Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T04:08:48.520Z Has data issue: false hasContentIssue false

16 - Recent Climate Variations

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., and Schörghofer, N. (2006) Subsurface ice on Mars with rough topography, J. Geophys. Res., 111(E10), 11007.Google Scholar
Armstrong, J. C., Leovy, C. B., and Quinn, T. (2004) A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes, Icarus, 171, 255271.CrossRefGoogle Scholar
Arvidson, R. E., Bonitz, R. G., Robinson, M. L., et al. (2009) Results from the Mars Phoenix Lander Robotic Arm experiment, Journal of Geophysical Research (Planets), 114, 5685.Google Scholar
Banks, M. E., Byrne, S., Galla, , K., et al. (2010) Crater population and resurfacing of the Martian north polar layered deposits, Journal of Geophysical Research (Planets), 115, 8006.Google Scholar
Bibring, J., Langevin, Y., Poulet, F., et al. (2004) Perennial water ice identified in the south polar cap of Mars, Nature, 428, 627630.CrossRefGoogle ScholarPubMed
Black, B. A., and Stewart, S. T. (2008) Excess ejecta craters record episodic ice-rich layers at middle latitudes on Mars, Journal of Geophysical Research (Planets), 113, 2015.Google Scholar
Boynton, W. V., Feldman, W. C., Squyres, , et al. (2002) Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science, 297, 8185.CrossRefGoogle ScholarPubMed
Burr, D. M., Grier, J. A., McEwen, A. S., and Keszthelyi, L. P. (2002) Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars, Icarus, 159, 5373.CrossRefGoogle Scholar
Byrne, S. and Ingersoll, A. P. (2003) A sublimation model for Martian south polar ice features, Science, 299, 10511053.CrossRefGoogle ScholarPubMed
Byrne, S., and Murray, B. C. (2002) North polar stratigraphy and the paleo-erg of Mars, Journal of Geophysical Research (Planets), 107, 5044.Google Scholar
Byrne, S., Russell, P. S., Fishbaugh, K. E., et al. (2008a) Explaining the persistence of the southern residual cap of Mars: HiRISE data and landscape evolution models, LPSC abstracts, 39, 2252.Google Scholar
Byrne, S., Zuber, M. T., and Neumann, G. A. (2008b) Interannual and seasonal behavior of Martian residual ice-cap albedo, Planet. Space Sci., 56, 194211.CrossRefGoogle Scholar
Byrne, S., Dundas, C. M., Kennedy, M. R., et al. (2009) Distribution of mid-latitude ground ice on Mars from new impact craters, Science, 325, 16741676.CrossRefGoogle ScholarPubMed
Carr, M. H. (1996) Water on Mars, New York, Oxford University Press.CrossRefGoogle Scholar
Carr, M. H., and Head, J. W. (2015) Martian surface/near-surface water inventory: sources, sinks, and changes with time, Geophys. Res. Lett., 42, doi:10.1002/2014GL062464.CrossRefGoogle Scholar
Carter, J. W., and Husain, H. (1974) The simultaneous adsorption of carbon dioxide and water vapour by fixed beds of molecular sieves, Chem. Eng. Sci., 29, 267273.CrossRefGoogle Scholar
Chamberlain, M. A., and Boynton, W. V. (2007), Response of Martian ground ice to orbit-induced climate change, J. Geophys. Res., 112 (E6), E06009.Google Scholar
Chevrier, V., Sears, D. W. G., Chittenden, J. D., et al. (2007) Sublimation rate of ice under simulated Mars conditions and the effect of layers of mock regolith JSC Mars-1, Geophys. Res. Lett., 34, L02203.CrossRefGoogle Scholar
Chevrier, V., Hanley, J., and Altheide, T. S. (2009) Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars, Geophysical Research Letters, 36, L10202.Google Scholar
Christensen, P. R. (1986) Regional dust deposits on Mars: physical properties, age, and history, J. Geophys. Res., 91, 35333545.CrossRefGoogle Scholar
Chuang, F. C., and Crown, D. A. (2005) Surface characteristics and degradational history of debris aprons in the Tempe Terra/Mareotis fossae region of Mars, Icarus, 179, 2442.CrossRefGoogle Scholar
Clark, B. C., and Van Hart, D. C. (1981) The salts of Mars, Icarus, 45, 370378.CrossRefGoogle Scholar
Clow, G. D. (1987) Generation of liquid water on Mars through the melting of a dusty snowpack, Icarus, 72, 95127.CrossRefGoogle Scholar
Costard, F., Forget, F., Mangold, N., and Peulvast, J. P. (2002) Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity, Science, 295, 110113.CrossRefGoogle ScholarPubMed
Cull, S., Arvidson, R. E., Mellon, M. T., et al. (2010) Compositions of subsurface ices at the Mars Phoenix landing site, Geophys. Res. Lett., 37, L24203.CrossRefGoogle Scholar
Cutts, J. A. (1973) Nature and origin of layered deposits of the Martian polar region, J. Geophys. Res., 78, 42314249.CrossRefGoogle Scholar
Dickson, J. L., Head, J. W., and Kreslavsky, M. A. (2007) Martian gullies in the southern mid-latitudes of Mars: evidence for climate-controlled formation of young fluvial features based upon local and global topography, Icarus, 188, 315, doi:10/1016/j.icarus.2006.11.020.CrossRefGoogle Scholar
Dickson, J. L., Head, J. W., and Marchant, D. R. (2008) Late Amazonian glaciation at the dichotomy boundary on Mars: evidence for glacial thickness maxima and multiple glacial phases, Geology, 36, 411414.CrossRefGoogle Scholar
