Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T09:40:28.287Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 January 2019

Phillip A. Arkin
Affiliation:
University of Maryland, College Park
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Climate Analysis , pp. 302 - 327
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

We have tried to insure that the URLs listed below are correct and current as of the publication date. However, the very nature of the Internet dictates that web addresses will be modified or change over time.

Alaska Satellite Facility www.asf.alaska.edu/asf-tutorials/sar-faq/

AMIP – Atmospheric Model Inter-comparison Project https://pcmdi.llnl.gov/mips/amip/home/overview.html

ARM – Atmospheric Radiation Measurement Program – Climate Research Facility www.archive.arm.gov/

ASOS – Automated Surface Observation System description www.weather.gov/media/lmk/pdf/educational_pages/ASOSandClimateObservations__What_Is_ASOS.pdf

ASOS – Automated Surface Observation System User’s guide (1998) – pdf can be downloaded from www.nws.noaa.gov/asos/pdfs/aum-toc.pdf

Blue Hill Observatory – http://bluehill.org/observatory/

BoM – Australian Bureau of Meteorology www.bom.gov.au/climate/

Buoy Data

Moored Buoys Data

www.pmel.noaa.gov/gtmba/

Drifting Buoy Data

www.aoml.noaa.gov/phod/dac/index.php

CDB – Climate Diagnostics Bulletin, Published by the CPC Monthly since 1983 and available electronically from 1999 at www.cpc.ncep.noaa.gov/products/CDB

CERA20C – ECMWF 20th Century Reanalysis version C http://apps.ecmwf.int/datasets/data/cera20c-enda/levtype=sfc/type=an/

Copernicus Climate Change Service https://climate.copernicus.eu/

Climate Data Guide Comparison of Reanalysis Products (NCAR/UCAR)

https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-tables

Climate Data Records from Environmental Satellites – Interim Report www.nap.edu/catalog/10944/climate-data-records-from-environmental-satellites-interim-report

Climate Forecast and Monitoring www.climate.gov/

Climate Prediction Center (CPC/NOAA) www.cpc.ncep.noaa.gov/

Climatic Research Unit, University of East Anglia, www.cru.uea.ac.uk/

CRU Climatic Research Unit data – The Climate Data Guide: CRU TS3.21 Gridded precipitation and other meteorological variables since 1901. Retrieved from https://climatedataguide.ucar.edu/climate-data/cru-ts321-gridded-precipitation-and-other-meteorological-variables-1901.

Cold Regions Research and Engineering Laboratory (CRREL) www.crrel.usace.army.mil

Compendium of Meteorology https://archive.org/details/compendiumofmete00amer

COOP – Cooperative Observer Network Data for the United States

www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop

Digital Soils Data Base (IGBP-DIS) www.daac.ornl.gov/

ENSO and Seasonal Climate Forecasts

Climate Prediction Center/NCEP/NOAA www.cpc.noaa.gov/

European Centre for Medium-Range Weather Forecasts www.ecmwf.int/en/forecasts

International Research Center for climate and society (IRI) https://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/

ENSO Monitoring websites (NOAA)

www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/index.shtml

www.climate.gov/enso

ENSO Blog (NOAA)

www.climate.gov/news-features/department/enso-blog

EOF and SVD – A Manual for EOF and SVD Analyses of Climatic Data (H.Bjornsson and S.A. Venega) C2GCR Report 97–1, Feb 1997 www.jsg.utexas.edu/fu/siles/EOFSVD.pdf

EPA 2014, Environmental Protection Agency Ozone website. http://cfpub.epa.gov/airnow/index.cfm?action=gooduphigh.index

ERA20c – ECMWF 20th Century Reanalysis Data http://apps.ecmwf.int/datasets/data/era20c-ofa/

ESRL/PSD Earth System Research Laboratory/Physical Science Division/NOAA. Climate and Weather Data www.esrl.noaa.gov/psd/data/

European Space Agency (ESA) Climate Change Initiative (CCI) Land Cover project www.esa-landcover-cci.org/

European Space Agency (ESA) Earth Observation Data https://earth.esa.int/web/guest/home

GADR – Global Argo Data Repository

www.nodc.noaa.gov/argo/

GHCN – Global Historical Climate Network NCEI/NOAA www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn

Global Land Surface Facility (GLCF) http://glcf.umd.edu/data/landcover/description.shtml Data are available at 1o, 8 km and 1 km resolution. Land surface is characterized into 13 classes.

Global Multi-resolution Terrain Elevation Data (GMTED2010) http://eros.usgs.gov/elevation-products Vertical resolution of roughly 25–40m depending on horizontal resolution either on ½, ¼ to 1/8 degree Data poleward of 60oN may be incomplete. https://lta.cr.usgs.gov/GMTED2010. The U. S. Geological Survey (USGS) provides a National Elevation Data set for the United States at horizontal resolutions 10 m to 30 m. The USGS also provides global DEM data (ref GMTED2010) at comparable horizontal resolutions and vertical resolutions of 25 m to 30 m. Data are incomplete north of 60o N.

Global Reservoir and Lake Monitor

https://ipad.fas.usda.gov/cropexplorer/global_reservoir/

Glossary of Meteorology, American Meteorological Society

http://glossary.ametsoc.org

GRACE (Gravity Recovery and Climate experiment. www.nasa.gov/mission_pages/Grace/

Great Lakes Environmental Research Laboratory (GLERL) www.glerl.noaa.gov/data

Harvard School of Design for general information about using digital elevation models. www.gsd.harvard.edu/gis/manual/dem/

Hurrell, James & National Center for Atmospheric Research Staff (Eds). Last modified 28 Aug 2013. The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). Retrieved from https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based.

IMD – India Meteorological Department – www.imd.gov.in/pages/monsoon_main.php

Integrated Climate Data Center (ICDC) – Land Type Data are distributed by the Land Processes Distributed Active Archive Center (LP DAAC), located at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center http://lpdaac.usgs.gov and also distributed in netCDF format by the Integrated Climate Data Center (ICDC, http://icdc.zmaw.de) University of Hamburg, Hamburg, Germany.

International Geosphere Biosphere Programme (IGBP) www.igbp.net/

International Soil Moisture Network (ISMN) www.ipf.tuwein.ac.at/insitu

International Surface Irradiance Study (ISIS) datasets www.esrl.noaa.gov/gmd/grad/isis/index.html

International Surface Pressure Databank (ISPD) http://reanalyses.org/observations/international-surface-pressure-databank

IPCC History www.ipcc.ch/organization/organization_history.shtml

IPCC Third Assessment Report (TAR) www.ipcc.ch/ipccreports/tar/wg1/index.php?idp=38

IPWG – International Precipitation Working Group http://ipwg.isac.cnr.it/data/datasets3.html

IRI/LDEO Data Library, http://iridl.ldeo.columbia.edu/

IRI Maproom – http://iridl.ldeo.columbia.edu/maproom/

JRA-55C reanalysis https://climatedataguide.ucar.edu/climate-data/jra-55c-reanalysis-using-conventional-observations

JRA-55AMIP http://dias-dmg.tkl.iis.u-tokyo.ac.jp/dmm/doc/JRA55_AMIP-DIAS-en.html

Long-term Data Record (NDVI and other products) (https://ltdr.modaps.eosdis.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi)

MERRA-2 Reanalysis

https://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=%22MERRA-2%22

MJO Monitoring www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjoupdate.pdf

NASA – Earth Data Centers https://earthdata.nasa.gov/

NASA – Land cover types http://earthobservatory.nasa.gov

NASA Global Change Master Directory http://gcmd.nasa.gov

NASA – USGS Land Products DAAC https://lpdaac.usgs.gov/products/

National Climatic Data Center (NCDC) Paleoclimatology web site www.ncdc.noaa.gov/paleo/abrupt/data4.html

The National Map – https://nationalmap.gov/landcover.html

National Climatic Data Center (NCDC) drought indices www.ncdc.gov/oa/climate/research/prelim/drought/palmer.html

NCDC maps of seasonal climate change www.ncdc.noaa.gov/oa/climate/research/trends.html#top

National Drought Mitigation Center, University of Nebraska, Lincoln. http://drought.unl.edu/Planning/Monitoring/ComparisonofIndicesIntro/PDSI.aspx

National Geophysical Data Center (NGDC) www.ngdc.noaa.gov/ and www.ngdc.noaa.gov/mgg/topo/globe.html

National Ice Center – www.natice.noaa.gov Ref for the Interactive Multisensor Snow and Ice Mapping System (IMS)

Natural Resources Conservation Service (NRCS) www.wcc.nrcs.usda.gov

National Snow and Ice Data Center – NSIDC, 2011: Global lake and rice ice phenology. Internal development version accessed by NSIDC staff, December 2011. http://nsidc.org/data/lake_river_ice

NLCD, National Land Cover Database, 2006: Produced by the U.S. Geological Survey in conjunction with the Multi-Resolution Land Characteristics Consortium (MRLC). Available for no charge at www.mrlc.gov

NOAA Central Library Photos www.photolib.noaa.gov

NOAA Central Library Weather Maps www.lib.noaa.gov/collections/imgdocmaps/daily_weather_maps.html

NOAA Earth System Research Laboratory (ESRL) www.esrl.noaa.gov/psd/index.html)

Normalized Difference Vegetation Index (NDVI) data and more information at http://gcmd.nasa.gov/records/GCMD_EOSWEBSTER_NOAANASA_Path_NDVI.html or http://iridl.ldeo.columbia.edu/SOURCES/NASA/GES-DAAC/PAL/.vegetation/.pal_ndvi.html or https://lta.cr.usgs.gov/NDVI

North American Soil Moisture Database (NASMD) http://soilmoisture.tamu.edu/

NSIDC – National Snow and Ice Data Center http://nsidc.org/

NSIDC – Nomenclature http://nsidc.org/cryosphere/seaice/data/terminology.html

PMEL – Pacific Marine Environmental Laboratory www.pmel.noaa.gov/

PRISM – Parameter-elevation Regressions on Independent Slopes Model http://prism.oregonstate.edu

Radiosondes – NCAR historical summary www.eol.ucar.edu/homes/junhong/Ency-radiosonde.pdf

Radiosonde Atmospheric Temperature Products for Assessing Climate – NCDC www.ncdc.noaa.gov/oa/climate/ratpac/

Rutgers Global Snow laboratory http://climate.rutgers.edu/snowcover/

SCAN (Soil Climate Analysis Network) www.wcc.nrcs.usda.gov/scan

Snow Measurement Guidelines www.nws.noaa.gov/os/coop/reference/Snow_Measurement_Guidelines.pdf

Sea Surface Temperature (SST) data

Blended Satellite and in situ data www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html

or

www.ncdc.noaa.gov/oisst

In situ SST Data

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00884

or

www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v4

Soil Moisture Operational Products System (SMOPS) www.ospo.noaa.gov/Products/land/smops/

Standard Rain Gage – www.weather.gov/iwx/coop_8inch

STAR – NOAA Center for Satellite Applications and Research

www.star.nesdis.noaa.gov/

Sunshine hours tables http://aa.usno.navy.mil/data/docs/Dur_OneYear.php

Surface-based cloud observations https://atmos.washington.edu/CloudMap/WebO/index.html

Tokyo Climate Center ds.data.jma.go.jp/tcc/tcc/

United Kingdom Meteorological Office (UKMO) Unified Model –

www.metoffice.gov.uk/research/modelling-systems/unified-model

U.S. Climate Reference Network

www.ncdc.noaa.gov/crn/

U.S Coast Guard Navigation Center

https://navcen.uscg.gov/?pageName=iipHowDoTheLabradorAndGulfStreamCurrentsAffectIcebergsInTheNorthAtlanticOcean

U.S. Drought Monitor

http://droughtmonitor.unl.edu/

The U.S. Drought Monitor Facts Sheet, NOAA, 2012 www.nws.noaa.gov/om/csd/graphics/content/outreach/brochures/FactSheet_Drought.pdf

USGS National Elevation Dataset 3–10m resolutions available at no cost on http://nationalmap.gov/viewer.html. This data set also includes Land Cover.

