbridge, J. R., Bame, S. J., et al. 1981. Interplanetary ions during an energetic storm particle event – The distribution function from solar wind thermal energies to 1.6 MeV. J. Geophys. Res., 86, 547.
Gosling, J. T., Thomsen, M. F., Bame, S. J., Feldman, W. C., Paschmann, G. and Sckopke, N. 1982. Evidence for specularly reflected ions upstream from the quasiparallel bow shock. Geophys. Res. Lett., 9, 1333.
Gosling, J. T., Thomsen, M. F., Bame, S. J. and Russell, C. T. 1989a. Ion reflection and downstream thermalization at the quasiparallel bow shock. J. Geophys. Res., 94, 10027.
Gosling, J. T., Thomsen, M. F., Bame, S. J. and Russell, C. T. 1989b. Suprathermal electrons at earth's bowshock. J. Geophys. Res., 94, 10011.
Greenstadt, E.W., Fredricks, R.W., Scarf, F. L., Russell, C. T., Anderson, R. R. and GurnettD. A. 1981. Whistler mode wave propagation in the solar wind near the bow shock. J. Geophys. Res., 86, 4511–4516.
Greenstadt, E.W., Coroniti, F.V., Moses, S. L., et al. 1991. Weak, quasiparallel profiles of earth's bow shock – A comparison between numerical simulations and ISEE 3 observations on the far flank. Geophys. Res. Lett., 18, 2301.
Greenstadt, E.W., Coroniti, F.V., Moses, S. L. and Smith, E. J. 1992. Plasma wave profiles of earth's bow shock at low Mach numbers – ISEE 3 observations on the far flank. J. Geophys. Res., 97, 10841.
Gurnett, D. A. 1985. Plasmawaves and instabilities. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research. Geophysical Monograph Series, vol. 35. Washington DC: American Geophysical Union, pp. 207–224.
Hada, T., Oonishi, M., Lembège, B. and Savoini, P. 2003. Shock front nonstationarity of supercritical perpendicular shocks. J. Geophys. Res., 108, 1233.
Hamza, A. M. and Meziane, K. 2011. On turbulence in the quasi-perpendicular bow shock. Planet. Space Sci., 59, 475.
Helder, E.A., Vink, J., Bykov, A. M., Ohira, Y., Raymond, J. C. and Terrier, R. 2012. Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev., 173, 369.
Hellinger, P. and Mangeney, A. 1999. Electromagnetic ion beam instabilities: Oblique pulsations. J. Geophys. Res., 104, 4669.
Hellinger|P. and Trávníček, P. 2005. Magnetosheath compression: Role of characteristic compression time, alpha particle abundance, and alpha/proton relative velocity. J. Geophys. Res., 110, 4210.
Hellinger, P., Trčvníček|P. and Matsumoto, H. 2002. Reformation of perpendicular shocks: Hybrid simulations. Geophys. Res. Lett., 29(24), 2234.
Hellinger, P., Trávníček, P., Lembège, B. and Savoini, P. 2007. Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations. Geophys. Res. Lett., 34, 14109.
Hobara, Y., Balikhin, M., Krasnoselskikh, V., Gedalin, M. and Yamagishi, H. 2010. Statistical study of the quasi-perpendicular shock ramp widths. J. Geophys. Res., 115(A14), 11106.
Hoppe, M. M., Russell, C. T., Frank, L. A., Eastman, T. E. and Greenstadt, E.W. 1981. Upstream hydromagneticwaves and their association with backstreaming ion populations – ISEE 1 and 2 observations. J. Geophys. Res., 86, 4471.
Horbury, T. S., Cargill, P. J., Lucek, E.A., et al. 2001. Cluster magnetic field observations of the bowshock: Orientation, motion and structure. Ann. Geophys., 19, 1399.
Hovestadt, D., Vollmer, O., Gloeckler, G. and Fan, C.Y. 1973. Differential energy spectra of low-energy (<8.5 MeV per nucleon) heavy cosmic rays during solar quiet times. Phys. Rev. Lett., 31, 650.
Huba, J.D. and Wu, C. S. 1976. Effects of a magnetic field gradient on the lower hybrid drift instability. Phys. Fluids, 19, 988.
Hubert, D., Lacombe, C., Harvey, C. C., Moncuquet, M., Russell, C. T. and Thomsen, M. F. 1998. Nature, properties, and origin of low-frequency waves from an oblique shock to the inner magnetosheath. J. Geophys. Res., 103, 26783.
Hull, A. J. and Scudder, J. D. 2000. Model for the partition of temperature between electrons and ions across collisionless, fast mode shocks. J. Geophys. Res., 105, 27323.
Hull, A. J., Scudder, J. D., Fitzenreiter, R. J., Ogilvie, K.W., Newbury, J. A. and Russell, C. T. 2000. Electron temperature and de Hoffmann-Teller potential change across the Earth's bow shock: New results from ISEE 1.J. Geophys. Res., 105, 20957.
Hull, A. J., Larson, D. E., Wilber, M., et al. 2006. Large-amplitude electrostaticwaves associated with magnetic ramp substructure at Earth's bow shock. Geophys. Res. Lett., 33, 15104.