Dickson, J. L., Fassett, C. I., and Head, J. W. (2009) Amazonian-aged fluvial valley systems in a climatic microenvironment on Mars: melting of ice deposits on the interior of Lyot Crater, Geophys. Res. Lett., 36, 8201.CrossRefGoogle Scholar
Dickson, J. L., Head, J. W., and Marchant, D. R (2010) Kilometer-thick ice accumulation and glaciation in the northern mid-latitudes of Mars: evidence for crater-filling events in the Late Amazonian at the Phlegra Montes, Earth and Planetary Science Letters, 294, 332342.CrossRefGoogle Scholar
Diez, B., Feldman, W. C., Maurice, S. et al. (2008) H layering in the top meter of Mars, Icarus, 196, 409421.CrossRefGoogle Scholar
Diniega, S., Hansen, C. J., McElwaine, J. N., et al. (2013) A new dry hypothesis for the formation of Martian linear gullies, Icarus, 225, 526537.CrossRefGoogle Scholar
Dundas, C. M., McEwen, A. S., Diniega, S., Byrne, S., and Martinez-Alonso, S. (2010) New and recent gully activity on Mars as seen by HiRISE, Geophys. Res. Letters, 37, L07202.CrossRefGoogle Scholar
Dundas, C. M., Diniega, S., Hansen, C. J., Byrne, S., and McEwen, A. S. (2012) Seasonal activity and morphological changes in Martian gullies, Icarus, 220, 124143CrossRefGoogle Scholar
Dundas, C. M., Diniega, S., and McEwen, A. S. (2015) Long-term monitoring of Martian gully formation and evolution with MRO/HiRISE, Icarus, 251, 244263.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A. (1999) Steady-state flow of solid CO2: preliminary results, Geophysical Research Letter, 26, 34933496.CrossRefGoogle Scholar
Edgett, K. S., Williams, R. M. E., Malin, M. C., Cantor, B. A., and Thomas, P. C. (2003) Mars landscape evolution: influence of stratigraphy on geomorphology in the north polar region, Geomorphology, 52, 289297.CrossRefGoogle Scholar
Fanale, F. P., and Cannon, W. A. (1974) Exchange of adsorbed H2O and CO2 between the regolith and atmosphere of Mars caused by changes in surface insolation, J. Geophys. Res., 79, 33973402.CrossRefGoogle Scholar
Fanale, F. P., and Cannon, W. A. (1978) Mars – the role of the regolith in determining atmospheric pressure and the atmosphere’s response to insolation changes, J. Geophys. Res., 83, 23212325.CrossRefGoogle Scholar
Fanale, F. P., and Salvail, J. R. (1994) Quasi-periodic atmosphere-regolith-cap CO2 redistribution in the Martian past, Icarus, 111, 305316.CrossRefGoogle Scholar
Fanale, F. P., Salvail, J., Banerdt, W. B., and Saunders, R. S. (1982) Mars: the regolith–atmosphere–cap system and climate change, Icarus, 50, 381407.CrossRefGoogle Scholar
Fanale, F. P., Salvail, J. R., Zent, A. P., and Postawko, S. E. (1986) Global distribution and migration of subsurface ice on Mars, Icarus, 67, 118.CrossRefGoogle Scholar
Farmer, C. B., and Doms, P. E. (1979) Global seasonal variation of water vapor on Mars and the implications of permafrost, J. Geophys. Res., 84, 28812888.CrossRefGoogle Scholar
Fastook, J. L., and Head, J. W. (2014) Amazonian mid- to high-latitude glaciation on Mars: supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration, Planet. Space Sci., 91, 6076.CrossRefGoogle Scholar
Fastook, J. L., Head, J. W., Marchant, D. R., and Forget, F. (2008) Tropical mountain glaciers on Mars: altitude-dependence of ice accumulation, accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history, Icarus, 198, 305, doi:10.1016/j.icarus.2008.08.008.CrossRefGoogle Scholar
Fastook, J. L., Head, J. W, Forget, F., Madeleine, J.-B., and Marchant, D. R. (2011) Evidence for Amazonian northern mid-latitude regional glacial landsystems on Mars: glacial flow models using GCM-driven climate results and comparisons to geological observations, Icarus, 216, 2339, doi:10.1016/j.icarus.2011.07.018.CrossRefGoogle Scholar
Fastook, J. L., Head, J. W., Marchant, D. R., Forget, F., and Madeleine, J.-B. (2012) Early Mars climate near the Noachian-Hesperian boundary: independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea Formation) and implications for valley network formation, Icarus, 219, 25–40.CrossRefGoogle Scholar
Fastook, J. L., Head, J. W., and Marchant, D. R. (2014) Formation of lobate debris aprons on Mars: assessment of regional ice sheet collapse and debris-cover armoring, Icarus, 228, 5463, doi:10.1016/j.icarus.2013.09.025.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002) Global distribution of neutrons from Mars: results from Mars Odyssey, Science, 297, 7578.CrossRefGoogle ScholarPubMed
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004) Global distribution of near-surface hydrogen on Mars, Journal of Geophysical Research (Planets), 109, 9006.Google Scholar
Feldman, W. C., Mellon, M. T., Gasnault, O., et al. (2007) Vertical distribution of hydrogen at high northern latitudes on Mars: the Mars Odyssey Neutron Spectrometer, Geophys. Res. Lett., 34, L05201.CrossRefGoogle Scholar
Feldman, W. C., Bandfield, J. L., Diez, B., et al. (2008) North to south asymmetries in the water-equivalent hydrogen distribution at high latitudes on Mars, J. Geophys. Res., 113, E08006.Google Scholar