USGS Fact Sheet Colorado River, 2004: 3062 Version 2 http://pubs.usgs.gov/fs/2004/3062

U.S. Department of Agriculture – National Resources Conservation Service www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/

Weekly Weather and Crop Bulletin www.usda.gov/oce/weather/

World Radiation Monitoring Center www.bsrn.awi.de/

WMO (2003) www.wmo.int/pages/prog/wcp/documents/Guidefulltext.pdf

WMO Guide to Climatological Practices (2011) Can be downloaded from www.wmo.int/pages/prog/wcp/ccl/guide/guide_climat_practices.php

Adler, R. F., and Negri, A. J., 1988: A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall. J. Appl. Meteor., 27, 3051.Google Scholar
Adler, R. F., Kidd, C., Petty, G., Morissey, M., and Goodman, H. M., 2001: Intercomparison of Global Precipitation Products: The Third Precipitation Intercomparison Project (PIP–3). Bull. Amer. Meteor. Soc., 82, 13771396.Google Scholar
Adler, R. F. et al., 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeor., 4, 11471167.2.0.CO;2>CrossRefGoogle Scholar
Alley, W. M., 1984: The Palmer Drought Severity Index: Limitations and Assumptions. J. Clim. And Appl. Meteor., 23, 11001109.2.0.CO;2>CrossRefGoogle Scholar
AMS, 2013: Drought: An Information Statement of the American Meteorological Society. Bull. Amer. Meteor. Soc., 94, 19321936.Google Scholar
Angell, J. K., 1988: Variations and Trends in Tropospheric and Stratospheric Global Temperatures, 1958–87. J. Clim. 1, 12961313.Google Scholar
Angell, J. K., and Korshover, J., 1964: Quasi-Biennial Variations in Temperature, Total Ozone, and Tropospheric Height. J. Atmos. Sci., 21, 479492.2.0.CO;2>CrossRefGoogle Scholar
Angell, J. K., and Korshover, J.. 1983: Global Temperature Variations in the Troposphere and Stratosphere, 1958–82. Mon. Wea. Rev. 111, 901–21.2.0.CO;2>CrossRefGoogle Scholar
Arguez, Anthony, and Applequist, Scott, 2013: A Harmonic Approach for Calculating Daily Temperature Normals Constrained by Homogenized Monthly Temperature Normals. J. Atmos. Oceanic Technol., 30, 12591265.CrossRefGoogle Scholar
Arkin, P. .A., 1979: The Relationship between Fractional Coverage of High Cloud and Rainfall Accumulations during Gate over the B-Scale Array. Mon. Wea. Rev., 107, 13821387.2.0.CO;2>CrossRefGoogle Scholar
Arkin, P. A., 1982: The Relationship Between Interannual Variability in the 200 mb Tropical Wind Field and the Southern Oscillation. Monthly Weather Review, 110, 13931404.2.0.CO;2>CrossRefGoogle Scholar
Arkin, P. A., 1989: The Global Precipitation Climatology Project. Adv. Space Res., 9, 311316.CrossRefGoogle Scholar
Arkin, P. A., and Meisner, B., 1987: The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174.2.0.CO;2>CrossRefGoogle Scholar
Arkin, P. A., and Xie, P., 1994: The Global Precipitation Climatology Project: First Algorithm Intercomparison Project. Bull. Amer. Meteor. Soc., 75, 401419.Google Scholar
Arkin, P. A., Joyce, R., and Janowiak, J. E., 1994: IR Techniques: GOES Precipitation Index. Remote Sens. Rev., 11, 107124.CrossRefGoogle Scholar
Arkin, P. A., Kopman, J. D., and Reynolds, R. W. 1983. 1982-1983 El Niiio/Southern Oscillation Event quick look atlas (Available through the NOAA Central Library, SSMC3, 1315 East West Highway, Silver Spring, MD 20910).Google Scholar
Arkin, P. A., Smith, T. M., Sapiano, M. R. P., and Janowiak, J., 2010: The Observed Sensitivity of the Global Hydrological Cycle to Changes in Surface Temperature. Environ. Res. Lett., 5, 035201.Google Scholar
Arrhenius, S., 1896: On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Philosophical Magazine and Journal of Science (Fifth Series), 41, 237275. See www.rsc.org/images/Arrhenius1896_tcm18-173546/pdf.CrossRefGoogle Scholar
Assel, R. A., 2005: Classification of Annual Great Lakes Ice Cycles: Winters 1973–2002. J. Clim., 18, 48954905.CrossRefGoogle Scholar
Baldwin, M. P., and Dunkerton, T. J., 1999: Propagation of the Arctic Oscillation from the Stratosphere to the Troposphere. J. Geophys. Res., 104, 3093730946.Google Scholar
Baldwin, M. P. and co-authors, 2001: The Quasi-Biennial Oscillation. Revi. of Geophys., 39, 179229.CrossRefGoogle Scholar
Barnston, A. G., and Livezey, R. E., 1987: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon. Wea. Rev., 115, 10831126.Google Scholar
Barnston, A. G., and Livezey, R. E., 1989: A Closer Look at the Effect of the 11-Year Solar Cycle and the Quasi-Biennial Oscillation on Northern Hemisphere 700 mb Height and Extratropical North American Surface Temperature. J. Clim., 2, 12951313.2.0.CO;2>CrossRefGoogle Scholar
Barnston, A. G., and Livezey, R. E., 1991: Statistical Prediction of January-February Mean Northern Hemisphere Lower Tropospheric Climate from the 11-Year Solar Cycle and the Southern Oscillation for West and East QBO Phases. J. Clim., 4, 249262.2.0.CO;2>CrossRefGoogle Scholar
Barnston, A. G., and Ropelewski, C. F., 1992: Prediction of ENSO Episodes Using Canonical Correlation Analysis. J. Clim., 5, 13161345.2.0.CO;2>CrossRefGoogle Scholar
Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S., and DeWitt, D. G., 2012: Skill of Real-Time Seasonal ENSO Model Predictions during 2002–11: Is Our Capability Increasing? Bull. Amer. Meteor. Soc., 93, 631651.CrossRefGoogle Scholar
Barrett, E. C., 1970: The Estimation of Monthly Rainfall from Satellite Data. Mon. Wea. Rev., 98, 322327.2.3.CO;2>CrossRefGoogle Scholar
Barrett, B. S., and Leslie, L. M., 2009: 2009: Links between Tropical Cyclone Activity and Madden-Julian Oscillation Phase in the North Atlantic and Northeast Pacific Basins. Mon. Wea. Rev., 137, 727744.CrossRefGoogle Scholar
Barry, R., and Gan, T. Y., 2011: The Global Cryosphere: Past, Present, Future, Cambridge University Press, 472 pp., ISBN 978-0-521-15685-1.CrossRefGoogle Scholar
Becker, E. J., Berbery, E. H., and Higgins, R. W., 2011: Modulation of Cold-Season U.S. Daily Precipitation by the Madden-Julian Oscillation. Jour. of Clim., 24. 51575166.CrossRefGoogle Scholar
Becker, F. and Li, Z. L., 1990: Temperature-Independent Spectral Indices in Thermal Infrared Bands. Remote Sensing of the Environment, 32, 1733.CrossRefGoogle Scholar
Behrangi, A., and Stephens, G., 2014: An Update on the Oceanic Precipitation Rate and Its Zonal Distribution in Light of Advanced Observations from Space. J. Clim., 27, 39573965.CrossRefGoogle Scholar
Bengtsson, L., and Shukla, J., 1988: Integration of Space and In Situ Observations to Study Global Climate Change. Bull. Amer. Meteor. Soc., 69, 11301143.Google Scholar
Berlage, H. P., 1966: The Southern Oscillation and World Weather. Meded. Verh. K. Ned. Meteor. Inst. 152pp.Google Scholar
Bieniek, P. A., Bhat, U. S., Rundquist, L. A., Lindsey, S. D., Zhang, X., and Thoman, R. L., 2011: Large-Scale Climate Controls of Interior Alaska River Ice Breakup. J. Clim., 24, 286297.Google Scholar
Birkett, C. M., Reynolds, C., Beckley, B., and Doorn, B., 2010: From Research to Operations: The USDA Global Reservoir and Lake Monitor, Chapter 2 in Coastal Altimetry, ed. Vignudelli, S., Kostianoy, A. G., Cipollini, P. and Benveniste, J., Springer Publications, ISBN 978-3-642-12795-3.Google Scholar
Bjerknes, J., 1966: A Possible Response of the Atmospheric Hadley Circulation to Equatorial Anomalies of Ocean Temperature. Tellus, 18, 820829.Google Scholar
Bjerknes, J., 1969: Atmospheric Teleconnections from the Equatorial Pacific. Mon. Wea. Rev., 98, 820829.Google Scholar
Blackmon, M. L., Wallace, J. M., Lau, N.-C., and Mullen, S. L., 1977: An Observational Study of the Northern Hemisphere Wintertime Circulation. J. Atmosph. Sci., 34, 10401053.2.0.CO;2>CrossRefGoogle Scholar
Blunden, J. and Arndt, D. S. (Eds.), 2013: The State of the Climate in 2012. Bull. Amer. Meteor. Soc., 94, 240, Appendix 2. Relevant Datasets and Sources, pp. S205–S211 (Lists the urls for a large number of datasets used in climate monitoring).CrossRefGoogle Scholar
Bourlès, B. et al., 2008: THE PIRATA PROGRAM: History, Accomplishments, and Future Directions. Bull. Amer. Meteor. Soc., 89, 11111125.CrossRefGoogle Scholar
Boyer, T. P. et al., 2013: World Ocean Database 2013. Silver Spring, MD, NOAA Printing Officce, 208pp. (NOAA Atlas NESDIS, 72).Google Scholar
Bradley, R. S. and Jones, P. D., 1993: ‘Little Ice Age’ Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends. Holocene, 3, 376.Google Scholar
Broecker, W., 2010: The Great Ocean Conveyor. Princeton University Press. 154 pp.CrossRefGoogle Scholar
Broecker, W., 1998: The Paleoocean Circulation during the Last Deglaciation. A Bi-Polar Seesaw? Paleocenography, 13, 119121.CrossRefGoogle Scholar
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. and Jones, P. D., 2006: Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Data Set from 1850. J. Geophys. Res., 111, D12106, DOI:10.1029/2005JD006548.Google Scholar
Budyko, M. I., 1969: The Effect of Solar Radiation Variations on the Climate of the Earth. Tellus, 21, 611619.CrossRefGoogle Scholar
Büntgen, U., Frank, D. C., Nievergelt, D., and Esper, J, 2006: Summer Temperature Variations in the European Alps, a.d. 755–2004. J. Clim., 19, 56065623.CrossRefGoogle Scholar
Bushugyev, A.V., 2012: WMO Sea Ice Nomenclature, 12 pp. Available from the World MeteoroGreenland Survey, 38 pp., ISBN87–91144-00–0logical Organization. (Check date and details.)Google Scholar
Byrd, G. P., 1985: An Adjustment for the Effects of Observation Time on Mean Temperature and Degree-Day Computations. J. Clim. Appl. Meteor., 24, 869874.2.0.CO;2>CrossRefGoogle Scholar
Cahill, T. (Ed.) 1998: South, Lyons Press Edition, ISBN 1-55821-783-5.Google Scholar
Callendar, G. S., 1938: The Artificial Production of Carbon Dioxide and Its Influence on Temperature. Quart, J. Roy. Meteor. Soc. 64, 223237.CrossRefGoogle Scholar
Callendar, G. S., 1961: Temperature Fluctuations and Trends over the Earth. Quart. J. Roy. Meteor. Soc., 87, 112.Google Scholar
Camp, C. D. and Tung, K.-K., 2007: The Influence of the Solar Cycle and QBO on the Late-Winter Stratospheric Polar Vortex. J. Atmos. Sci., 64, 12671283.CrossRefGoogle Scholar
Cane, M. A., Zebiak, S. E., and Dolan, S. C., 1986: Experimental Forecasts of El Niño. Nature, 321, 827832.CrossRefGoogle Scholar
Chang, C-P. (Ed.), 2011: The Global Monsoon System: Research and Forecast, World Meteorological Organiztion, WMO/TD 1266, (TMRP Report 70).Google Scholar
Chapman, W. and National Center for Atmospheric Research Staff (Eds.) Last modified 20 Aug 2013. “The Climate Data Guide: Walsh and Chapman Northern Hemisphere Sea Ice.” Retrieved from https://climatedataguide.ucar.edu/climate-data/walsh-and-chapman-northern-hemisphere-sea-ice.Google Scholar