Ipavich, F. M., Gloeckler, G., Fan, C.Y., et al. 1979. Initial observations of low energy charged particles near the earth's bow shock on ISEE-1. Space Sci. Rev., 23, 93.
Isenberg, P.A. 1997. A hemispherical model of anisotropic interstellar pickup ions. J. Geophys. Res., 102, 4719.
Jokipii, J. R. 1971. Deceleration and acceleration of cosmic rays in the solar wind. Phys. Rev. Lett., 26, 666.
Jokipii, J. R. 1982. Particle drift, diffusion, and acceleration at shocks. Astrophys. J., 255, 716.
Jokipii, J. R. 1986. Particle acceleration at a termination shock. I – Application to the solar wind and the anomalous component. J. Geophys. Res., 91, 2929.
Jokipii, J. R. 1987. Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J., 313, 842.
Jokipii, J. R., Kota, J. and Giacalone, J. 1993. Prependicular transport in 1- and 2- dimensional shock simulations. Geophys. Res. Lett., 20, 1759.
Jones, F. C. and Ellison, D. C. 1991. The plasma physics of shock acceleration. Space Sci. Rev., 58, 259.
Kallenbach, R., Hilchenbach, M., Chalov, S.V., Le Roux, J. A. and Bamert, K. 2005. On the ‘injection problem’ at the solar wind termination shock. Astron. Astrophys., 439, 1.
Kan, J. R., Lyu, L. H. and Mandt, M. E. 1991. Quasi-parallel collisionless shocks. Space Sci. Rev., 57, 201.
Kantrowitz, A. and Petschek, H. E. 1966. MHD Characteristics and shock waves. In Kunkel, W.B. (ed.), Plasma Physics in Theory and Application. New York: McGraw Hill, p. 148.
Kennel, C. F. 1987. Critical Mach numbers in classical magnetohydrodynamics. J. Geophys. Res., 92, 13427.
Kennel, C. F. and Petschek, H. E. 1966. Limit on stably trapped particle fluxes. J. Geophys. Res., 71, 1.
Kennel, C. F. and Sagdeev, R. Z. 1967. Collisionless shock waves in high β plasmas: 1. J. Geophys. Res., 72, 3303.
Kennel, C. F., Edmiston, J. P. and Hada, T. 1985. A quarter century of collisionless shock research. In Stone, R. G. and Tsurutani, B. T. (eds), Collisionless Shocks in the Heliosphere: A Tutorial Review. Geophysical Monograph Series, vol. 34. Washington DC: American Geophysical Union, p. 1.
Kis, A., Scholer, M., Klecker, B., et al. 2004. Multi-spacecraft observations of diffuse ions upstream of Earth's bow shock. Geophys. Res. Lett., 312, 20801.
Knock, S. A., Cairns, I. H., Robinson, P. A. and Kuncic, Z. 2003. Theoretically predicted properties of type II radio emission from an interplanetary foreshock. J. Geophys. Res., 108, 1126.
Krall, N. A. and Trivelpiece, A.W. 1973. Principles of Plasma Physics. New York: McGraw-Hill.
Krasnoselskikh, V.V., Lembège, B., Savoini, P. and Lobzin, V.V. 2002. Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations. Phys. Plasmas, 9, 1192.
Krasnoselskikh, V., Balikhin, M., Walker, S. N., et al. 2013. The dynamic quasiperpendicular shock: Cluster discoveries. Space Sci. Rev., 178, 535.
Krauss-Varban, D. 1995. Waves associated with quasi-parallel shocks: Generation, mode conversion and implications. Adv. Space Res., 15, 271.
Krauss-Varban, D. and Burgess, D. 1991. Electron acceleration at nearly perpendicular collisionless shocks. II – Reflection at curved shocks. J. Geophys. Res., 96, 143.
Krauss-Varban, D. and Omidi, N. 1991. Structure of medium Mach number quasiparallel shocks – Upstream and downstream waves. J. Geophys. Res., 961, 17715.
Krauss-Varban, D. and Omidi, N. 1993. Propagation characteristics of waves upstream and downstream of quasiparallel shocks. Geophys. Res. Lett., 20, 1007.
Krauss-Varban, D., Burgess, D. and Wu, C. S. 1989. Electron acceleration at nearly perpendicular collisionless shocks. I – One-dimensional simulations without electron scale fluctuations. J. Geophys. Res., 94, 15089.
Krymskii, G. F. 1977. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk SSSR Dokl., 234, 1306.
Kucharek, H. and Scholer, M. 1991. Origin of diffuse superthermal ions at quasiparallel supercritical collisionless shocks. J. Geophys. Res., 962, 21195.
Kucharek, H. and Scholer, M. 1995. Injection and acceleration of interstellar pickup ions at the heliospheric termination shock. J. Geophys. Res., 100, 1745–1754.
Kucharek, H., Möbius, E., Scholer, M., Mouikis, C., Kistler, L., Horbury, T., Balogh, A., Réme, H. and Bosqued, J. 2004. On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster. Ann. Geophys., 22, 2301.