Fenton, L. K., and Richardson, M. I. (2001) Martian surface winds: insensitivity to orbital changes and implications for aeolian processes, Journal of Geophysical Research (Planets), 106, 32885.CrossRefGoogle Scholar
Fenton, L. K., Toigo, A. D., and Richardson, M. I. (2005) Aeolian processes in Proctor Crater on Mars: mesoscale modeling of dune-forming winds, Journal of Geophysical Research (Planets), 110 (E9), 6005.Google Scholar
Fishbaugh, K. E., and Head, J. W. (2002) Chasma Boreale, Mars: topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation, Journal of Geophysical Research (Planets), 107(E3), 5013.Google Scholar
Fishbaugh, K. E., and Head, J. W. (2005) Origin and characteristics of the Mars north polar basal unit and implications for polar geologic history, Icarus, 174, 444474.CrossRefGoogle Scholar
Fishbaugh, K. E., and Hvidberg, C. S. (2006) Martian north polar layered deposits stratigraphy: implications for accumulation rates and flow, Journal of Geophysical Research (Planets), 111, 6012.Google Scholar
Fishbaugh, K. E., Hvidberg, C. S., Byrne, S., et al. (2010) First high-resolution stratigraphic column of the Martian north polar layered deposits, Geophys. Res. Lett., 37, 7201.CrossRefGoogle Scholar
Forget, F., Hourdin, F., Fournier, , et al. (1999) Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104, 2415524176.CrossRefGoogle Scholar
Forget, F., Haberle, R. M., Montmessin, F., Levrard, B., and Head, J. W. (2006) Formation of glaciers on Mars by atmospheric precipitation at high obliquity, Science, 311, 368371.CrossRefGoogle ScholarPubMed
Forget, F., Madeleine, J.-B., Head, J. W., et al. (2014) What does obliquity do to the climate? In Eighth International Conference on Mars, LPI Contribution 1791, 1318.Google Scholar
François, L. M., Walker, J. C. G., and Kuhn, W. R. (1990) A numerical simulation of climate changes during the obliquity cycle on Mars, J. Geophys. Res., 95, 1476114778.CrossRefGoogle ScholarPubMed
Geissler, P. E. (2005) Three decades of Martian surface changes, Journal of Geophysical Research (Planets), 110(E9), 2001.Google Scholar
Ghatan, G. J., and Head, J. W. (2002) Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions, Journal of Geophysical Research (Planets), 107, 5048.Google Scholar
Glavin, D. P., Freissinet, C., Miller, K. E., et al. (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, J. Geophys. Res., 118, 19551973.CrossRefGoogle Scholar
Grima, C., Kofman, W., Mouginot, J., et al. (2009) North polar deposits of Mars: extreme purity of the water ice, Geophys. Res. Lett., 36, 3203.CrossRefGoogle Scholar
Haberle, R. M., and Kahre, M. A. (2010) Detecting secular climate change on Mars, The Mars Journal, 4, 6875, doi:10.1555/mars.2010.0003CrossRefGoogle Scholar
Haberle, R. M., Tyler, D., McKay, C. P., and Davis, W. L. (1994) A model for the evolution of CO2 on Mars, Icarus, 109, 102120.CrossRefGoogle Scholar
Haberle, R. M., McKay, C. P., Schaeffer, J., Cabrol, N., et al. (2001) On the possibility of liquid water on present-day Mars, J. Geophys. Res., 106, 2331723326.CrossRefGoogle Scholar
Haberle, R. M., Murphy, J. R., and Schaeffer, J. (2003) Orbital change experiments with a Mars general circulation model, Icarus, 161, 6689.CrossRefGoogle Scholar
Haberle, R. M., Montmessin, F., Kahre, M. A., et al. (2011) Radiative effects of water ice clouds on the Martian seasonal cycle. in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France.Google Scholar
Hale, A. S., Bass, D. S., and Tamppari, L. K. (2005) Monitoring the perennial Martian northern polar cap with MGS MOC, Icarus, 174, 502512.CrossRefGoogle Scholar
Hartmann, W. K. (2001) Martian seeps and their relation to youthful geothermal activity, Space Science Review, 96, 405410.CrossRefGoogle Scholar
Hartmann, W. K., Ansan, V., Berman, D. C., Mangold, N., and Forget, F. (2014) Comprehensive analysis of glaciated Martian crater Greg, Icarus, 228, 96120.CrossRefGoogle Scholar
Hauber, E., van Gasselt, S., Chapman, M. G., and Neukum, G. (2008) Geomorphic evidence for former lobate debris aprons at low latitudes on Mars: indicators of the Martian paleoclimate, Journal of Geophysical Research (Planets), 113, 2007.Google Scholar
Head, J. W., and Marchant, D. R. (2003) Cold-based mountain glaciers on Mars: western Arsia Mons, Geology, 31(7), 641.2.0.CO;2>CrossRefGoogle Scholar
Head, J. W. III, and Marchant, D. R. (2006) Modification of the walls of a Noachian crater in northern Arabia Terra (24E, 39N) during northern mid-latitude Amazonian glacial epochs on Mars: nature and evolution of lobate debris aprons and their relationships to lineated valley fill and glacial systems. In 37th Annual Lunar and Planetary Science Conference, Lunar and Planetary Inst. Technical Report, 37, 1126.Google Scholar
Head, J. W., and Marchant, D. R. (2009). Inventory of ice-related deposits on Mars: evidence for burial and long-term sequestration of ice in non-polar regions and implications for the water budget and climate evolution. In Lunar and Planetary Institute Science Conference Abstracts, 40, 1356.Google Scholar