Charney, J. W., Quirk, J., Chow, S–h, and Kornfield, J., 1977: A Comparative Study of the Effects of Albedo Change on Drought in Semi–Arid Regions. J. Atmos. Sci., 34, 13661385.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. et al., 1979: Carbon Dioxide and Climate: A Scientific Assessment. National Acad. Sci., Washington, DC 18 pp. Available from the Climate Research Board and online Chaney_report.pdf.Google Scholar
Chelliah, M. and Ropelewski, C. F., 2000: Reanalyses-Based Tropospheric Temperature Estimates: Uncertainties in the Context of Global Climate Change Detection. J. Clim., 13, 31873205.2.0.CO;2>CrossRefGoogle Scholar
Ciais, P. et al., 2014:. Current Systematic Carbon-Cycle Observations and the Need for Implementing a Policy-Relevant Carbon Observing System. Biogeosciences, 11, 35473602.Google Scholar
Cinquini, L. et al., 2014: The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data. Futur. Gener. Comput. Syst., 36, 400417, DOI:10.1016/j.future.2013.07.002). http://linkinghub.elsevier.com/retrieve/pii/S0167739X13001477.CrossRefGoogle Scholar
Cohen, J., Barlow, M., Kushner, P.J., and Saito, K., 2007: Stratospheric-Tropospheric Coupling and Links with Eurasian Land Surface Variability. J. Clim., 20, 53355343.CrossRefGoogle Scholar
Collins, M, Knutti, R. et al., 2014: Long-term climate change: Projections, Commitments, and Irreversibility. IPCC Assessment Report 5, Working Group 1, Chapter 12., 108 pp. Cambridge University Press.Google Scholar
Comiso, J. C., Cavalieri, D. J., and Markus, T. 2003. Sea Ice Concentration, Ice Temperature, and Snow Depth Using AMSR-E Data. IEEE Transactions on Geoscience and Remote Sensing, 41, 243252.Google Scholar
Compo, G. P. et al., 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteorol. Soc., 137, 128. DOI: 10.1002/qj.776.CrossRefGoogle Scholar
Conkright, M. E. et al., 2002: World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM, Documentation. National Oceanographic Data Center, Silver Spring, MD, 17 pp.Google Scholar
Conover, J. H., 1985: Highlights of the History of the Blue Hill Observatory and the Early Days of the American Meteorological Society. Bulletin of the American Meteorological Society, 66, 3037.2.0.CO;2>CrossRefGoogle Scholar
Dai, A., Trenberth, K. E., and Qian, T., 2004: A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeor., 5, 11171130.Google Scholar
Dai, A., Karl, T. R., Sun, B., and Trenberth, K. E., 2006: Recent Trends in Cloudiness over the United States: A Tale of Monitoring Inadequacies. Bull. Amer. Meteor. Soc., 87, 597606.CrossRefGoogle Scholar
Dalrymple, G.B., 1991: The Age of the Earth, Stanford University Press, 492 pp., ISBN 978-0804-71569-0.Google Scholar
Daly, C., Neilson, R. P., and Phillips, D. L., 1994: A Statistical–Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. J. Appl. Meteor., 33, 140158.2.0.CO;2>CrossRefGoogle Scholar
De Fries, R. S., Hansen, M., Townshend, J. R. G., and Sohlberg, R., 1998: Global Land Cover Classications at 8 km Spatial Resolution: The Use of Training Data Derived from Landsat Imagery in Decision Tree Classifiers. Int.J. Remote Sensing, 19, 31413168.CrossRefGoogle Scholar
DeGaetano, A. T., 2000: A Serially Complete Simulated Observation Time Metadata File for U.S. Daily Historical Climatology Network Stations. Bull. Amer. Meteor. Soc., 81, 4967.Google Scholar
Dewey, K. F. and Heim, R., 1980: A Digital Archive of Northern Hemisphere Snow Cover from November 1966 to December 1980. Bull. Amer. Metsoc., 63, 11321141.2.0.CO;2>CrossRefGoogle Scholar
Dole, R. et al., 2011: Was There a Basis for Anticipating the 2010 Russian Heat Wave? Geophys. Res. Lett., 38, DOI: 10.1029/2010GL046582.Google Scholar
Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A Data Hosting Facility for Global In Situ Soil Moisture Measurements. Hydrol. Earth Syst. Sci., 15, 16751698.CrossRefGoogle Scholar
Dorman, C. E. and Bourke, R. H., 1979: Precipitation over the Pacific Ocean, 30°S to 60°N. Mon. Wea. Rev., 107, 896910.2.0.CO;2>CrossRefGoogle Scholar
Dorman, C. E. and Bourke, R. H., 1981: Precipitation over the Atlantic Ocean, 30°S to 70°N. Mon. Wea. Rev., 109, 554563.2.0.CO;2>CrossRefGoogle Scholar
Doty, B. and Kinter, J. L. III, 1995: Geophysical Data Analysis and Visualization Using GrADS. Visualization Techniques in Space and Atmospheric Sciences, eds. Szuszczewicz, E. P. and Bredekamp, J. H.. (NASA, Washington, DC), 209219.Google Scholar
Durack, P. J. and Wijffels, S. E. 2010: Fifty-Year Trends in Global Ocean Salinities and Their Relationships to Broad-Scale Warming. J. Clim., 23, 43424362.Google Scholar
Durre, I., Reale, T., Carlson, D., Christy, J., Uddstrom, M., Gelman, M., and Thorne, P., 2005: Improving the Usefulness of Operational Radiosonde Data. Bull. Amer. Meteor. Soc., 86, 411418.CrossRefGoogle Scholar
Ebert, E. E., Manton, M. J., Arkin, P. A., Allam, R. J., Holpin, G. E., and Gruber, A., 1996: Results from the GPCP Algorithm Intercomparison Programme. Bull. Amer. Meteor. Soc., 82, 27732785.Google Scholar
Ek, M. and Holtslag, , 2004: Influence of Soil Moisture on Boundary Layer Cloud Development. J. Hydrometeorol., 5, 8699.Google Scholar
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarplay, J. D., 2003: Implementation of Noah Land-Surface Model Advances in the NCEP Operational Mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.Google Scholar
Ekman, V. W. 1905. On the Influence of the Earth’s Rotation on Ocean Currents. Arch. Math. Astron. Phys., 2, 152.Google Scholar
Emery, W. J., Castro, J. S., Wick, G. A., Schuessel, P., and Donlon, C., 2001: Estimating Sea Surface Temperature from Infrared Satellite and In Situ Temperature Data. Bull. Ametsoc., 82, 27732785.Google Scholar
Epstein, E. S., 1985: Statistical Inference and Prediction in Climatology: A Baysian Approach, Meteor. Monogr., 20, 204.Google Scholar
Ewen, T., Grant, A., and Bronnimann, S., 2008: Monthly Upper-Air Dataset for North America Back to 1922 from the Monthly Weather Review. Mon. Wea. Rev., 136, 17921805.CrossRefGoogle Scholar
Fan, Y., and van den Dool, H., 2004: Climate Prediction Center Global Monthly Soil Moisture Data Set at 0.5° Resolution for 1948 to Present. J. Geophys. Res., 109, D10102, doi 10.1029/2003JD004345.Google Scholar
Fan, Y. and van den Dool, H., 2008: A Global Monthly Land Surface Air Temperature Analysis for 1948-Present. J. Geophys. Res., 113, D01103, doi:10.1029/2007JD008470.Google Scholar
Fan, Y., van den Dool, H. M., and Wu, W., 2011: Verification and Intercomparison of Multi-Model Simulated Land Surface Hydrological Data Sets over the United States. J. Hydrometeor., 12, 531555.Google Scholar
Fasullo, J. T. and Trenberth, K. E., 2008a: The Annual Cycle of the Energy Budget, Part I: Global Mean and Land-Ocean Exchanges. J. Clim., 21, 22972312.CrossRefGoogle Scholar
Fasullo, J. T. and Trenberth, K. E., 2008b: The Annual Cycle of the Energy Budget, Part II: Meridional Structures and Poleward Transports. J. Clim., 21, 23132325.CrossRefGoogle Scholar
Ferrel, W., 1889: A Popular Treatise on the Winds. MacMillian and Co., London.Google Scholar
Ferraro, R. R., 1997: SSM/I Derived Global Rainfall Estimates for Climatological Applications, J. Geophys. Res., 102, 1671516735.Google Scholar
Fetterer, F., Knowles, K., Meier, W., Savoie, M., and Windnagel, A. K., 2017: updated daily. Sea Ice Index, Version 3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. doi: http://dx.doi.org/10.7265/N5K072F8.Google Scholar
Fleagle, R. G. and Businger, J. A., 1980: An Introduction to Atmospheric Physics, 2nd Edition, Academic Press, New York. 432 pp.Google Scholar
Folland, C. K., 1988: Numerical Models of the Raingauge Exposure Problem, Field Experiments and an Improved Collector Design. Quart. J. Roy. Meteor. Soc., 114, 14851516.CrossRefGoogle Scholar
Folland, C. K., and Parker, D. E., 1995: Correction of Instrumental Biases in Historical Sea Surface Temperature Data. Quarterly Journal of the Royal Meteorological Society, 121, 319367.Google Scholar
Francis, J., 2017: Why Are Arctic Linkages to Extreme Weather Still Up in the Air? Bull. Amer. Meteor. Soc., 98, 25512557.CrossRefGoogle Scholar
Free, M., Seidel, D. J., Angell, J. K., Lanzante, J., Durre, I., and Peterson, T. C., (2005): Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A New Data Set of Large-Area Anomaly Time Series. J. Geophys. Res., 110, D22101.CrossRefGoogle Scholar
Garratt, J. R., Prata, A. J., Rotstayn, L. D., McAvaney, B. J., and Cusack, S., 1998: The Surface Radiation Budget over Oceans and Continents. J. Clim., 11, 19511968.Google Scholar
Gates, L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970.2.0.CO;2>CrossRefGoogle Scholar
Ge, Q-S, Zheng, J-Y, Hao, Z-X, Zhang, P-Y, and Wang, W-C, 2005: Reconstruction of Historical Climate in China: High-resolution Precipitation Data from Qing Dynasty Archives. Bull.Amer. Meteor. Soc., 86, 671679.CrossRefGoogle Scholar
Global Soil Data Task Group, 2000: Global Gridded Surfaces of Selected Soil Charactersitics International Geosphere-Biosphere Program – Data and Information System (IGBP-DIS).CrossRefGoogle Scholar
Gifford, H. Miller, Southon, John R., Anderson, Chance, Björnsson, Helgi, Thordarson, Thorvaldur, Geirsdottir, Aslaug, Zhong, Yafang, Larsen, Darren J, Otto-Bliesner, Bette L, Holland, Marika M, Anthony Bailey, David, Refsnider, Kurt A., and Lehman, Scott J., 2012: Abrupt Onset of the Little Ice Age Triggered by Volcanism and Sustained by Sea-Ice/Ocean Feedbacks. Geophysical Research Letters, 2012; DOI: 10.1029/2011GL050168.Google Scholar
Greene, A. M, Goddard, L., and Cousins, R., 2011: Web Tool Deconstructs Variability in Twentieth-Century Climate. Eos Trans. AGU, 92, 397, doi:10.1029/2011EO450001.Google Scholar
Griffith, C. G., Woodley, W. L., Grube, P. G., Martin, D. W., Stout, D. N. Sikdar, , 1978: Rain Estimation from Geosynchronous Satellite Imagery: Visible and Infrared Studies. Mon. Wea. Rev., 106, 11531171.Google Scholar
Grody, N. C., 1991: Classification of Snow Cover and Precipitation using the Special Sensor Microwave/Imager (SSM/I). J. Geophys. Res., 96, 74237435.Google Scholar
Gutman, G., Tarpley, D., Ignatov, A., and Olson, S., 1995: The Enhanced NOAA Global Land Data Set from the Advanced Very High Resolution Radiometer. Bull. Amer. Meteor. Soc., 76, 11411156.Google Scholar
Guttman, N. B. and Quayle, G., 1996: A Historical Perspective of U.S. Climate Divisions. Bull. Amer. Meteor. Soc., 77, 293303.2.0.CO;2>CrossRefGoogle Scholar