Kuncic, Z., Cairns, I.H. and Knock, S. A. 2004. A Quantitative model for terrestrial foreshock radio emissions: 1. Predicted properties. J. Geophys. Res., 109, 2108.
Kuramitsu, Y. and Krasnoselskikh, V. 2005a. Acceleration of charged particles by gyroresonant surfing at quasiparallel shocks. Astron. Astrophys., 438, 391.
Kuramitsu, Y. and Krasnoselskikh, V. 2005b. Gyroresonant surfing acceleration. Phys. Rev. Lett., 94(3), 031102.
Lacombe, C., Mangeney, A., Harvey, C. C. and Scudder, J. D. 1985. Electron plasma waves upstream of the Earth's bow shock. J. Geophys. Res., 90(A1), 73.
Lampe, M., Manheimer, W. M., McBride, J. B., et al. 1972. Theory and simulation of the beam cyclotron instability. Phys. Fluids, 15, 662.
Landau, L. D., Lifshitz, E.M. and Pitaevskii, L. P. 1984. Electrodynamics of Continuous Media, 2nd edn. Oxford: Butterworth-Heinemann.
le Roux, J. A., Webb, G. M., Florinski, V. and Zank, G. P. 2007. A focused transport approach to pickup ion shock acceleration: Implications for the termination shock. Astrophys. J., 662, 350.
Lee|J. K. and Birdsall, C. K. 1979. Velocity space ring-plasma instability, magnetized, Part I: Theory. Phys. Fluids, 22, 1306.
Lee, M. A. 1971. Self-consistent kinetic equations and the evolution of a relativistic plasma in an ambient magnetic field. Plasma Phys., 13, 1079.
Lee, M. A. 1982. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock. J. Geophys. Res., 87, 5063.
Lee, M. A. 1983. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res., 88, 6109.
Lee, M. A. and Ip, W.-H. 1987. Hydromagnetic wave excitation by ionised interstellar hydrogen and helium in the solar wind. J. Geophys. Res., 92, 11041.
Lee, M. A., Shapiro, V.D. and Sagdeev, R. Z. 1996. Pickup ion energization by shock surfing. J. Geophys. Res., 101, 4777.
Lee, M. A., Mewaldt, R.A. and Giacalone, J. 2012. Shock acceleration of ions in the heliosphere. Space Sci. Rev., 173, 247.
Lee, R. E., Chapman, S.C. and Dendy, R. O. 2004. Numerical simulations of local shock reformation and ion acceleration in supernova remnants. Astrophys. J., 604, 187.
Lefebvre, B., Schwartz, S. J., Fazakerley, A. F. and Décréau, P. 2007. Electron dynamics and cross-shock potential at the quasi-perpendicular Earth's bow shock. J. Geophys. Res., 112(A11), 9212.
Lembège, B. 2003. Full particle electromagnetic simulation of collisionless shocks. In Büchner, J., Dum, C. and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin: Springer-Verlag, p. 54.
Lembège, B. and Dawson, J. M. 1987. Selfconsistent study of a perpendicular collisionless and nonresistive shock. Phys. Fluids, 30, 1767.
Lembège, B. and Savoini, P. 2002. Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res., 107, 1037.
Lembège, B., Giacalone, J., Scholer, M., et al. 2004. Selected problems in collisionless-shock physics. Space Sci. Rev., 110, 161.
Lembège, B., Savoini, P., Hellinger, P. and Trávníček, P.M. 2009. Nonstationarity of a two-dimensional perpendicular shock: Competingmechanisms. J. Geophys. Res., 114, 3217.
Lemons, D. S. and Gary, S. P. 1978. Currentdriven instabilities in a laminar perpendicular shock. J. Geophys. Res., 83, 1625.
Leroy, M. M. 1983. Structure of perpendicular shocks in collisionless plasma. Phys. Fluids, 26, 2742.
Leroy, M. M. and Mangeney, A. 1984. A theory of energization of solar wind electrons by the earth's bow shock. Ann. Geophys., 2, 449.
Leroy, M. M. and Winske, D. 1983. Backstreaming ions from oblique earth bow shocks. Ann. Geophys., 1, 527.
Leroy, M. M., Goodrich, C. C., Winske, D., Wu, C. S. and Papadopoulos|K. 1981. Simulation of a perpendicular bow shock. Geophys. Res. Lett., 8, 1269.
Leroy, M. M., Winske, D., Goodrich, C. C., Wu, C. S. and Papadopoulos, K. 1982. The structure of perpendicular bow shocks. J. Geophys. Res., 87, 5081.
LeVeque, R. J. 1992. Numerical Methods for Conservation Laws. Basel: Birkhäuser.
Liewer, P.C., Decyk, V. K., Dawson, J. M. and Lembège, B. 1991. Numerical studies of electron dynamics in oblique quasiperpendicular collisionless shock waves. J. Geophys. Res., 96, 9455–9465.
Liewer, .C., Goldstein, B. E. and Omidi, N. 1993. Hybrid simulations of the effects of interstellar pickup hydrogen on the solar wind termination shock. J. Geophys. Res., 98, 15211.