Head, J. W., and Marchant, D. R. (2014) The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system, Antarctic Science, 26, 774800, doi:10.1017/S0954102014000686.CrossRefGoogle Scholar
Head, J. W., and Pratt, S. (2001) Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater, J. Geophys. Res., 106, 1227512300.CrossRefGoogle Scholar
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R. (2003) Recent ice ages on Mars, Nature, 426, 797802.CrossRefGoogle ScholarPubMed
Head, J. W., Neukum, G., Jaumann, R., et al. (2005) Tropical to mid-latitude snow and ice accumulation and glaciation on Mars, Nature, 434, 346351.CrossRefGoogle ScholarPubMed
Head, J. W., Marchant, D. R., Agnew, M. C., Fassett, C. I., and Kreslavsky, M. A. (2006a) Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for late Amazonian obliquity-driven climate change, Earth and Planetary Science Letters, 241, 663671.CrossRefGoogle Scholar
Head, J. W., Nahm, A. L., Marchant, D. R., and Neukum, G. (2006b) Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation, Geophys. Res. Lett., 33, 8.CrossRefGoogle Scholar
Head, J. W., Marchant, D. R., Forget, F., et al. (2009) Deciphering the late Amazonian history of Mars: assessing obliquity predictions with geological observations and atmospheric general circulation models, in 40th Lunar and Planet. Sci. Conf., March 23–27, The Woodlands, TX, Abstract No. 1349.Google Scholar
Head, J. W., Marchant, D. R., Dickson, J. L., Kress, A. M., and Baker, D. M. (2010) Northern mid-latitude glaciation in the Late Amazonian period of Mars: criteria for the recognition of debris-covered glacier and valley glacier land system deposits, Earth and Planetary Science Letters, 294, 306320.CrossRefGoogle Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al. (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site, Science, 325, 6467.CrossRefGoogle ScholarPubMed
Heldmann, J. L., and Mellon, M. T. (2004) Observations of Martian gullies and constraints on potential formation mechanisms, Icarus, 168, 285304.CrossRefGoogle Scholar
Heldmann, J. L., Carlsson, E., Johansson, H., Mellon, M. T., and Toon, O. B. (2007) Observations of Martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere, Icarus, 188, 324344.CrossRefGoogle Scholar
Herkenhoff, K. E., and Plaut, J. J. (2000) Surface ages and resurfacing rates of the polar layered deposits on Mars, Icarus, 144, 243253.CrossRefGoogle Scholar
Herkenhoff, K. E., Byrne, S., Russell, P. S., Fishbaugh, K. E., and McEwen, A. S. (2007) Meter-scale morphology of the north polar region of Mars, Science, 317, 1711.CrossRefGoogle ScholarPubMed
Hofstadter, M. D., and Murray, B. C. (1990) Ice sublimation and rheology – implications for the Martian polar layered deposits, Icarus, 84, 352361.CrossRefGoogle Scholar
Holt, J. W., Safaeinili, A., Plaut, J., et al. (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars, Science, 322, 1235.CrossRefGoogle ScholarPubMed
Holt, J. W., Fishbaugh, K. E., Byrne, S., et al. (2010) The construction of Chasma Boreale on Mars, Nature, 465, 446449.CrossRefGoogle ScholarPubMed
Hudson, T. L., and Aharonson, O. (2008) Diffusion barriers at Mars surface conditions: salt crusts, particle size mixtures, and dust, J. Geophys. Res., 113, E09008.Google Scholar
Hudson, T. L., Aharonson, O., Schörghofer, N., et al. (2007) Water vapor diffusion in Mars subsurface environments, J. Geophys. Res., 112(E5), E05016.Google Scholar
Hudson, T. L., Aharonson, O., and Schörghofer, N. (2009) Laboratory experiments and models of diffusive emplacement of ground ice on Mars, J. Geophys. Res., 114, E01002.Google Scholar
Hvidberg, C. S. (2003) Mass balance processes on the north polar cap on Mars. In EGS–AGU–EUG Joint Assembly, 2996.Google Scholar
Imbrie, J., and Imbrie, K. P. (1979) Ice Ages: Solving the Mystery. Harvard University Press.CrossRefGoogle Scholar
Ingersoll, A. P. (1970) Mars: occurrence of liquid water, Science, 168, 972973.CrossRefGoogle ScholarPubMed
Ivanov, A. B., and Muhleman, D. O. (2000) The role of sublimation for the formation of the northern ice cap: results from the Mars Orbiter Laser Altimeter, Icarus, 144, 436448.CrossRefGoogle Scholar
Jakosky, B. M., and Carr, M. H. (1985) Possible precipitation of ice at low latitudes of Mars during periods of high obliquity, Nature, 315, 559561.CrossRefGoogle Scholar
Jakosky, B. M., Henderson, B. G., and Mellon, T. M. (1993) The Mars water cycle at other epochs: recent history of the polar caps and layered terrain, Icarus, 102, 286297.CrossRefGoogle Scholar
James, P. B., Kieffer, H. H., and Paige, D. A. (1992) The seasonal cycle of carbon dioxide on Mars, in Mars, eds Kieffer, H. H., Jakosky, B. M., Snyder, C. B., and Matthews, M. S., University of Arizona Press, Tucson, AZ, 934968.Google Scholar
Kadish, S. J., and Head, J. W. (2011a) Impacts into non-polar ice-rich paleodeposits on Mars: excess ejecta craters, perched craters and pedestal craters as clues to Amazonian climate history, Icarus, 215, 3446.CrossRefGoogle Scholar
Kadish, S. J., and Head, J. W. (2011b) Preservation of layered paleodeposits in high-latitude pedestal craters on Mars, Icarus, 213, 443450.CrossRefGoogle Scholar