Hadley, D., 1735: Concerning the Cause of the General Trad-Winds. Phil. Trans., 29, 5862.Google Scholar
Hahn, C. J., Rossow, W. B., and Warren, S. G., 2001: ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations. J. Clim., 14, 1128.2.0.CO;2>CrossRefGoogle Scholar
Halide, H. and Ridd, P. V., 2008: Complicated Models Do not Significantly Outperform Very Simple ENSO Models. Int. Jour.of Clim., 28, 219233.CrossRefGoogle Scholar
Halley, E., 1686: An Historical Account of the Trade-Winds and Monsoons Observable in the Seas between and Near the Tropicks with an Attempt to Assign the Physical Cause of Said Winds. Phil. Trans., 26, 153168.CrossRefGoogle Scholar
Halpert, M. S. and Ropelewski, C. F., 1992: Surface Temperature Patterns Associated with the Southern Oscillation. J. Clim., 5, 577593.2.0.CO;2>CrossRefGoogle Scholar
Halpert, M. S., Bell, G. D., Kousky, V. E., and Ropelewski, C. F., 1996: Climate Assessment for 1995. Bull. Amer. Meteor. Soc., 77, S1S44.Google Scholar
Hamming, R. W., 1986: Numerical Methods for Scientists and Engineers, Second Edition, 721 pp. Dover Reprint of original McGraw-Hill (1973).Google Scholar
Hansen, J. and Lebedeff, S., 1987: Global Trends of Measured Surface Air Temperature. J. Geophys. Res., 92, 1334513372.Google Scholar
Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R., 2000: Global Land Cover Classification at 1 km Spatial Resolution Using A Classification Tree Approach. Int. J. Remote Sensing, 21,13311364.Google Scholar
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H., 2014: Updated High-Resolution Grids of Monthly Climatic Observations: The CRU TS3.10 Dataset. International Journal of Climatology, 34, 623642.CrossRefGoogle Scholar
Hastenrath, S., 1991: Climte Dynamics of the Tropics, Kluwer Academic Publishers, 488 pp., ISBN 0-7923-1213-9.Google Scholar
Hastings, David A. and Dunbar, Paula K., 1999. Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Documentation, Volume 1.0. Key to Geophysical Records Documentation (KGRD) 34. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80303, U.S.A. Web address below.Google Scholar
Hayes, Michael J., Svoboda, Mark D., Wilhite, Donald A., and Vanyarkho, Olga V., 1999: Monitoring the 1996 Drought Using the Standardized Precipitation Index. Bull. Amer. Meteor. Soc., 80, 429438.Google Scholar
Hayes, S. P., Mangum, L. J., Picaut, J., Sumi, A., and Takeuchi, K., 1991: TOGA-TAO: A Moored Array for Real-Time Measurements in the Tropical Pacific Ocean. Bull. Amer. Meteor. Soc., 72, 338347.Google Scholar
Heim, R. R., 2002: A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165.CrossRefGoogle Scholar
Hersbach, H. and Dee, D., 2016: ERA5 reanalysis is in production. ECMWF Newsletter 147, April 2016, can be found at www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production.Google Scholar
Hildenbrandsson, H. H., 1897: Quelques recherches sur le centres d’action de l’atmosphere. Kon. Svenska Vetens.-Acad. Handl., 29, 36.Google Scholar
Hoffman, R. N., Prive, N., and Bourassa, M., 2017: Comments on “Reanalyses and Observations: What’s the Difference?” Bull. Amer. Meteor. Soc., 98, 24552459.Google Scholar
Hollinger, S. E. and Isard, S. A., 1994: A Soil Moisture Climatology of Illinois. J. Clim., 7, 822833.2.0.CO;2>CrossRefGoogle Scholar
Holton, J. R. and Lindzen, R.S., 1972: An Updated Theory of the Quasi-Biennial Oscillation in the Tropical Stratosphere. J. Atmos. Sci., 29, 10761080.Google Scholar
Horel, J. D. and Wallace, J. M., 1981: Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829.Google Scholar
Huang, J., van den Dool, H. M., and Barnston, A. G., 1996: Long-Lead Seasonal Temperature Prediction Using Optimal Climate Normals. J. Clim., 9, 809817.Google Scholar
Huang, J., van den Dool, H. M., and Georgarakos, K. P., 1996: Analysis of Model-Calculated Soil Moisture over the United States (1931–1993) and Long-Range Temperature Forecasts. J. Clim., 9, 13501362.Google Scholar
Huffman, G. J., Adler, R. F., P. A., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B., and Schneider, U., 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Data Set. Bull. Amer. Meteor. Soc., 78, 520.Google Scholar
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Stocker, E. F., and Wolff, D. B., 2007: The TRMM Multi-Satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale. J. Hydrometeor., 8, 3855.Google Scholar
Huffman, G.J., Bolvin, D. T., Nelkin, E. J., 2015: Day 1 IMERG Final Run Release Notes. http://pmm.nasa.gov/sites/default/files/document_files/IMERG_FinalRun_Day1_release_notes.pdf.Google Scholar
Huler, S., 2004: Defining the Wind: The Beaufort Scale and How a Nineteenth-Century Admiral Turned Science into Poetry. Crown Publishers, Random House.Google Scholar
Hurrell, J. W. and Trenberth, K. E., 1999: Global Sea Surface Temperature Analyses: Multiple Problems and Their Implications for Climate Analysis, Modeling, and Reanalysis. Bull. Amer. Meteor. Soc., 80, 26612678.Google Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., eds., 2003: The North Atlantic Oscillation: Climate Significance and Environmental Impact, American Geophysical Union, Geophysical Monograph Series, 134, 279 pp.Google Scholar
Hurrell, J. W., Trenberth, K. E., Brown, S. J., and Christy, J. R., 2000: Comparison of Tropospheric Temperatures from Radiosondes and Satellites: 1979–98. Bull. Amer. Meteor. Soc., 81, 21652177.2.3.CO;2>CrossRefGoogle Scholar
Hurrell, J.W. et al., 2006: Atlantic Climate Predictability and Variability: A CLIVAR Perspective. J. Clim., 19, 51005121.Google Scholar
Hurst, H. E., 1951: Long Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng., 116, 770.Google Scholar
Huybers, P., 2006: Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing. Science, 313, 508511.Google Scholar
Janis, M. J., 2002: Observation-Time-Dependent Biases and Departures for Daily Minimum and Maximum Air Temperatures. J. Appl. Meteor., 41, 588603.Google Scholar
Janowiak, J. E., Ropelewski, C. F., and Halpert, M. S., 1986: The Precipitation Anomaly Classification: A Method for Monitoring Regional Precipitation Deficiency and Excess on a Global Scale. J. Clim. Appl. Meteor., 25, 565574.2.0.CO;2>CrossRefGoogle Scholar
Jones, P. D., Wigley, T. M. L., and Kelly, P. M., 1982: Variations in Surface Air Temperatures: Part 1. Northern Hemisphere, 1881–1980. Mon. Wea. Rev., 110, 5970.2.0.CO;2>CrossRefGoogle Scholar
Jones, P. D., Raper, S. C. B., and Wigley, T. M. L., 1986a: Southern Hemisphere Surface Air Temperature Variations: 1851–1984. J. Clim. Appl. Meteorol., 25, 12131230.Google Scholar
Jones, P.D., Raper, S. C. B., Bradley, R. S., Diaz, H. F., Kelly, P. M., and Wigley, T. M. L., 1986b: Northern Hemisphere Surface Air Temperature Variations: 1851–1984. J. Clim. Appl. Meteorol., 25, 161179.Google Scholar
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P., 2004: CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeor., 3, 487503.Google Scholar
Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M., and Morice, C. P., 2012: Hemispheric and Large-Scale Land-Surface Air Temperature Variations: An Extensive Revision and an Update To 2010. Journal of Geophysical Research, 117, D05127 (doi:10.1029/2011JD017139).Google Scholar
Kalnay, E. et al., 1996: The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Met. Soc., 77, 437471.Google Scholar
Kalnay, E., 2003: Atmospheric modelling, data assimilation and predictability. Cambridge University Press, pp. xxii + 341. ISBNs 0 521 79179 0, 0 521 79629 6.Google Scholar
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L., 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83, 16311643.Google Scholar
Kaplan, A., Kushnir, Y., and Cane, M. A., 2000: Reduced Space Optimal Interpolation of Historical Marine Sea Level Pressure: 1854-1992. J. Clim., 13, 29873002.2.0.CO;2>CrossRefGoogle Scholar
Kaplan, A., Kushnir, Y., Cane, M. A., and Blumenthal, M. B., 1997: Reduced Space Optimal Analysis for Historical Datasets: 136 Years of Atlantic Sea Surface Temperatures. J. Geophys. Res., 102, 27,83527,860.Google Scholar
Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummet, N., Razuvayev, V., Gallo, K. P., Lindesay, J., Charlson, R. J., and Peterson, T. C., 1993: A New Perspective on Recent Global Warming – Asymmetric Trends of Daily Maximum and Minimum Temperatures. Bull. Am. Meteorol. Soc., 74, 10071023.Google Scholar
Karl, T. R., Williams, Claude N. Jr., Young, Pamela J., and Wendland, Wayne M., 1986: A Model to Estimate the Time of Observation Bias Associated with Monthly Mean Maximum, Minimum and Mean Temperatures for the United States. J. Clim. Appl. Meteor., 25, 145160.Google Scholar
Karlsen, H. G., Bille-Hansen, J., Hansen, K. Q., Anderson, H. S., and Skourup, H., 2001: Distribution and variability of icebergs in the eastern Davis Strait 63oN to 68oN., Greenland Survey, 38 pp., ISBN 87-91144-00-0.Google Scholar
Kasahara, A. and Washington, W. M., 1971: General Circulation Experiments with a Six-Layer NCAR Model, Including Orography, Cloudiness and Surface Temperature Calculations. J. Atmos. Sci., 28, 657701. doi: http://dx.doi.org/10.1175/1520–0469(1971)028<0657:GCEWAS>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Kidder, S. Q. and von der Haar, T. H., 1995: Satellite Meteorology – An Introduction. Academic Press, New York. 466 pp.Google Scholar
Kiehl, J. T. and Trenberth, K. E., 1997: Earth’s Annual Global Mean Energy Budget. Bull. Amer. Meteor. Soc., 78, 197208.Google Scholar
Kiladis, G. N. and van Loon, H., 1988: The Southern Oscillation. Part VII: Meteorological Anomalies over the Indian and Pacific Sectors Associated With the Extremes of the Oscillation. Mon. Wea. Rev., 116, 120136.Google Scholar
Klotzbach, P. J., 2014: The Madden–Julian Oscillation’s Impacts on Worldwide Tropical Cyclone Activity. J. Clim., 27, 23172330, https://doi.org/10.1175/JCLI-D-13–00483.1.Google Scholar
Kohl, E. and Knox, J. A., 2016: My Drought is Different from Your Drought: A Case Study of Policy Implications of Multiple Ways of Knowing Drought. Weather, Climate, and Society, 4, 373388.Google Scholar
Kolb, R., 1997: Blind Watchers of the Sky, Oxford University Press, 338 pp., ISBN 0-19-286203-0.Google Scholar
Können, G. P., Jones, P. D., Kaltofen, M. H., and Allan, R. J., 1998: Pre-1866 Extensions of the Southern Oscillation Index Using Early Indonesian and Tahitian Meteorological Readings. J. Clim., 11, 23252339.2.0.CO;2>CrossRefGoogle Scholar