Lin, R. P., Meng, C.-I. and Anderson, K. A. 1974. 30- to 100-keV protons upstream from the earth's bow shock. J. Geophys. Res., 79, 489.
Lipatov, A. S. 2002. The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas. Berlin: Springer.
Lipatov, A. S. and Zank, G. P. 1999. Pickup Ion Acceleration at Low- βp Perpendicular Shocks. Phys. Rev. Lett., 82, 3609.
Liu, Y. C.-M., Lee, M. A. and Kucharek, H. 2005. Aquasilinear theory of ion ‘thermalization’ and wave excitation downstream of Earth's bow shock. J. Geophys. Res., 110, 9101.
Livesey, W. A., Russell, C. T. and Kennel, C. F. 1984. A comparison of specularly reflected gyrating ion orbits with observed shock foot thicknesses. J. Geophys. Res., 89, 6824.
Lobzin, V.V., Krasnoselskikh, V.V., Bosqued, J.-M., Pinçon, J.-L., Schwartz, S. J. and Dunlop, M. 2007. Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations. Geophys. Res. Lett., 340, L05107.
Lowe, R. E. and Burgess, D. 2003. The properties and causes of rippling in quasiperpendicular collisionless shock fronts. Ann. Geophys., 21, 671.
Lucek, E.A., Constantinescu, D., Goldstein, M. L., et al. 2005. The magnetosheath. Space Sci. Rev., 118, 95.
Lucek, E.A., Horbury, T. S., Dandouras, I. and Rème, H. 2008. Cluster observations of the Earth's quasi-parallel bow shock. J. Geophys. Res., 113, 7.
Malkov, M. A. 1998. Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation. Phys. Rev. E, 58, 4911.
Malkov, M. A. and Voelk, H. J. 1995. Theory of ion injection at shocks. Astron. Astrophys., 300, 605.
Mandt, M. E. and Kan, J. R. 1990. Dispersive and viscous scale lengths in the two-stage ion heating at quasi-parallel collisionless shocks. J. Geophys. Res., 95, 6353.
Matsukiyo, S. and Scholer, M. 2003. Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J. Geophys. Res., 108, 1459.
Matsukiyo, S. and Scholer, M. 2006a. On microinstabilities in the foot of high Mach number perpendicular shocks. J. Geophys. Res., 111, 6104.
Matsukiyo, S. and Scholer, M. 2006b. On reformation of quasi-perpendicular collisionless shocks. Adv. Space Res., 38, 57.
Matsukiyo, S. and Scholer, M. 2011. Microstructure of the heliospheric termination shock: Full particle electrodynamic simulations. J. Geophys. Res., 116, 8106.
Mazelle, C., Lembège, B., Morgenthaler, A., et al. 2010. Self-reformation of the quasiperpendicular shock: CLUSTER observations. Twelfth International Solar Wind Conference, 1216, 471.
McDonald, F.B., Teegarden, B. J., Trainor, J. H. and Webber, W. R. 1974. The anomalous abundance of cosmic-ray nitrogen and oxygen nuclei at low energies. Astrophys. J. Lett., 187, L105.
McKean, M. E., Winske, D. and Gary, S. P. 1994. Two-dimensional simulations of ion anisotropy instabilities in the magnetosheath. J. Geophys. Res., 99, 11141.
McKean, M. E., Omidi, N. and Krauss-Varban, D. 1995. Wave and ion evolution downstream of quasi-perpendicular bow shocks. J. Geophys. Res., 100, 3427.
McKenzie, J. F. and Völk, H. J. 1982. Nonlinear theory of cosmic ray shocks including self-generated Alfven waves. Astron. Astrophys., 116, 191.
Mellott, M. M. 1985. Subcritical collisionless shock waves. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research. Geophysical Monograph Series, vol. 35. Washington DC: American Geophysical Union, p. 131.
Mellott, M. M. and Greenstadt, E.W. 1984. The structure of oblique subcritical bow shocks – ISEE 1 and 2 observations. J. Geophys. Res., 89, 2151.
Mellott, M. M. and Greenstadt, E.W. 1988. Plasma waves in the range of the lower hybrid frequency – ISEE 1 and 2 observations at the earth's bow shock. J. Geophys. Res., 93, 9695–9708.
Melrose, D.B. 1986. Instabilities in Space and Laboratory Plasmas. Cambridge: Cambridge University Press.
Moiseev, S. S. and Sagdeev, R. Z. 1963. Collisionless shock waves in a plasma in a weak magnetic field. J. Nucl. Energy, 5, 43.
Moullard, O., Burgess, D., Horbury, T. S. and Lucek, E.A. 2006. Ripples observed on the surface of the Earth's quasiperpendicular bow shock. J. Geophys. Res., 111(A10), 9113.
Muschietti, L. and Lembège, B. 2006. Electron cyclotron microinstability in the foot of a perpendicular shock:Aself-consistent PIC simulation. Adv. Space Res., 37, 483.
Newbury, J. A., Russell, C. T. and Gedalin, M. 1998. The ramp widths of high-Machnumber, quasi-perpendicular collisionless shocks. J. Geophys. Res., 103, 29581.