Kadish, S. J., Head, J. W., Barlow, N. G., and Marchant, D. R. (2008a) Martian pedestal craters: marginal sublimation pits implicate a climate-related formation mechanism, Geophys. Res. Lett., 35, 16104.CrossRefGoogle Scholar
Kadish, S. J., Head, J. W., Parsons, R. L., and Marchant, D. R. (2008b) The Ascraeus Mons fan-shaped deposit: volcano ice interactions and the climatic implications of cold-based tropical mountain glaciation, Icarus, 197, 84109.CrossRefGoogle Scholar
Kadish, S. J., Barlow, N. G., and Head, J. W. (2009) Latitude dependence of Martian pedestal craters: evidence for a sublimation-driven formation mechanism, Journal of Geophysical Research (Planets), 114, 10001.Google Scholar
Kadish, S. J., Head, J. W., and Barlow, N. G. (2010) Pedestal crater heights on Mars: a proxy for the thicknesses of past, ice-rich, Amazonian deposits, Icarus, 210, 92101.CrossRefGoogle Scholar
Kahn, R. (1985) The evolution of CO2 on Mars, Icarus, 62, 175190.CrossRefGoogle Scholar
Kieffer, H. H. (1990) H2O grain size and the amount of dust in Mars’ residual north polar cap, J. Geophys. Res., 95, 14811493.CrossRefGoogle Scholar
Kieffer, H. H., and Zent, A. P. (1992) Quasi-periodic climate change on Mars, in Mars, eds Kieffer, H. H., Jakosky, B. M., Snyder, C. B., and Matthews, M. S., University of Arizona Press, Tucson, AZ, 11801218.Google Scholar
Kieffer, H. H., Chase, S. C., Miner, E. D., et al. (1976) Infrared thermal mapping of the Martian surface and atmosphere: first results, Science, 193, 780786.CrossRefGoogle ScholarPubMed
Kolb, E. J., and Tanaka, K. L. (2006) Accumulation and erosion of south polar layered deposits in the Promethei Lingula region, Planum Australe, Mars, International Journal of Mars Science and Exploration, 2, 19.Google Scholar
Kostama, V.-P., Kreslavsky, M. A., and Head, J. W. (2006) Recent high-latitude icy mantle in the northern plains of Mars: characteristics and ages of emplacement, Geophys. Res. Lett., 33, L11201.CrossRefGoogle Scholar
Kounaves, S. P., Hecht, M. H., Kapit, J. et al. (2010) Wet chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: data analysis and results, Journal of Geophysical Research (Planets), 115, E00E10.Google Scholar
Koutnik, M., Byrne, S., and Murray, B. (2002) South polar layered deposits of Mars: the cratering record, Journal of Geophysical Research (Planets), 107, 5100.Google Scholar
Kreslavsky, M. A., and Head, J. W. (2000) Kilometer-scale roughness of Mars: results from MOLA data analysis, Journal of Geophysical Research (Planets), 105, 26695.CrossRefGoogle Scholar
Kreslavsky, M. A., and Head, J. W. (2002) Mars: nature and evolution of young latitude-dependent water-ice-rich mantle, Geophys. Res. Lett., 29(15), 1719.CrossRefGoogle Scholar
Kreslavsky, M. A., and Head, J. W. (2005) Mars at very low obliquity: atmospheric collapse and the fate of volatiles. Geophys. Res. Lett., 32, 12202.CrossRefGoogle Scholar
Kreslavsky, M. A., and Head, J. W. (2006) Modification of impact craters in the northern plains of Mars: implications for Amazonian climate history, Meteoritics and Planetary Science, 41, 16331646.CrossRefGoogle Scholar
Kreslavsky, M. A., and Head, J. W. (2011) Carbon dioxide glaciers on Mars: products of recent low obliquity epochs?, Icarus, 216, 111115.CrossRefGoogle Scholar
Kress, A. M., and Head, J. W. (2008) Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: evidence for subsurface glacial ice, Geophys. Res. Lett., 35, 23206.CrossRefGoogle Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., et al. (2005) Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express, Science, 307, 15811584.CrossRefGoogle Scholar
Laskar, J., and Robutel, P. (1993) The chaotic obliquity of the planets, Nature, 361, 608612.CrossRefGoogle Scholar
Laskar, J., Levrard, B., and Mustard, J. F. (2002) Orbital forcing of the Martian polar layered deposits, Nature, 419, 375377.CrossRefGoogle ScholarPubMed
Laskar, J., Correia, A. C. M., and Gastineau, M. (2004) Long term evolution and chaotic diffusion of the insolation quantities of Mars, Icarus, 170, 343364.CrossRefGoogle Scholar
Leighton, R. R., and Murray, B. C. (1966) Behavior of carbon dioxide and other volatiles on Mars, Science, 153, 136144.CrossRefGoogle ScholarPubMed
Levrard, B., Forget, F., Montmessin, F., and Laskar, J. (2004) Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity, Nature, 431, 10721075.CrossRefGoogle ScholarPubMed
Levrard, B., Forget, F., Montmessin, F., and Laskar, J. (2007) Recent formation and evolution of northern Martian polar layered deposits as inferred from a Global Climate Model, Journal of Geophysical Research (Planets), 112, 6012.Google Scholar
Levy, J. S., Head, J. W., Marchant, D. R., and Kowalewski, D. E. (2008) Identification of sublimation-type thermal contraction crack polygons at the proposed NASA Phoenix landing site: implications for substrate properties and climate-driven morphological evolution, Geophys. Res. Lett., 35, 4202.CrossRefGoogle Scholar