Köppen, W., 1881: Über mehrjährige Perioden der Witterung – III. Mehrjährige Änderungen der Temperatur 1841 bis 1875 in den Tropen der nördlichen und südlichen gemässigten Zone, an den Jahresmitteln. untersucht. Zeitschrift der Österreichischen Gesellschaft für Meteorologie, XVI, 141150.Google Scholar
Kummerow, C., Hong, Y., Olson, W. S., Yang, S., Adler, R. F., McCollum, J., Ferraro, R., Petty, G., Shin, D.-B., and Wilheit, T. T., 2001: The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors. J. Appl. Meteor., 40, 18011820.Google Scholar
Kutzbach, J. E., Ruddiman, W. F., Vavrus, S. J., and Philipoon, J., 2010: Climate Model Simulation of Anthropogenic Influence on Greenhouse-Induced Climate Change (Early Agriculture to Modern): The Role of Ocean Feedbacks. Climatic Change, 99, 351381.Google Scholar
Laloyaux, P., de Boisseson, E., and Dahlgren, P., 2017: CERA-20C: An Earth system approach to climate reanalysis. ECMWF Newsletter 150, January 2017. This reference may be found at www.ecmwf.int/en/newsletter/150/meteorology/cera-20c-earth-system-approach-climate-reanalysis.Google Scholar
Landsberg, H. E., Mitchell, J. M. Jr., Crutcher, H. L., and Quinlan, F. T., 1963: Surface Signs of the Biennial Atmospheric Pulse. Mon. Wea. Rev., 91, 549556.Google Scholar
Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., and Rennie, J., 2011: An Overview of the Global Historical Climatology Network Monthly Mean Temperature Data Set, Version 3. J. Geophys. Res., 116, D19121, doi:10.1029/2011JD016187.Google Scholar
Lawford, R. G. et al., 2004: Advancing Global and Continental-Scale Hydrometerology: Contributions of GEWEX Hydrometeorology Panel. Bull. Amer. Meteor. Soc., 85, 19171930.Google Scholar
Lee, D. M., 1980: On monitoring rainfall deficiencies in semidesert regions. The Threatened Drylands – Regional and Systematic Studies of Desertification, Mabbutt and Berkowicz, eds., Fujinomiya. [Available from the Australian Bureau of Meteorology, Melbourne, Australia.]Google Scholar
Legler, D., Freeland, H. J., Lumpkin, R., Ball, G., McPhaden, M. J., North, S., Cowley, R., Goni, G., Send, U., and Merrifield, M., 2015: The Current Status of the Real-Time In Situ Global Ocean Observing System for Operational Oceanography. J. Operational Oceanogr., 8(S2), 189200. (Also available online at the address given in the Website list below) This paper can also be viewed at www.tandfonline.com/doi/full/10.1080/1755876X.2015.1049883.Google Scholar
Lethbridge, M., 1967: Precipitation Probability and Satellite Radiation Data. Mon. Wea. Rev., 95, 487490.Google Scholar
Le Treut, H, Somerville, R., Cubasch, U., Ding, Y., Maritzen, C., Mokssit, A., Peterson, T., and Prather, M., 2007: In the Historical Overview section of Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY.Google Scholar
Levitus, S. and Boyer, T., 1994: World Ocean Atlas 1994, Vol. 2: Oxygen. NOAA Atlas NESDIS 2, U.S. Gov. Printing Office, Wash., D.C., 186 pp.Google Scholar
Levitus, S., Burgett, R., and Boyer, T., 1994: World Ocean Atlas 1994, Vol. 3: Salinity. NOAA Atlas NESDIS 3, U.S. Gov. Printing Office, Wash., D.C., 99 pp.Google Scholar
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J., 1994: A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for GSMs. J. Geophys. Res., 99(D7), 14,41514,428.Google Scholar
Lindzen, R. S. and Holton, J. R., 1968: A Theory of the Quasi-Biennial Oscillation. J. Atmos. Sci., 25, 10951107.Google Scholar
List, R. J., 1951: Smithsonian Meteorological Tables, Sixth Edition, Published by the Smithsonian Institution, 527 pp. Also available online.Google Scholar
Livezey, R. E. and Chen, W. Y., 1983: Statistical Field Significance and its Determination by Monte Carlo Techniques. Mon. Wea. Rev., 111, 4659.Google Scholar
Lorenc, A. and Rawlins, F., 2005: Why Does 4D-Var Beat 3D-Var? Q. J. R. Meteorol. Soc., 131, 32473257.Google Scholar
Lorenz, E. N., 1962: Deterministic Nonperiodic Flow, J. Atmos. Sci., 20, 130141.Google Scholar
Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, Geneva, Switzerland, 161 pp.Google Scholar
Lorenz, E. N., 1970: Climatic Change as a Mathematical Problem. J. Appl. Meteor., 9, 325329.Google Scholar
Lyon, B., 2004: The Strength of El Niño and the Spatial Extent of Tropical Drought. Geophys. Res. Lett., 31, L21204. doi:10.1029/2004GL020901.Google Scholar
Lyon, B. and Barnston, A. G., 2005: ENSO and the Spatial Extent of Interannual Precipitation Extremes in Tropical Land Areas. J. Clim., 18, 50955109.Google Scholar
MacDonald, S., 2005: A Global Profiling System for Improved Weather and Climate Prediction. Bull. Amer. Meteor. Soc., 86, 17471764.Google Scholar
Madden, R. A., and Julian, P., 1971: Detection of a 40–50 Day Oscillation in The Zonal Wind. J. Atmos. Sci., 28, 702708.Google Scholar
Madden, R. A., and Julian, P., 1972: Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci., 29, 109123.Google Scholar
Madden, R. A. and Julian, P. R., 1994: Observations of the 40–50 Day Tropical Oscillation: A Review. Mon. Wea. Rev., 122, 814837.Google Scholar
Mahrt, L. and Pan, H., 1984: A Two-Layer Model of Soil Hydrology. Bound.-Layer Meteor., 29, 120.Google Scholar
Maiden, M. E. and Greco, S., 1994: NASA’s Pathfinder Data Set Programme: Land Surface Parameters. Int. J. Remote Sensing, 15, 33333345.Google Scholar
Malone, T. F. (Ed.), 1951: Compendium of Meteorology, Amer. Meteor. Soc., 967975 (Climatology – A Synthesis of Weather, C.S. Durst Author).Google Scholar
Manabe, S., Smagorinsky, J., and Strickler, R. F., 1965: Simulated Climatology of a General Circulation Model with a Hydrologic Cycle. Mon. Wea. Rev., 93, 769798. doi: http://dx.doi.org/10.1175/1520–0493(1965)093<0769:SCOAGC>2.3.CO;2.Google Scholar
Mandelbrot, B. B. and Wallis, J. R., 1968: Noah, Joseph and Operational Hydrology. Water Resour. Res., 4, 909918.Google Scholar
Manley, G., 1974: Central England Temperatures: Monthly Means 1659 to 1973. Quart. J. Roy. Meteor. Soc., 100, 389405.Google Scholar
Mann, M. E., 2002: Little Ice Age. Encyclopedia of Global Environmental Change, 1, 504509, ISBN 0-471-97796-9.Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C., 1997: A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bulletin of the American Meteorological Society, 78, 10691079.Google Scholar
Mantua, N. J. and Hare, S. R., 2002: The Pacific Decadal Oscillation. J. of Oceanography, 58, 3544.Google Scholar
Marko, J. R., Fissel, D. B., Wadhams, P., Kelly, P. M., and Brown, R. D., 1994: Iceberg Severity off Eastern North America: Its Relationship to Sea Ice Variability and Climate Change. J. Clim., 7, 13351351.Google Scholar
Mason, S. J. and Goddard, L., 2001: Probabilistic Precipitation Anomalies Associated with ENSO. Bull. Amer. Meorol. Soc., 82, 619638.Google Scholar
Mather, J. H. and Voyles, J. W., 2013: The ARM Climate Research Facility: A Review of Structure and Capabilities. Bull. Amer. Meteor. Soc., 94, 377392.Google Scholar
Mathews, J. B. R. and Mathews, J. B., 2012: Comparing Historical and Modern Methods of Sea Surface Temperature Measurement – Part 2: Field Comparison in the Central Tropical Pacific. Ocean Sci., 9, 695711.Google Scholar
Maury, M. F., 1855: The Physical Geography of the Sea. Harper and Brothers, New York.Google Scholar
McGehee, R. and Lehman, C., 2012: A Paleoclimate Model of Ice-Albedo Feedback Forced by Variations in Earth’s Orbit. SIAM J. Applied Dynamical Systems, 11, 684707.Google Scholar
McKee, T. B., Doesken, N. J., and Kleist, J., 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.Google Scholar
McPhaden, M. J. et al., 1998: The Tropical Ocean Global Atmosphere (TOGA) Observing System: A Decade of Progress. J. Geophys. Res., 103, 14,16914,240.Google Scholar
Meehl, G. A., Covey, C., McAvaney, B., Latif, M., and Stouffer, R. J., 2005: Overview of the Coupled Model Intercomparison. Project. Bull. Amer. Meteor. Soc., 86, 8993.Google Scholar
Meehl, J. et al., 2009: Decadal Predictability. Bull. Amer. Met. Soc., 90, 14671485.Google Scholar
Meehl, G. et al., 2014: Decadal Climate Prediction – An Update from the Trenches. Bull. Amer. Meteor. Soc., 95, 243267.Google Scholar
Meinshausen, M. et al., 2011: The RCP Greenhouse Gas Concentrations and Their Extensions from 1792 to 2300. Climatic Change, 109, 213241. Also available online at Springerlink.com.Google Scholar
Meisinger, C. L., 1922: The Preparation and Significance of Free-Air Pressure Maps for the Central and Eastern United States. Monthly Weather Review, 50, 453468.Google Scholar
Meisner, B. and Arkin, P. A., 1987: Spatial and Annual Variations in the Diurnal Cycle of Large-Scale Tropical Convective Cloudiness and Precipitation. Mon. Wea. Rev., 115, 20092032.Google Scholar
Meko, D. M., et al. 2007. Medieval Drought in the Upper Colorado River Basin. Geophysical Research Letters, 34, L10705, doi:10.1029/2007GL029988.CrossRefGoogle Scholar
Meng, H., Dong, J., Ferraro, R., Yan, B., Zhao, L., Kongoli, C., Wang, N.‐Y., and Zavodsky, B., 2017: A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers, J. Geophys. Res. Atmos., 122, 65206540, https://doi.org/10.1002/2016JD026325.Google Scholar
Mesa, O. J. and Poveda, G., 1993: The Hurst Effect: The Scale of Fluctuation Approach. Water Resour. Res., 29, 33954002.Google Scholar
Milankovitch, M. 1941: Canon of insolation and the ice age problem (in Serbian). K. Serb. Acad. Beorg. Spec. Publ. 132 (English translation by the Israel Program for Scientific Translations, Jerusalem, 1969).Google Scholar
Miller, G. H. et al., 2012: Abrupt Onset of the Little Ice Age Triggered by Volcanism and Sustained by Sea-Ice/Ocean Feedbacks. Geophys. Res. Lett., 39, L02708, doi: 10.1029/2011GL050168.Google Scholar
Mitchell, J. M., 1961: Recent Secular Changes of Global Temperature. Ann. New York, Acad. Sci., 95, 235250.Google Scholar
Mitchell, J. M., 1963: On the World-Wide Patterns of Global Temperature. Arid Zone Res., 2, 161181.Google Scholar
Moninger, W. R., Mamrosh, R. D., and Pauley, P. M., 2003: Automated Meteorological Reports from Commercial Aircraft. Bull. Amer. Metero. Soc., 84, 203216.Google Scholar
Namias, J., 1968: Long Range Weather Forecasting – History, Current Status and Outlook. Bull. Amer. Meteor. Soc., 49, 438470.Google Scholar
National Academy Press, 1982: Climate in Earth History: Studies in Geophysics. A PDF may be downloaded at www.nap.edu/catalog/11798/climate-in-earth-history-studies-in-geophysics.Google Scholar
Negri, A. J. and Adler, R. F., 1993: An Intercomparlson of Three Satellite Infrared Rainfall Techniques over Japan and Surrounding Waters. J. Appl.Meterol., 32, 357373.Google Scholar