Ohsawa, Y. 1985. Strong ion acceleration by a collisionless magnetosonic shock wave propagating perpendicularly to a magnetic field. Phys. Fluids, 28, 2130.
Oka, M., Terasawa, T., Saito, Y. and Mukai, T. 2005. Field-aligned beam observations at the quasi-perpendicular bow shock: Generation and shock angle dependence. J. Geophys. Res., 110, A05101.
Omidi, N. and Winske, D. 1992. Kinetic structure of slow shocks – Effects of the electromagnetic ion/ion cyclotron instability. J. Geophys. Res., 97, 14801.
Omidi, N., Quest, K.B. and Winske, D. 1990. Low Mach number parallel and quasi-parallel shocks. J. Geophys. Res., 95, 20717.
Omidi, N., Blanco-Cano, X. and Russell, C. T. 2005. Macrostructure of collisionless bow shocks: 1. Scale lengths. J. Geophys. Res., 110, 12212.
Onsager, T. G., Holzworth, R.H., Koons, H. C., Bauer, O.H. and Gurnett, D. A. 1989. High-frequency electrostatic waves near earth's bow shock. J. Geophys. Res., 94, 13397–13408.
Onsager, T. G., Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1990. Survey of coherent ion reflection at the quasi-parallel bow shock. J. Geophys. Res., 95, 2261.
Onsager, T. G., Winske, D. and Thomsen, M. F. 1991. Interaction of a finite-length ion beam with a background plasma – Reflected ions at the quasi-parallel bow shock. J. Geophys. Res., 96, 1775.
Papadopoulos, K. 1985. Microinstabilities and anomalous transport. In Stone, R. G. and Tsurutani, B. T. (eds), Collisionless Shocks in the Heliosphere: A Tutorial Review. Geophysical Monograph Series, vol. 34. Washington DC: American Geophysical Union, p. 59.
Papadopoulos, K. 1988. Electron heating in superhigh Mach number shocks. 144, 535.
Papadopoulos, K., Davidson, R. C., Dawson, J. M., et al. 1971. Heating of counterstreaming ion beams in an external magnetic field. Phys. Fluids, 14, 849.
Parker, E.N. 1961. A quasi-linear model of plasma shock structure in a longitudinal magnetic field. J. Nucl. Energy, 2, 146.
Parker, E.N. 1965. The passage of energetic charged particles through interplanetary space. Planet. Space Sci., 13, 9.
Paschmann, G., Sckopke, N., Asbridge, J.R., Bame, S. J. and Gosling, J. T. 1980. Energization of solar wind ions by reflection from the earth's bow shock. J. Geophys. Res., 85, 4689.
Paschmann, G., Sckopke, N., Papamastorakis, I., Asbridge, J.R., Bame, S. J. and Gosling|J. T. 1981. Characteristics of reflected and diffuse ions upstream from the earth's bow shock. J. Geophys. Res., 86, 4355.
Pesses, M. E. 1981. On the Acceleration of Ions by Interplanetary Shock Waves. 1: Single Encounter Considerations. Tech. rept. NASA-TM-83913. NASA STI Program.
Pesses, M. E., Eichler, D. and Jokipii, J. R. 1981. Cosmic ray drift, shock wave acceleration, and the anomalous component of cosmic rays. Astrophys. J. Lett., 246, L85.
Pesses, M. E., Decker, R. B. and Armstrong, T. P. 1982. The acceleration of charged particles in interplanetary shock waves. Space Sci. Rev., 32, 185.
Pizzo, V. 1978. A three-dimensional model of corotating streams in the solar wind. I – Theoretical foundations. J. Geophys. Res., 83, 5563.
Pritchett, P. L. 2003. Particle-in-cell simulation of plasmas – A tutorial. In Büchner, J., Dum, C., and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin: Springer Verlag, p. 1.
Reames, D.V. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 90, 413.
Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J.W. and Lazarus, A. J. 2008. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature, 454, 63>/sp>.
Riquelme, M. A. and Spitkovsky, A. 2009. Nonlinear study of Bell's cosmic ray current-driven instability. Astrophys. J., 694,626.
Riquelme, M. A. and Spitkovsky, A. 2011. Electron injection by whistler waves in non-relativistic shocks. Astrophys. J., 733, 63.
Rodriguez, P. and Gurnett, D. A. 1975. Electrostatic and electromagnetic turbulence associated with the earth's bow shock. J. Geophys. Res., 80, 19–31.
Rodriguez, P. and Gurnett, D. A. 1976. Correlation of bow shock plasma wave turbulence with solar wind parameters. J. Geophys. Res., 81, 2871–2882.
Russell, C. T., Smith, E. J., Tsurutani, B. T., Gosling, J. T. and Bame, S. J. 1983. Multiple spacecraft observations of interplanetary shocks: Characteristics of the upstream ULF turbulence. In Neugebauer, M. (ed.), Solar Wind Five. NASA Conference Publication, vol. CP-2280. NASA, Scientific and Technical Information Branch, p. 385.
Sagdeev, R. Z. 1966. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys., 4, 23.