Levy, J., Head, J., and Marchant, D. (2009) Thermal contraction crack polygons on Mars: classification, distribution, and climate implications from HiRISE observations, Journal of Geophysical Research (Planets), 114, 1007.Google Scholar
Levy, J., Head, J. W., and Marchant, D. R. (2010) Concentric crater fill in the northern mid-latitudes of Mars: formation processes and relationships to similar landforms of glacial origin, Icarus, 209, 390404.CrossRefGoogle Scholar
Levy, J. S., Fassett, C. I., Head, J. W., Schwarts, C., and Wateters, J. L. (2014) Sequestered glacial ice contribution to the global Martian water budget: geometric constraints on the volume of remnant, midlatitude debris-covered glaciers, J. Geophys. Res., 119, 19, doi:10.1002/2014JE004685CrossRefGoogle Scholar
Litvak, M. L., Mitrofanov, I. G., Kozyrev, A. S., et al. (2006) Comparison between polar regions of Mars from HEND/Odyssey data, Icarus, 180, 2337.CrossRefGoogle Scholar
Lucchitta, B. K. (1984) Ice and debris in the fretted terrain, Mars, Journal of Geophysical Research Supplement, 89, 409.Google Scholar
Madeleine, J.-B., Forget, F., Head, J. W., et al. (2009), Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario, Icarus, 203, 390405.CrossRefGoogle Scholar
Madeleine, J.-B., Forget, F., and Millour, E. (2011) Modeling radiatively active water ice clouds: impact on the thermal structure and water cycle. In The Fourth International Workshop on Mars Atmosphere: Modelling and observation, Paris, France.Google Scholar
Madeleine, J.-B., Head, J. W., Forget, F., et al. (2014) Recent ice ages on Mars: the role of radiatively active clouds and cloud microphysics, Geophys. Res. Lett., 41, 48734879CrossRefGoogle Scholar
Malin, M. C., and Edgett, K. S. (2000) Sedimentary Rocks of Early Mars, Science, 290, 19271937.CrossRefGoogle ScholarPubMed
Malin, M. C., and Edgett, K. S. (2001) Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, J. Geophys. Res., 106, 2342923570.CrossRefGoogle Scholar
Malin, M. C., Caplinger, M. A., and Davis, S. D. (2001) Observational evidence for an active surface reservoir of solid carbon dioxide on Mars, Science, 294, 21462148.CrossRefGoogle ScholarPubMed
Mangold, N. (2005) High latitude patterned grounds on Mars: classification, distribution and climatic control, Icarus, 174, 336359.CrossRefGoogle Scholar
Mangold, N., Maurice, S., Feldman, W. C., Costard, F., and Forget, F. (2004) Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars, Journal of Geophysical Research (Planets), 109, 8001.Google Scholar
Marchant, D. R., and Head, J. W. (2007) Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars, Icarus, 192, 187222.CrossRefGoogle Scholar
Mellon, M. T., and Jakosky, B. M. (1993) Geographic variations in the thermal and diffusive stability of ground ice on Mars, J. Geophys. Res., 98(E2), 33453364.CrossRefGoogle Scholar
Mellon, M. T., and Jakosky, B. M. (1995) The distribution and behavior of Martian ground ice during past and present epochs, J. Geophys. Res., 100(E6), 1178111799.CrossRefGoogle Scholar
Mellon, M. T., Feldman, W. C., and Prettyman, T. H. (2004) The presence and stability of ground ice in the southern hemisphere of Mars, Icarus, 169, 324340.CrossRefGoogle Scholar
Mellon, M. T., Arvidson, R. E., Sizemore, H. G., et al. (2009) Ground ice at the Phoenix landing site: stability state and origin, J. Geophys. Res., 114, E00E07.Google Scholar
Milkovich, S. M., Head, J. W., and Marchant, D. R. (2006) Debris-covered piedmont glaciers along the northwest flank of the Olympus Mons scarp: evidence for low-latitude ice accumulation during the late Amazonian of Mars, Icarus, 181, 388407.CrossRefGoogle Scholar
Milkovich, S. M., Byrne, S., and Russell, P. S. (2011) Variations in surface texture of the north polar residual cap of Mars, in Fifth Mars Polar Science Conf., LPI Contributions, No. 1623, 6029.Google Scholar
Milliken, R. E., Mustard, J. F., and Goldsby, D. L. (2003) Viscous flow features on the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC) images, Journal of Geophysical Research (Planets), 108(E6), 5057.Google Scholar
Mischna, M. A., and Richardson, M. I. (2005) A reanalysis of water abundances in the Martian atmosphere at high obliquity, Geophys. Res. Lett., 23, L03201.Google Scholar
Mischna, M. A., Richardson, M. I., Wilson, R. J., and McCleese, D. J. (2003) On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes, Journal of Geophysical Research (Planets), 108(E6), 16–1.Google Scholar
Mitrofanov, I., Anfimov, D., Kozyrev, A., et al. (2002) Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey, Science, 297, 7881.CrossRefGoogle ScholarPubMed
Montmessin, F., Haberle, R. M., Forget, F., et al. (2007) On the origin of perennial water ice at the south pole of Mars: a precession-controlled mechanism? Journal of Geophysical Research (Planets), 112(E11), 8.Google Scholar
Montmessin, F., Forget, F., Rannou, P., Cabane, M., and Haberle, R. M. (2004) Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res., 109(E10), E10004, doi:10.1029/2004JE002284.Google Scholar