Nespor, V. and Sevruk, B., 1999: Estimation of Wind-Induced Error of Rainfall Gauge Measurements Using a Numerical Simulation. J. Atm. and Oceanic Tech., 16, 450464.Google Scholar
Newman, M. et al., 2016: The Pacific Decadal Oscillation Revisited. J. Clim., 29, 43994427.Google Scholar
Nishida, M., Shimizu, A., Tsuda, T., Rocken, C., and Ware, R. H., 2000: Seasonal and Longitudinal Variations in the Tropical Tropopause Observed with the GPS Occultation Technique (GPS/MET). J. Meteorol. Soc. Jpn., 78, 691700.Google Scholar
Nobre, C. A., Sellers, P. J., and Shulka, J., 1991: Amazonian Deforestation and Regional Climate Change. J. Clim., 4, 957988.Google Scholar
Ohmura, A. eta l., 1998: Baseline Surface Radiation Network (BSRN)/WCRP): New Precision Radiometry for Climate Research. Bull. Amer. Meteor. Soc., 79, 21152136.Google Scholar
Oort, A. H., and Rasmusson, E. M., 1971: Atmospheric Circulation Statistics. NOAA Professional Paper No. 5, U.S. Dept. of Commerce, 323 pp.Google Scholar
Oreskes, N., Shrader-Frechette, K., and Belitz, K., 1994: Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science, 263, 641646.Google Scholar
Palmer, W. C., 1965: Meteorological drought. Office of Climatology Res.Paper, 45. U.S. Weather Bureau (now the US National Climate Service). 58 pp.Google Scholar
Palmer, W. C., 1968: Keeping Track of Crop Moisture Nationwide: The New Crop Moisture Index. Weatherwise, 21, 156161.Google Scholar
Panofsky, H., 2014: Analyzing Atmospheric Behavior. Physics Today, 67, 3841.Google Scholar
Parker, D. E., Folland, C. K., and Jackson, M., 1995: Marine Surface Temperature: Observed Variations and Data Requirements. Clim. Change, 31, 559600.Google Scholar
Pearson, P. N. and Palmer, P. R., 2000: Atmospheric Carbon Dioxide Concentrations over the Past 60 Million Years. Nature, 406, 695699.Google Scholar
Peixoto, J. P. and Oort, A. H., 1992: The Physics of Climate, American Institute of Physics, 520 pp. ISBN 978-0883187128.Google Scholar
Penland, C. and Magorian, T., 1993: Prediction of Niño 3 Sea Surface Temperatures Using Linear Inverse Modeling. J. Clim., 6, 106.Google Scholar
Persson, A. 2017: The Story of the Hovmöller Diagram: An (Almost) Eyewitness Account. Bull. Amer. Meteor. Soc., 98, 948957.Google Scholar
Petit, J. R. et al., 1999: The Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429436.Google Scholar
Petterssen, S. and Calabrese, P. A., 1959: On Some Weather Influences Due to Warming of the Air by the Great Lakes in Winter. J.Meteor., 16, 646652.Google Scholar
Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. ix + 293 pp. Academic Press (Harcourt Brace Jovanovich), San Diego, New York, Berkeley, Boston, London, Sydney, Tokyo, Toronto. ISBN 0 12 553235 0. International Geophysics Series Vol. 46.Google Scholar
Phillips, N. A., 1956: The General Circulation of the Atmosphere: A Numerical Experiment. Quart. J. Roy. Meteor. Soc., 82(352), 123154.Google Scholar
Pielke Sr., R. A., Mahmood, R., and McAlpine, C., 2016: Land’s Complex Role In Climate Change. Physics Today, 69(11), 40.Google Scholar
Pinker, R. T. and Corio, L. A., 1984: Surface Radiation Budget from Satellites. Mon. Wea. Rev., 112, 209215.Google Scholar
Plummer, C. C., McGaery, D., and Carlson, D. H., 2003: Physical Geology, 574pp, ISBN 0-07-240-246-6.Google Scholar
Pope, A., Rees, W. G., Fox, A. J., and Fleming, A., 2014: Open Access Data in Polar and Cryospheric Remote Sensing. Remote Sens., 6, 61836220.CrossRefGoogle Scholar
Pope, A., Wagner, P., Johnson, R., Shutler, J., Baeseman, J., and Newman, L., 2017: Community Review of Southern Ocean Satellite Data Needs. Antarctic Sci., 29(2), 97138.Google Scholar
Prager, E. J. and Earle, S. A., 2000: The Oceans. 314pp. McGraw-Hill, ISBN 0-07-135253-8.Google Scholar
Pruppacher, H. R., and Klett, J. D., 2010: Microphysics of Clouds and Precipitation, Springer Science and Business Media, 954pp., ISBN 0306481006.9780306481000.Google Scholar
Quayle, R. G., Easterling, D. R., Karl, T. R., and Hughes, P. Y., 1991: Effects of Recent Thermometer Changes in the Cooperative Station Network. Bull. Amer. Meteor. Soc., 72, 17181723.Google Scholar
Quiring, S. M., Ford, T. W., Wang, J. K., Khong, A., Harns, E., Lindgren, T., Goldberg, D. W., and Li, Z., 2016: The North American Soil Moisture Database. Bull. Amer. Meteor. Soc., 97, 14411459.Google Scholar
Rasmusson, E. M., 1967: Atmospheric Water Vapor Transport and the Water Balance of North America: Part I. Characteristics of the Water Vapor Field. Mon. Wea. Rev., 95, 403426.Google Scholar
Rasmusson, E. M., 1968: Atmospheric Water Vapor Transport and the Water Balance of North America: Part II. Large-scale Water Balance Investigations. Mon. Wea. Rev., 96, 720734.Google Scholar
Rasmusson, E. M., 1998: Tribute to Jerome Namias: The Pioneering Years. Bull. Amer. Meteorol. Soc., 79, 10831087.Google Scholar
Rasmusson, E. M. and Carpenter, T. H., 1982: Variations in Tropical Seas Surface Temperature and Surface Wind Fields Associated with the El Nino/Southern Oscillation. Mon. Wea. Rev., 110, 354384.Google Scholar
Rasmusson, E. M., Arkin, P., Jalickee, J., and Chen, W., 1981: Biennial Variations in Surface Temperatures over the United States as Revealed by Singular Decomposition. Mon. Wea. Rev., 109, 587598.Google Scholar
Rasmussen, R. et al., 2012: How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed: Solid Precipitation Test Bed. Bull. Amer. Met. Soc., 93, 811829.Google Scholar
Reed, R. J., Campbell, W. J., Rasmusssen, L. A., and Rogers, R. G., 1961: Evidence of a Downward Propagating Annual Wind Reversal in the Equatorial Stratosphere. J.Geophys. Sci., 66, 813818.Google Scholar
Reed, R. J., and Recker, E. E., 1971: Structure and Properties of Synoptic-Scale Wave Disturbances in the Equatorial Western Pacific. J. Atmos. Sci., 28, 11171133.Google Scholar
Reichle, R. H., Koster, R. D., Dong, J., and Berg, A. A., 2004: Global Soil Moisture from Satellite Observations, Land Surface Models and Ground Data: Implications for Data Assimilation. J. Hydrometeor., 5, 430442.Google Scholar
Reinking, R. F. et al., 1993: The Lake Ontario Winter Storms (LOWS) Project. Bull. Amer. Meteor. Soc., 74, 18281949.Google Scholar
Rennie, J. J. et al., 2014: The International Surface Temperature Initiative Global Land Surface Databank: Monthly Temperature Data Release Description and Methods. Geosci. Data Journal, DOI: 10.1002/gdj3.8.Google Scholar
Reynolds, R. W., 1988: A Real-Time Global Sea Surface Temperature Analysis. J. Clim., 1, 7587.Google Scholar
Reynolds, R. W. and Marsico, D. C., 1993: An Improved Real-Time Global Sea Surface Temperature Analysis. J. Clim., 6, 114119.Google Scholar
Reynolds, R. W. and Smith, T. M., 1994: Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation. J. Clim., 7, 929948.Google Scholar
Reynolds, R. W. et al., 2007: Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim., 20, 54735496.CrossRefGoogle Scholar
Richards, F. and Arkin, P. A., 1981: On the Relationship between Satellite Observed Cloud Cover and Precipitation. Mon. Wea. Rev., 109, 10811093.Google Scholar
Rigor, I. G., Wallace, J. M., and Colony, R. L., 2002: Response of Sea Ice to the Arctic Oscillation. J. Clim., 15, 26482663.Google Scholar
Roads, John O., Chen, Shyh-C., Guetter, Alexander K., and Georgakakos, Konstantine P., 1994: Large-Scale Aspects of the United States Hydrologic Cycle. Bull. Amer. Meteor. Soc., 75, 15891610.Google Scholar
Robinson, D., 1993: Hemispheric Snow Cover from Satellites. Ann. Glaciol., 17, 367371.Google Scholar
Robock, Alan and Mao, Jianping, 1995: The Volcanic Signal in Surface Temperature Observations. J. Climate, 8, 10861103.Google Scholar
Robock, A. 2000: Volcanic Eruptions and Climate. Rev. Geophys., 38, 191219.Google Scholar
Robock, A., Konstantin, Y., Vinnikov, Y., Srinivasan, G., Entin, J. K., Hollinger, S. E., Speranskay, N. A., Liu, S., and Namkhai, A., 2000: The Global Soil Moisture Data Bank, Bull. Amer. Metsoc., 81, 12811299.Google Scholar
Rodell, M. et al., 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394. DOI: 10.1175/BAMS-85-3-381.Google Scholar
Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., and Wilson, C. R., 2007: Estimating Ground Water Storage Changes in the Mississippi River Basin (USA) Using GRACE. Hydrogeol. J. 15, 159166.Google Scholar
Romanovsky, V., Burgess, M., Smith, S., Yoshikawa, K., and Brown, J., 2002: Permafrost Temperature Records: Indicators of Climate Change. EOS, AGU Transactions, 83, 589594.Google Scholar
Ropelewski, C.F., 1983: Spatial and Temporal Variations in Antarctic Sea Ice (1973–1982). J. Clim. Appl. Met., 22, 470473.Google Scholar
Ropelewski, C. F., Janowiak, J. E., and Halpert, M. S., 1985: The Analysis and Display of Real Time Surface Climate Data. Mon. Wea. Rev., 113, 11011106.Google Scholar
Ropelewski, C. F. and Halpert, M. S., 1986: North American precipitation and temperature patterns associated with the El Nino/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362.Google Scholar
Ropelewski, C. F., and Halpert, M. S., 1987: Global and Regional Precipitation Patterns Associated with the El Nino/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.Google Scholar
Ropelewski, C. F., and Jones, P. D., 1987: An Extension of the Tahiti-Darwin Southern Oscillation Index. Mon. Wea. Rev., 115, 21612165.Google Scholar
Ropelewski, C. F., and Halpert, M. S., 1989: Precipitation Patterns Associated with the High Index Phase of the Southern Oscillation. J. Climate, 2, 268284.Google Scholar
Ropelewski, C. F. and Halpert, M. S., 1991: Greenhouse‑Gas‑Induced Climatic Change: A Critical Appraisal of Simulations and Observation. In The Southern Oscillation and Northern Hemisphere Temperature Variability. (Schlesinger, M. E., ed.) Elsevier Press, 369376.Google Scholar
Ropelewski, C. F., Halpert, M. S., and Wang, J.:, 1992: Observed Tropospheric Biennial Variability and Its Relationship to the Southern Oscillation. J. Clim., 5, 594614.Google Scholar
Ropelewski, C. F., 1995: Long-Term Observations of Land Surface Characteristics. In Long-term climate monitoring by the global climate observing system. (T. R. Karl Ed.) Climatic Change, 31, 415425.Google Scholar
Ropelewski, C. F. and Yarosh, E. S., 1998: The Observed Mean Annual Cycle of Moisture Budgets over the Central United States (1973–92). J. Clim., 11, 21802190.Google Scholar
Ropelewski, C. F. and Folland, C. F., 2000: Prospects for the prediction of meteorological drought. In Drought: A Global Assessment, Vol. 1, (Wilhite, D. A., ed.) Routledge Hazards and Disasters Series, Routledge Press pp. 2141.Google Scholar