Sarris, E. T., Krimigis, S. M. and Armstrong, T. P. 1976. Observations of a high-energy ion shock spike in interplanetary space. Geophys. Res. Lett., 3, 133.
Savoini, P. and Lembège, B. 2001. Two-dimensional simulations of a curved shock: Self-consistent formation of the electron foreshock. J. Geophys. Res., 106, 12975.
Savoini, P., Lembége, B. and Stienlet, J. 2010. Origin of backstreaming electrons within the quasi-perpendicular foreshock region: Two-dimensional self-consistent PIC simulation. J. Geophys. Res., 115, 9104.
Scholer, M. 1990. Diffuse ions at a quasiparallel collisionless shock – Simulations. Geophys. Res. Lett., 17, 1821.
Scholer, M. 1993. Upstream waves, shocklets, short large-amplitude magnetic structures and the cyclic behavior of oblique quasi-parallel collisionless shocks. J. Geophys. Res., 98, 47.
Scholer, M. and Burgess, D. 1992. The role of upstream waves in supercritical quasiparallel shock re-formation. J. Geophys. Res., 97, 8319.
Scholer, M. and Burgess, D. 2007. Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys. Plasmas, 14(7), 072103.
Scholer, M. and Fujimoto, M. 1993. Low-Mach number quasi-parallel shocks- Upstream waves. J. Geophys. Res., 98, 15275.
Scholer, M. and Matsukiyo, S. 2004. Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann. Geophys., 22, 2345.
Scholer, M. and Terasawa, T. 1990. Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys. Res. Lett., 17, 119.
Scholer, M., Hovestadt, D., Ipavich, F.M. and Gloeckler, G. 1983. Acceleration of low-energy protons and alpha particles at interplanetary shock waves. J. Geophys. Res., 88, 1977.
Scholer, M., Fujimoto, M. and Kucharek, H. 1993. Two-dimensional simulations of supercritical quasi-parallel shocks: upstream waves, downstream waves, and shock re-formation. J. Geophys. Res., 98, 18971.
Scholer, M., Kucharek, H. and Jayanti, V. 1997. Waves and turbulence in high Mach number nearly parallel collisionless shocks. J. Geophys. Res., 102, 9821.
Scholer, M., Kucharek, H. and Trattner, K.-H. 1999a. Injection and acceleration of H+ and He2C at Earth's bow shock. Ann. Geophys., 17, 583.
Scholer, M., Mann, G., Chalov, S., Desai, M. I., Fisk, L. A., Jokipii, J. R., Kallenbach, R., Keppler, E., Kóta, J., Kunow, H., Lee, M. A., Sanderson, T. R. and Simnett, G. M. 1999b. Origin, injection, and acceleration of CIR particles: Theory report of working group 7. Space Sci. Rev., 89, 369– 399.
Scholer, M., Kucharek, H., Krasnosselskikh, V.V. and Trattner, K.-H. 2000. Injection and acceleration of ions at collisionless shocks: Kinetic simulations. In Mewaldt, R. A., Jokipii, J. R., Lee, M. A., Möbius, E. and Zurbuchen, T.H. (eds), Acceleration and Transport of Energetic Particles Observed in the Heliosphere. American Institute of Physics Conference Series, vol. 528, p. 250.
Scholer, M., Shinohara, I. and Matsukiyo, S. 2003a. Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J. Geophys. Res., 108, 1014.
Scholer, M., Kucharek, H. and Shinohara, I. 2003b. Short large-amplitude magnetic structures and whistler wave precursors in a full-particle quasi-parallel shock simulation. J. Geophys. Res., 108, 1273.
Schure, K. M., Bell, A. R., O'C Drury, L. and Bykov, A.M. 2012. Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev., 173, 491.
Schwartz, S. J. 1985. Solar wind and the Earth's bow shock. In Priest, E. R. (ed.), Solar System Magnetic Fields. Dordrecht: Reidel, p. 190.
Schwartz, S. J. 1998. Shock and discontinuity normals, Mach numbers, and related parameters. ISSI Scientific Reports Series, 1, 249.
Schwartz, S. J. and Burgess, D. 1991. Quasiparallel shocks – A patchwork of threedimensional structures. Geophys. Res. Lett., 18, 373.
Schwartz, S. J., Thomsen, M. F. and Gosling, J. T. 1983. Ions upstream of the earth's bow shock – A theoretical comparison of alternative source populations. J. Geophys. Res., 88, 2039.
Schwartz, S. J., Thomsen, M. F., Bame, S. J. and Stansberry, J. 1988. Electron heating and the potential jump across fast mode shocks. J. Geophys. Res., 93, 12923.
Schwartz, S. J., Burgess, D., Wilkinson, W. P.,Kessel, R. L., Dunlop|M. and Luehr, H. 1992. Observations of short largeamplitude magnetic structures at a quasiparallel shock. J. Geophys. Res., 97, 4209.
Schwartz, S. J., Burgess, D. and Moses, J. J. 1996. Low-frequency waves in the Earth's magnetosheath: present status. Ann. Geophys., 14, 1134.
Sckopke, N., Paschmann, G., Bame, S. J., Gosling, J. T. and Russell, C. T. 1983. Evolution of ion distributions across the nearly perpendicular bow shock – Specularly and non-specularly reflected-gyrating ions. J. Geophys. Res., 88, 6121.