Morgan, G. A., Head, J. W., Forget, F., Madeleine, J.-B., and Spiga, A. (2010) Gully formation on Mars: two recent phases of formation suggested by links between morphology, slope orientation and insolation history, Icarus, 208, 658666.CrossRefGoogle Scholar
Murray, B. C., Soderblom, L. A., Cutts, J. A., et al. (1972) Geological framework of the south polar region of Mars, Icarus, 17, 328.CrossRefGoogle Scholar
Murray, B., Koutnik, M., Byrne, S., et al. (2001) Preliminary geological assessment of the northern edge of Ultimi lobe, Mars south polar layered deposits, Icarus, 154, 8097.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, M. K. (2001) Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice, Nature, 412, 411414.CrossRefGoogle ScholarPubMed
Nakamura, T., and Tajika, E. (2002) Stability of the Martian climate system under the seasonal change condition of solar radiation, J. Geophys. Res., 107, 5094.Google Scholar
Newman, C. E., Lewis, S. R., and Read, P. L. (2005) The atmospheric circulation and dust activity in different orbital epochs on Mars, Icarus, 174, 135160.CrossRefGoogle Scholar
Ojha, L., Wilhelm, M. B., Murchie, S. L., et al. (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars, Nature Geoscience, 8, 11, 829832.CrossRefGoogle Scholar
Orloff, T., Kreslavsky, M., Asphaug, E., and Korteniemi, J. (2011) Boulder movement at high northern latitudes of Mars, Journal of Geophysical Research (Planets), 116, 11006.CrossRefGoogle Scholar
Paige, D. A., and Ingersoll, A. P. (1985) Annual heat balance of Martian polar caps: Viking observations, Science, 228, 11601168.CrossRefGoogle ScholarPubMed
Pathare, A. V., and Paige, D. A. (2005) The effects of Martian orbital variations upon the sublimation and relaxation of north polar troughs and scarps, Icarus, 174, 419443.CrossRefGoogle Scholar
Pedersen, G. B. M., and Head, J. W. (2010) Evidence of widespread degraded Amazonian-aged ice-rich deposits in the transition between Elysium Rise and Utopia Planitia, Mars: guidelines for the recognition of degraded ice-rich materials, Planet. Space Sci., 58, 19531970.CrossRefGoogle Scholar
Phillips, R. J., Zuber, M. T., Smrekar, S. E., et al. (2008) Mars north polar deposits: stratigraphy, age, and geodynamical response, Science, 320, 1182.CrossRefGoogle ScholarPubMed
Phillips, R. J., Davis, B. J., Tanaka, K. L., et al. (2011) Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars, Science, 332, 838.CrossRefGoogle ScholarPubMed
Picardi, G., Plaut, J. J., Biccari, D., et al. (2005) Radar soundings of the subsurface of Mars. Science, 310, 19251928.CrossRefGoogle ScholarPubMed
Pierce, T. L., and Crown, D. A. (2003) Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars, Icarus, 163, 4665.CrossRefGoogle Scholar
Pilorget, C., and Forget, F. (2016) Formation of gullies on Mars by debris flows triggered by CO2 sublimation, Nature Geoscience, 9, 6569.CrossRefGoogle Scholar
Plaut, J. J., Picardi, G., Safaeinili, A., et al. (2007) Subsurface radar sounding of the south polar layered deposits of Mars, Science, 316, 92.CrossRefGoogle ScholarPubMed
Plaut, J. J., Safaeinili, A., Holt, J. W., et al. (2009) Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars, Geophys. Res. Lett., 36, 2203.CrossRefGoogle Scholar
Plescia, J. B. (2003) Cerberus Fossae, Elysium, Mars: a source for lava and water, Icarus, 164, 7995.CrossRefGoogle Scholar
Prettyman, T. H., Feldman, W. C., Mellon, M. T., et al. (2004) Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy, J. Geophys. Res., 109, E05001.Google Scholar
Putzig, N. E., Phillips, R. J., Campbell, B. A., et al. (2009) Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings, Icarus, 204, 443457.CrossRefGoogle Scholar
Reiss, D., Erkeling, G., Bauch, K. E., and Hiesinger, H. (2010) Evidence for present day gully activity on the Russell Crater dune field, Mars, Geophys. Res. Letters, 37, L06203.CrossRefGoogle Scholar
Richardson, M. I., and Wilson, R. J. (2002), A topographically forced asymmetry in the Martian circulation and climate, Nature, 416(6878), 298301, doi:10.1038/416298a.CrossRefGoogle ScholarPubMed
Richardson, M. I., and Mischna, M. A. (2005) Long-term evolution of transient liquid water on Mars, Jour. Geophys. Res. (Planets), 110, E03003.Google Scholar
Russell, P., Thomas, N., Byrne, S., et al. (2008) Seasonally active frost-dust avalanches on a north polar scarp of Mars captured by HiRISE, Geophys. Res. Lett., 35, 23204.CrossRefGoogle Scholar
Scanlon, K. E., Head, J. W., Wilson, L., and Marchant, D. R. (2014) Volcano-ice interactions in the Arsia Mons tropical mountain glacier deposits, Icarus, 237, 315339.CrossRefGoogle Scholar
Scanlon, K. E., Head, J. W., and Marchant, D. R. (2015) Volcanism-induced, local wet-based glacial conditions recorded in the late Amazonian Arsia Mons tropical mountain glacier deposits, Icarus, 250, 1831.CrossRefGoogle Scholar
Schon, S. C., and Head, J. W. (2011) Keys to gully formation processes on Mars: relation to climate cycles and sources of meltwater, Icarus, 213, 428432.CrossRefGoogle Scholar
Schörghofer, N. (2007a) Dynamics of ice ages on Mars, Nature, 449(7159), 192194.CrossRefGoogle ScholarPubMed