Ropelewski, C. F, Gutzler, D. S, Higgins, R. W., and Mechoso, C. R., 2005: The North American Monsoon System. In The Global Monsoon System: Research and Forecast. World Meteorological Organization Technical Document 1266, 207–218, Hangzhou, China, Nov. 2–6, 2004.Google Scholar
Ropelewski, C. F. and Bell, M. A., 2008: Shifts in the Statistics of Daily Rainfall in South America Conditional on ENSO Phase. J. Clim., 21, 849865.Google Scholar
Ropelewski, C. F. and Arkin, P. A., 2017: Advances in Climate Analysis and Monitoring: Reflections on 40 years of Climate Diagnostics and Prediction Workshops. Bull. Amer. Meteor. Soc., 98, 461471.Google Scholar
Rossow, W. B. and Schiffer, R. A., 1999: Advances in Understanding Clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.Google Scholar
Royer, D. L., 2006: CO2 – Forced Climate Thresholds during the Phanerzoic. Geochim. Cosmochim. Acta, 70, 56655675.Google Scholar
Ruddiman, W. F., 2005: Plows, Plagues, and Petroleum: How Humans Took Control of Climate, Princeton University Press. ISBN 978-0-691-14634-8, 225 pp.Google Scholar
Sagan, C. and Mullen, G., 1972: Earth and Mars: Evolution of Atmospheres and Surface Temperatures. Science, 177(4043), 5256.Google Scholar
Saha, S. et al., 2010: The NCEP Climate System Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.Google Scholar
Sanchez, P. A. et al., 2009: Digital Soil Map of the World. Science, 324, 680681.Google Scholar
Santanello, J., Dirmeyer, P., Ferguson, C., Findell, K., Tawfik, A., Berg, A., Ek, M., Gentine, P., Guillod, B., van Heerwaarden, C., Roundy, J., and Wulfmeyer, V., 2017: Land-Atmosphere Interactions: The LoCo Perspective. Bull. Amer. Meteor. Soc. 99, DOI:10.1175/BAMS-D-17-0001.1, in press.Google Scholar
Sarachik, E. S. and Cane, M. A., 2010: The El Niño-Southern Oscillation Phenomenon, Cambridge University Press, London, 384pp.Google Scholar
Sargent, R. G. 2013: Verification and Validation of Simulation Models. Jour. of Simulation, 7, 1224.Google Scholar
Savarin, A., 2016: Pathways to better prediction of the Madden-Julian Oscillation over the Indian Ocean., MS Thesis, U. of Miami, 108pp.Google Scholar
Schaefer, G. L. and Paetzold, R. F., 2000: SNOTEL (SNOpack TELemetry) and SCAN (Soil Climate Analysis Network). Presented at the Conference on Automated Weather Stations for Applications in Agriculture and Water Resources Management: Current Use and Future Perspectives, Lincoln, NB, NRCS/USDA, March 2002.Google Scholar
Schaal, L. A. and Dale, R. F., 1977: Time of Observation Temperature Bias and “Climatic Change”. J. Appl. Meteor., 16, 215222.Google Scholar
Schlesinger, et al., 1979: Terminology for Model Credibility. J. Simul., 32(3), 103104.Google Scholar
Schmid, C., Molinari, R. L., Sabina, R., Daneshzadeh, Y-H, Xia, X., Forteza, E., and Yang, H, 2007: The Real-Time Data Management System for Argo Profiling Float Observations. J. Atmos. Oceanic Tech., 24, 16081628.Google Scholar
Schubert, S. D., Rood, R. B., and Pfaendtner, J., 1993: An Assimilated Dataset for Earth-Science Applications. Bull. Amer. Meteor. Soc., 74, 23312342.Google Scholar
Scott, R. W., Krug, E. C., and Burch, S. L., 2010: Illinois Soil Moisture under Sod Experiment. J. Hydrometeor., 11, 683704.Google Scholar
Seager, Richard, 2007: The Turn of the Century North American Drought: Global Context, Dynamics, and Past Analogs. J. Clim., 20, 55275552.Google Scholar
Segal, M., Garratt, J. P., Pielke, R. A., and Ye, Z., 1991: Scaling and Numerical Model Evaluations of Snow-Coveer Effects on the Generation of Mesoscale Circulations. J. Atmos. Sci., 48, 10241042.Google Scholar
Segre, E. 2007: From falling bodies to radio waves: Classical Physicists and their discoveries, Dover publications (paperback). Originally published 1984.Google Scholar
Shakelton, E. 1918: South:The Story of Shakelton’s Last Expedition, 1914–1917., html version from Project Gutenberg www.gutenberg.net.Google Scholar
Shaw, T. A. and Perlwitz, J., 2013: The life cycle of Northern Hemisphere downward wave coupling between the stratosphere and troposphere., 26, 1745–1763.Google Scholar
Shenx, W. E and Kreins, E. R., 1970: A Comparison between Observed Winds and Cloud Motions Derived from Satellite Infrared Measurements. J. Appl. Meteorol., 9, 702710.Google Scholar
Shepherd, J. M., Anderson, T., Bounoua, L., Horst, A., Mitra, C., and Strother, C., 2013: Urban Climate Archipelagos: A new framework for urban-climate interactions. IEEE Earthzine, published online at www.earthzine.org/2013/11/29/urban-climate-archipelagos-a-new-framework-for-urban-impacts-onclimate/.Google Scholar
Siemann, A. L., Coccia, G., Pan, M., and Wood, E. F., 2016: Development and Analysis of Long-Term, Global, Terrestrial Land Surface Dataset Based on HIRS Satellite Retrievals. J. Clim., 29, 35893606.Google Scholar
Silver, N. 2012: The signal and the noise: why so many predictions fail-but some don’t, The Penguin Press, 534pp. ISBN 978-1-59420-1.Google Scholar
Skinner, J. H., Lye, L., and Bruneau, S. E., 2010: Climatic influences on the annual iceberg flux off the coast of Newfoundland., CSCE 2010 General Conference., Winnipeg, Manitoba, June 9–12, 2010. Canadian Society for Civil Engineering, www.proceedings.com/0199.html.Google Scholar
Smith, G. L., Wilber, A. C., Gupta, S. K., and Stackhouse, P. W., 2002: Surface Radiation Budget and Climate Classification. J. Clim., 15, 11751188.Google Scholar
Smith, T. M. and Reynolds, R. W., 2002: Bias Corrections for Historical Sea Surface Temperatures Based on Marine Air Temperatures. J. Clim., 15, 7387.Google Scholar
Smith, T. M. and Reynolds, R. W., 2004a: Improved Extended Reconstruction of SST 1854–1997. J. Climate, 17, 24662477.Google Scholar
Smith, T. M., and Reynolds, R. W., 2004b: Reconstruction of Monthly Mean Oceanic Sea Level Pressure Based on COADS and Station Data (1854–1997). J. Oceanic Atmos. Tech., 21, 12721282.Google Scholar
Smith, T. M.and Reynolds, R. W., 2005: A Global Merged Land-Air-Sea-Surface Temperature Reconstruction Based on Historical Observations (1880–1997). J. Clim., 18, 20212036.Google Scholar
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J., 2008: Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006). J. Clim., 21, 22832296.Google Scholar
Smith, T. M., Sapiano, M. R. P., and Arkin, P. A., 2009a, Modes of Multi-Decadal Oceanic Precipitation Variations from a Reconstruction and AR4 Model Output for the 20th Century. Geophys. Res. Lett., 36, L14708, DOI:10.1029/2009GL039234.Google Scholar
Smith, T. M., Arkin, P. A., and Sapiano, M. R. P., 2009b, Reconstruction of Near-Global Annual Precipitation Using Correlations With Sea Surface Temperature and Sea Level Pressure. J. Geophys. Res., 114, D12107, DOI:10.1029/2008JD011580.Google Scholar
Smith, T. M., Arkin, P. A., Sapiano, M. R. P., and Chang, C.-Y., 2010: Merged Statistical Analyses of Historical Monthly Precipitation Anomalies Beginning 1900. J. Clim., 23, 57555770.Google Scholar
Smith, T. M., Reynolds, R. W., Livezey, R. E., and Stokes, D. C., 1996: Reconstruction of Historical Sea Surface Temperatures Using Empirical Orthogonal Functions. J. Clim., 9, 14031420.Google Scholar
Soil Survey Staff, 1999: Soil Taxonomy: A basic system of soil classification for making and interpreting of soil surveys. Agriculture Handbook, 436, 871 pp. (U.S. Dept of Agri. National Resources Conservation Service) Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC, 20402.Google Scholar
Solomon, S. et al. (eds.), 2007: Contributions of Working Group I to the Fourth Assessment of the Intergovernmental Panel on Climate Change, Cambridge University Press, 337383.Google Scholar
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.), 2007: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, 996 pp. ISBN 978 0 521 705967.Google Scholar
Sorooshian, S., Hsu, K-L, Gao, X., Gupta, H.V., Imam, B., and Braithwaite, D., 2000: Evaluation of PERSIANN System Satellite–Based Estimates of Tropical Rainfall. Bull. Amer. Meteor. Soc., 81, 20352046.Google Scholar
Spencer, R. W., 1986: A Satellite Passive 37-GHz Scattering-Based Method for Measuring Oceanic Rain Rates. J. Clim. Appl., 25, 754766.Google Scholar
Stanhill, Gerald and Cohen, Shabtai, 2005: Solar Radiation Changes in the United States during the Twentieth Century: Evidence from Sunshine Duration Measurements. J. Clim., 18, 15031512.Google Scholar
Stickler, A., Grant, A. N., Ewen, T., Ross, T. F., Vose, R. S., Comeaux, J., Bessemoulin, P., Jylhä, K., Adam, W. K., Jeannet, P., Nagurny, A., Sterin, A. M., Allan, R., Compo, G. P., Griesser, T., and Brönnimann, S., 2010: The Comprehensive Historical Upper-Air Network. Bull. Amer. Meteor. Soc., 91, 741751.Google Scholar
Stocker, T. F., Qin, D., Plattner, G.-K, Tignor, M., Allen, S. K., Boshung, J., Nauls, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.), 2013: (In the Summary for Policy Makers), Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY.Google Scholar
Stommel, H. and Stommel, E., 1983: Volcano Weather: The Story of 1816, the Year without a Summer, South Seas Press, 177 pp., ISBN 0-015160-71-4.Google Scholar
von Storch, H. and Zwiers, F. W., 2002: Statistical Analysis in Climate Research, Cambridge University Press, 496 pp., ISBN 0521012309.Google Scholar
Strangeways, I., 2006: Precipitation: Theory, Measurement and Distribution. Cambridge University Press, 302 pp., ISBN 1139460013.9781139460019.Google Scholar
Sweet, W. J, Park, J. Marra, C. Zervas, , and Gill, S., 2014: Sea Level Rise and Nuisance Flood Frequency Changes around the United States. NOAA Technical Report NOS CD-OPS 073, 66 pp. Available online at http://tidesandcurrents.noaa.gov/publications/NOAA_Techincal_Report_NOS_COOPS_073.pdf.Google Scholar
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, Ch., 2004: The Gravity Recovery and Climate Experiment; Mission Overview and Early Results. Geophys. Res. Lett, 31, L09607.Google Scholar
Taylor, R. C., 1973: An Atlas of Pacific Islands Rainfall, Hawaii Institute of Geophysics Data Report no. 25, University of Hawaii, Honolulu, Hawaii.Google Scholar
Tarpley, J. D., Schnider, S. R., and Money, R. L., 1982: Global Vegetation Indices from the NOAA-7 M.Google Scholar
Teixeira, J., Waliser, D., Ferraro, R., Gleckler, P., Lee, T., and Potter, G., 2014: Satellite Observations for CMIP5: The Genesis of Obs4MIPs. Bull. Amer. Meteor. Soc., 95, 13291334.Google Scholar
Thompson, D. W. J. and Wallace, J. M., 2000: Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability. J. Clim., 13, 10001016.Google Scholar