Sckopke, N., Paschmann, G., Brinca, A. L., Carlson, C.W. and Luehr, H. 1990. Ion thermalization in quasi-perpendicular shocks involving reflected ions. J. Geophys. Res., 95, 6337.
Scudder|J. D. 1995. A review of the physics of electron heating at collisionless shocks. Adv. Space Res., 15, 181.
Scudder, J. D., Aggson, T. L., Mangeney, A., Lacombe, C. and Harvey, C. C. 1986a. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. I – Rankine-Hugoniot geometry, currents, and stationarity. J. Geophys. Res., 91, 11019.
Scudder, J. D., Aggson, T. L., Mangeney, A., Lacombe, C. and Harvey, C. C. 1986b. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. II – Dissipative fluid electrodynamics. J. Geophys. Res., 91, 11053.
Scudder, J. D., Mangeney, A., Lacombe, C., Harvey, C. C. and Wu, C. S. 1986c. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. III – Vlasov electrodynamics. J. Geophys. Res., 91, 11075.
Sentman, D. D., Edmiston, J. P. and Frank, L. A. 1981. Instabilities of low frequency, parallel propagating electromagnetic waves in the earth's foreshock region. J. Geophys. Res., 86, 7487.
Shimada, N and Hoshino, M. 2003. The dynamics of electron-ion coupling in the shock transition region. Phys. Plasmas, 10(4), 1113.
Shimada, N. and Hoshino, M. 2004. Electron heating and acceleration in the shock transition region: Background plasma parameter dependence. Phys. Plasmas, 11, 1840.
Sonnerup, B.U.Ö. 1969. Acceleration of particles reflected at a shock front. J. Geophys. Res., 74, 1301.
Steenberg, C.D. and Moraal, H. 1996. An acceleration/modulation model for anomalous cosmic-ray hydrogen in the heliosphere. Astrophys. J., 463, 776.
Steenberg, C.D. and Moraal, H. 1999. Form of the anomalous cosmic ray spectrum at the solar wind termination shock. J. Geophys. Res., 104, 24879>.
Stix, T. H. 1992. Waves in Plasmas. College Park, MD: American Institute of Physics.
Stone, E.C., Cummings, A.C., McDonald, F. B., Heikkila, B. C., Lal, N. and Webber, W. R. 2005. Voyager 1 explores the termination shock region and the heliosheath beyond. Science, 309, 2017.
Stone, E.C., Cummings, A.C., McDonald, F. B., Heikkila, B. C., Lal, N. and Webber, W. R. 2008. An asymmetric solar wind termination shock. Nature, 454, 71.
Stringer, T. E. 1963. Low-frequency waves in an unbounded plasma. J. Nucl. Energy, 5, 89.
Sugiyama, T. 2011. Time sequence of energetic particle spectra in quasiparallel shocks in large simulation systems. Phys. Plasmas, 18(2), 022302.
Sugiyama|T. and Terasawa|T. 1999. A scatter-free ion acceleration process in the parallel shock. Adv. Space Res., 24, 73.
Sugiyama, T., Fujimoto, M. and Mukai, T. 2001. Quick ion injection and acceleration at quasi-parallel shocks. J. Geophys. Res., 106, 21657.
Tanaka, M., Goodrich, C. C., Winske, D. and Papadopoulos, K. 1983. A source of the backstreaming ion beams in the foreshock region. J. Geophys. Res., 88, 3046.
Terasawa, T. 1979. Energy spectrum and pitch angle distribution of particles reflected by MHD shock waves of fast mode. Planet. Space Sci., 27, 193.
Thomas, V.A. 1989. Dimensionality effects in hybrid simulations of high Mach number collisionless perpendicular shocks. J. Geophys. Res., 94, 12009.
Thomas, V.A., Winske, D. and Omidi, N. 1990. Re-forming supercritical quasiparallel shocks. I – One- and two-dimensional simulations. J. Geophys. Res., 951, 18809.
Thomsen, M. F., Gary, S. P., Feldman,W.C., Cole, T. E. and Barr, H. C. 1983. Stability of electron distributions within the earth's bow shock. J. Geophys. Res., 88, 3035–3045.
Thomsen, M. F., Gosling, J. T., Bame, S. J. and Mellott, M. M. 1985. Ion and electron heating at collisionless shocks near the critical Mach number. J. Geophys. Res., 90, 137.
Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1990a. Magnetic pulsations at the quasi-parallel shock. J. Geophys. Res., 95, 957.
Thomsen, M. F., Gosling, J. T., Bame, S. J., Onsager, T. G. and Russell, C. T. 1990b. Two-state ion heating at quasi-parallel shocks. J. Geophys. Res., 95, 6363.
Thomsen, M. F., Gosling, J. T., Onsager, T. G. and Russell, C. T. 1993. Ion and electron heating at the low-Mach-number, quasi-parallel bow shock. J. Geophys. Res., 98, 3875.
Tidman, D.A. and Krall, N. A. 1971. Shock Waves in Collisionless Plasmas. New York: Wiley-Interscience.
Tokar, R. L., Gurnett, D. A. and Feldman, W. C. 1984. Whistler mode turbulence generated by electron beams in earth's bowshock. J. Geophys. Res., 89, 105–114.
Trattner, K. J. and Scholer, M. 1991. Diffuse alpha particles upstream of simulated quasi-parallel supercritical collisionless shocks. Geophys. Res. Lett., 18, 1817.
Trattner, K. J., Möbius, E., Scholer, M., Klecker, B., Hilchenbach, M. and Luehr, H. 1994. Statistical analysis of diffuse ion events upstream of the Earth's bow shock. J. Geophys. Res., 99, 13389.
Umeda, T., Yamao, M. and Yamazaki, R. 2008. Two-dimensional full particle simulation of a perpendicular collisionless shock with a shock-rest-frame model. Astrophys. J. Lett., 681, L85.
Umeda, T., Kidani, Y., Yamao, M., Matsukiyo, S. and Yamazaki, R. 2010. On the reformation at quasi- and exactly perpendicular shocks: Full particle-in-cell simulations. J. Geophys. Res., 115, 10250.
Umeda, T., Kidani, Y., Matsukiyo, S. and Yamazaki, R. 2012. Modified two-stream instability at perpendicular collisionless shocks: Full particle simulations. J. Geophys. Res., 117, 3206.
Van Hollebeke, M.A. I., McDonald, F.B., Trainor, J.H. and von Rosenvinge, T. T. 1978. The radial variation of corotating energetic particle streams in the inner and outer solar system. J. Geophys. Res., 83, 4723.
Veltri, P., Mangeney, A. and Scudder, J. D. 1990. Electron heating in quasiperpendicular shocks – A Monte Carlo simulation. J. Geophys. Res., 95(Sept.), 14939–14959.
Walker, S., Alleyne, H., Balikhin, M., André, M. and Horbury, T. 2004. Electric field scales at quasi-perpendicular shocks. Ann. Geophys., 22, 2291–2300.
Webb, G. M., Axford, W. I. and Terasawa, T. 1983.On the drift mechanism for energetic charged particles at shocks. Astrophys. J., 270, 537.
Webb, G. M., Axford, W. I. and Forman, M. A. 1985. Cosmic-ray acceleration at stellar wind terminal shocks. Astrophys. J., 298, 684.
Winske, D. 1985. Microtheory of collisionless shock current layers. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph Series, vol. 35. Washington DC: American Geophysical Union, p. 225.
Winske, D. and Leroy, M. M. 1984. Diffuse ions produced by electromagnetic ion beam instabilities. J. Geophys. Res., 89, 2673.
Winske, D. and Quest, K. B. 1988. Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks. J. Geophys. Res., 93, 9681.
Winske, D., Giacalone, J., Thomsen, M. F. and Mellott, M. M. 1987. A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks. J. Geophys. Res., 92, 4411.
Winske, D., Thomas, V.A., Omidi, N. and Quest, K. B. 1990. Re-forming supercritical quasi-parallel shocks. II – Mechanism for wave generation and front re-formation. J. Geophys. Res., 95, 18821.
Winske, D., Yin, L., Omidi, N., et al. 2003. Hybrid simulation codes: Past, present and future – A Tutorial. In Büchner, J., Dum, C., and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin: Springer Verlag, p. 136.
Wong, H.V. 1970. Electrostatic electron–ion streaming instability. Phys. Fluids, 13, 757.
Woods, L.C. 1969. On the structure of collisionless magneto-plasma shock waves at super-critical Alfvén-Mach numbers. J. Plasma Phys., 3, 435.
Wu, C. S. 1984. A fast Fermi process – Energetic electrons accelerated by a nearly perpendicular bow shock. J. Geophys. Res., 89, 8857.
Wu, C. S., Winske, D., Tanaka, M., et al. 1984. Microinstabilities associated with a high Mach number, perpendicular bow shock. Space Sci. Rev., 37, 63.
Wu, P., Winske, D., Gary, S. P., Schwadron, N. A. and Lee, M. A. 2009. Energy dissipation and ion heating at the heliospheric termination shock. J. Geophys. Res., 114, 8103.
Yuan, X., Cairns, I.H. and Robinson, P. A. 2007. Simulation of energetic electron bursts upstream of re-forming shocks. Astrophys. J., 671, 439.
Zank, G. P., Pauls, H. L., Cairns, I.H. and Webb, G. M. 1996. Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks. J. Geophys. Res., 101, 457.
Zank, G. P., Heerikhuisen, J., Pogorelov, N.V., Burrows, R. and McComas, D. 2010. Microstructure of the heliospheric termination shock: Implications for energetic neutral atom observations. Astrophys. J., 708, 1092.
Zhou, Y. M., Wong, H. K. and Wu, C. S. 1983. Lower hybrid drift instability with temperature gradient in a perpendicular shock wave. J. Geophys. Res., 88, 3026.
Zilbersher, D. and Gedalin, M. 1997. Pickup ion dynamics at the structured quasiperpendicular shock. Planet. Space Sci., 45, 693.