Thompson, J., 1892: On the Grand Currents of the General Circulation. Phil. Trans. Roy. Soc., A, 183, 653684.Google Scholar
Thompson, L., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K., and Mashiotta, T. A., 2003: Tropical Glacier and Ice Core Evidence of Climate Change on Annual to Millennial Time Scale. Clim. Change, 59, 137155.Google Scholar
Thompson, L. E., 2004: High Altitude and Mid- and Low-Latitude Ice Core Records: Implications for Our Future. In Earth Paleoenvironments: Record Preserved in Mid and High Latitude Glaciers, Cecil, L. D. et al., (eds). Kluwer Academic Publishers.Google Scholar
Thorne, et al., 2017: Towards an Integrated Set of Surface Meteorological Observations for Climate Science and Applications. Bull. Amer. Meteor. Soc., DOI:10.1175/BAMS-D-16-0165.1, in press.Google Scholar
Tian, Y, Peters-Lidard, C. D., Adler, R. F., Kubota, T., and Ushio, T., 2010: Evaluation of GSMaP Precipitation Estimates over the Contiguous United States. J. Hydrometeor, 11, 566573.Google Scholar
Tolle, M. E., Engler, S., and Panitz, H-J., 2017: Impact of Abrupt Land Cover Changes by Tropical Deforestation on Southeast Asian Climate and Agriculture. J. Clim., 30, 25872600.Google Scholar
Tower, W. S., 1903: Mountain and Valley Breezes. Mon. Wea. Rev., 31, 528529.Google Scholar
Trenberth, K. E., 1990: Recent Observed Interdecadal Climate Changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71, 988993.Google Scholar
Trenberth, K. E. and Guillemot, C. J., 1995: Evaluation of the Global Atmospheric Moisture Budget as Seen from Analyses. J. Clim., 8, 22552272.Google Scholar
Trenberth, K. E., Stepaniak, D. P., Hurrell, J. W., and Fiorino, M., 2001: Quality of Reanalyses in the Tropics. J. Clim., 14, 14991510.Google Scholar
Trenberth, K. E. and Shea, D. J., 2006: Atlantic Hurricanes and Natural Variability in 2005. Geoph.l Res. Lett., 33, L12704.Google Scholar
Trenberth, K., Fasullo, J., and Kiehl, J., 2009: Earth’s Global Energy Budget. Bull. Amer. Meteor. Soc., 90, 311323.Google Scholar
Tucker, C. J., 1979: Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ., 8, 127150.Google Scholar
Tucker, G. B., 1961: Precipitation over the North Atlantic Ocean. Quart. J. Roy. Meteor. Soc., 87, 147158.Google Scholar
Tucker, G. B., 1962: Reply. Quart. J. Roy. Meteor. Soc., 88, 188.Google Scholar
USDA and USDoC (US Department of Agriculture and US Department of Commerce), 2014: Weekly Weather and Crop Bulletin, 101, Jan 2014, 26 pp. Also available at www.usda.gov/oce/weather/.Google Scholar
van Loon, H., 1965: A climatological study of the atmospheric circulation in the Southern Hemisphere during the IGY, Part I: 1 July 1957-31 March 1958. J. Appl. Meteor. Cli., 4, 479491.Google Scholar
van Loon, H., 1979: The Association between Latitudinal Temperature Gradient and Eddy Transport. Part I: Transport of Sensible Heat in Winter. Mon. Wea. Rev., 107, 525534.Google Scholar
van Loon, H. and Labitzke, K., 1988: Association between the 11-Year Solar Cycle, the QBO, and the Atmosphere. Part II: Surface and 700 mb in the Northern Hemisphere in Winter. J. Clim., 1, 905920.Google Scholar
Vasvalingam, M. and Tandy, J. D., 1972: The Neutron Method for Measuring Soil Moisture Content – A Review. J. Soil Sci., 23, 499511.Google Scholar
Vinnikov, K. Y. 1977: Procedures for Acquisition of Data on the Variations of Northern Hemisphere Surface Air Temperature during 1881–1975 (In Russian). Meteor. Gidrol., 9, 110114.Google Scholar
Vose, S. R., Williams, C. N. Jr., Peterson, T. C., Karl, T. R., and Easterling, D. R., 2003: An Evaluation of the Time of Observations Bias Adjustment in the U.S. Historical Climatology Network. Geoph. Res. Ltrs., 30, 2026, CLM 3–1-CLM3–4.Google Scholar
Vose, R. S., Applequist, Scott, Squires, Mike, Durre, Imke, Menne, Matthew J., Williams Jr., Claude N., Fenimore, Chris, Gleason, Karin, and Arndt, Derek, 2014: Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions. J. Appl. Meteor. Climatol., 53, 12321251.Google Scholar
Wahr, J., Wingham, D., and Bentley, C.. 2000. A Method of Combining ICESat and GRACE Satellite Data to Constrain Antarctic Mass Balance. J. Geophys. Res., 105(B7), 16,27916,294.Google Scholar
Walker, G. T., 1924: Correlation of the Seasonal Variations in Weather IX: A Further Study of World Weather. Mem. Indian Meteor. Dep., 24, 275332.Google Scholar
Walker, G. T., 1928: World Weather. Quart. J. Roy. Meteor. Soc., 29–87.Google Scholar
Walker, G. T. and Bliss, E. W., 1932: World Weather V. Mem. Roy. Metero. Soc., 53–84.Google Scholar
Walker, G. T. and Bliss, E. W., 1937: World Weather VI. Mem. Roy. Metero. Soc., 119–139.Google Scholar
Wallace, J. M. and Gutzler, D. S., 1981: Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Wea. Rev., 109, 784812.Google Scholar
Wallace, J. M. and Hobbs, P. V., 2006: Atmospheric Science, 2nd Edition, Academic Press, 483 pp.Google Scholar
Wallace, J. M. I. M. Held, D. W., Thompson, K. E. Trenberth, , and Walsh, J. E., 2014: Global Warming and Winter Weather. Science, 343, 729730.Google Scholar
Walsh, J. E. and Johnson, C. M., 1979: An Analysis of Arctic Sea Ice Fluctuation 1953–1977. J. Phys. Ocean., 9, 580591.Google Scholar
Walsh, J. E., Tucek, D. R., and Peterson, M. R., 1982: Seasonal Snow Cover and Short Term Climate Fluctuations over the United States. Mon. Wea. Rev., 110, 14741486.Google Scholar
Wang, J., Bai, X., Hu, H., Clites, A., Colton, M., and Lofgren, B. 2012: Temporal and Spatial Variability of Great Lakes Ice Cover, 1973–2010. J. Clim., 25, 13181329.Google Scholar
Wang, P. K., 2013: Physics and Dynamics of Clouds and Precipitation, Cambridge University Press, New York. 452 pp.Google Scholar
Warren, S. G., Eastman, R., and Hahn, C. J., 2015: Cloud Climatology. In Encyclopedia of Atmospheric Sciences, Oxford University Press.Google Scholar
Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., and Legresy, B., 2015: Unabated Global Mean Sea-Level Rise over the Satellite Altimeter Era. Nat. Clim. Change, 5, 565568.Google Scholar
Wheelan, C., 2014 : Naked Statistics: Stripping the Dread from Data, 282 pp., W.W. Norton and Company.Google Scholar
Wick, G. A., Bates, J. J., and Scott, D. J., 2002: Satellite and Skin-Layer Effects on the Accuracy of Sea Surface Temperature Measurements from the GOES Satellites. J. Atmos. Oceanic Technol., 19, 18341848.Google Scholar
Wijffels, S. E. et al., 2008: Changing Expendable Bathythermograph Fall Rates and Their Impact on Estimates of Thermosteric Sea Level Rise. J. Clim., 21, 56575672.Google Scholar
Wilheit, T. T., Chang, A. T. C., and Chiu, L. S., 1991: Retrieval of Monthly Rainfall Indices from Microwave Radiometric Measurements Using Probability Distribution Functions. Jour. Atmos. Ocean. Tech., 8, 118136.Google Scholar
Wilks, D. S., 2011: Statistical Methods in Meteorology, 3rd Edition, Academic Press, Elsevier, 704 pp. ISBN-13: 978–0–12–385022–5.Google Scholar
Wilks, D. S., 2017: The Stippling Shows Statistically Significant Grid Points. Bull. Amer. Meteor. Soc., 97, 22632273.Google Scholar
Willett, H. C., 1950: Temperature trends of the past century. Cent. Proc. Roy. Meteor. Soc., 195–206.Google Scholar
Williams, C. N., Vose, R. S., Easterling, D. R., and Menne, M. J., cited 2006: United States historical climatology network daily temperature, precipitation, and snow data. ORNL/CDIAC-118, NDP-070, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at cdiac.ornl. gov/ftp/ndp070/ndp070.txt.]Google Scholar
WMO, 1970: The Beaufort Scale of Wind Force (Technical and operational aspects). Commission for Marine Meteorology, Report. on Marine Science Affairs 3, 22pp. (Available from the World Meteorological Organization, Case Postale 5, Geneva, Switzerland).Google Scholar
WMO, 2008: Guide to Meteorological Instruments and Methods of Observation WMO –No. 8, Section I, Chapter 7 and Chapter 8. (Available through the WMO or online) www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide_7th_Edition-2008.pdf.Google Scholar
Woodruff, S. D., Slutz, R. J., Jenne, R. L., and Steurer, P. M., 1987: A Comprehensive Ocean-Atmosphere Data Set. Bull. Amer. Meteor. Soc., 68, 12391250.Google Scholar
Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Freeman, J. E., Berry, D. I., Brohan, P., Kent, E. C., Reynolds, R. W., Smith, S. R., and Wilkinson, C., 2011: ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol. (CLIMAR-III Special Issue), 31, 951967 (DOI:10.1002/joc.2103).Google Scholar
Wyrtki, K., 1975: El Niño: The Dynamic Response of the Equatorial Pacific Oceanto Atmospheric Forcing. J. Phys. Oceanogr., 5, 572584.Google Scholar
Xie, P. and Arkin, P.A. 1996: Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J. Climate, 9, 840858.Google Scholar
Xie, P., and Arkin, P. A., 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates and numerical model predictions. J. Clim., 9, 840858.Google Scholar
Xie, P. and Arkin, P. A., 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.Google Scholar
Xie, P. and Arkin, P. A. 1998: Global Monthly Precipitation Estimates from Satellite-Observed Outgoing Longwave Radiation. J. Climate, 11, 137164.Google Scholar
Xie, P. and Xiong, A.-Y., 2011: A Conceptual Model for Constructing High-Resolution Gauge-Satellite Merged Precipitation Analyses. J. Geophys. Res., 116, D21106, DOI:10.1029/2011JD016118.Google Scholar
Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., and Lin, R., 2017: Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998. J. Hydrometeor., 18, 16171651.Google Scholar
Yang, et al., 2013: A Multiscale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bull. Amer. Meteor. Soc., 94, 19071914.Google Scholar
Zebiak, Stephen E. and Cane, Mark A., 1987: A Model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.Google Scholar
Zhang, Y, Wallace, J. M. and Battisti, D. S., 1997: ENSO-like Interdecadal Variability: 1900–93. J. Clim., 10, 10041020.Google Scholar
Zhang, T, Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J., 1999: Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere. J. Polar Geogr., 23, 132154.Google Scholar
Zielinski, A., Mayewski, P. A., Meeker, L. D., Whitlow, S., Twickler, M. S., and Taylor, K., 1996: Potential Atmospheric Impact of the Toba Mega-Eruption ~71’000 Years Ago. Geoph. Res. Ltrs. 23, 837840.Google Scholar
Zweng, M. M, Reagan, J.R., Antonov, J.I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M., 2013. World Ocean Atlas 2013, Volume 2: Salinity. Levitus, S., Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 74, 39 pp.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×