Schörghofer, N. (2007b) Theory of ground ice stability in sublimation environments, Phys. Rev. E., 75, 041201.CrossRefGoogle ScholarPubMed
Schörghofer, N. (2008) Temperature response of Mars to Milankovitch cycles, Geophys. Res. Lett., 35, L18201.CrossRefGoogle Scholar
Schörghofer, N., and Aharonson, O. (2005) Stability and exchange of subsurface ice on Mars, J. Geophys. Res., 110(E5), E05003.Google Scholar
Schörghofer, N., and Forget, F. (2012) History and anatomy of subsurface ice on Mars, Icarus, 220, 11121120.CrossRefGoogle Scholar
Selvans, M. M., Plaut, J. J., Aharonson, O., and Safaeinili, A. (2010) Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data, Journal of Geophysical Research (Planets), 115, 9003.Google Scholar
Seu, R., Phillips, R. J., Alberti, G., et al. (2007) Accumulation and erosion of Mars south polar layered deposits, Science, 317, 1715.CrossRefGoogle ScholarPubMed
Shean, D. E., Head, J. W., and Marchant, D. R. (2005) Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit, Journal of Geophysical Research (Planets), 110(E9), 5001.Google Scholar
Shean, D. E., Head, J. W., Fastook, J. L., and Marchant, D. R. (2007) Recent glaciation at high elevations on Arsia Mons, Mars: implications for the formation and evolution of large tropical mountain glaciers, Journal of Geophysical Research (Planets), 112, 3004.Google Scholar
Sizemore, H. G., and Mellon, M. T. (2008) Laboratory characterization of the structural properties controlling dynamical gas transport in Mars-analog soils, Icarus, 197, 606620.CrossRefGoogle Scholar
Smith, I. B., and Holt, J. W. (2010) Onset and migration of spiral troughs on Mars revealed by orbital radar, Nature, 465, 450453.CrossRefGoogle ScholarPubMed
Smith, P. H., Tamppari, L. K., Arvidson, R. E., et al. (2009) H2O at the Phoenix Landing Site, Science, 325(5936) 5861.CrossRefGoogle ScholarPubMed
Spiga, A., and Forget, F. (2008) Fast and accurate estimation of solar irradiance on Martian slopes, Geophys. Res. Lett., 35, L15201.CrossRefGoogle Scholar
Squyres, S. W. (1978) Martian fretted terrain – flow of erosional debris, Icarus, 34, 600613.CrossRefGoogle Scholar
Squyres, S. W. (1979) The distribution of lobate debris aprons and similar flows on Mars, J. Geophys. Res., 84, 80878096.CrossRefGoogle Scholar
Squyres, S. W., Clifford, S. M., Kuzmin, R. O., Zimbelman, J. R., and Costard, F. M. (1992) Ice in the Martian regolith, in Mars (Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S. Eds), University of Arizona Press, Tucson.Google Scholar
Szwast, M. A., Richardson, M. I., and Vasavada, A. R. (2006) Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking orbiters, J. Geophys. Res., 111(E11), E11008, doi:10.1029/2005JE002485.Google Scholar
Tanaka, K. L. (2005) Geology and insolation-driven climatic history of Amazonian north polar materials on Mars, Nature, 437, 991994.CrossRefGoogle ScholarPubMed
Tanaka, K. L., Rodriguez, J. A. P., Skinner, J. A., et al. (2008) North polar region of Mars: advances in stratigraphy, structure, and erosional modification, Icarus, 196, 318358.CrossRefGoogle Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., et al. (2000) North–south geological differences between the residual polar caps on Mars, Nature, 404, 161164.CrossRefGoogle ScholarPubMed
Thomas, P. C., James, P. B., Calvin, W. M., Haberle, R., and Malin, M. C. (2009) Residual south polar cap of Mars: stratigraphy, history, and implications of recent changes, Icarus, 203, 352375.CrossRefGoogle Scholar
Titus, T. N., Kieffer, H. H., and Christensen, P. R. (2003) Exposed water ice discovered near the south pole of Mars, Science, 299, 10481051.CrossRefGoogle ScholarPubMed
Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A., and Bilski, K. (1980) The astronomical theory of climatic change on Mars, Icarus, 44, 552607.CrossRefGoogle Scholar
Touma, J., and Wisdom, J. (1993) The chaotic obliquity of Mars, Science, 259, 12941297.CrossRefGoogle ScholarPubMed
Vasavada, A. R., Williams, J.-P., Paige, D. A., et al. (2000) Surface properties of Mars’ polar layered deposits and polar landing sites, J. Geophys. Res., 105, 69616970.CrossRefGoogle Scholar
Vincendon, M., Mustard, J., Forget, F., et al. (2010) Near-tropical subsurface ice on Mars, Geophys. Res. Lett., 37, L01202.CrossRefGoogle Scholar
Ward, W. R. (1973) Large-scale variations in the obliquity of Mars, Science, 181, 260262.CrossRefGoogle ScholarPubMed
Ward, W. R. (1974) Climate variations on Mars. 1. Astronomical theory of insolation, J. Geophys. Res., 79, 33753386.CrossRefGoogle Scholar
Ward, W. R., Murray, B. C., and Malin, M. C. (1974) Climatic variations on Mars. 2. Evolution of carbon dioxide atmosphere and polar caps, J. Geophys. Res., 79, 33873395.CrossRefGoogle Scholar
White, B. R. (1979) Soil transport by winds on Mars, J. Geophys. Res., 84, 46434651.CrossRefGoogle Scholar
Wieczorek, M. A. (2008) Constraints on the composition of the Martian south polar cap from gravity and topography, Icarus, 196, 506517.CrossRefGoogle Scholar
Williams, K. E., Toon, O. B., Heldmann, J. L., and Mellon, M. T. (2009) Ancient melting of mid-latitude snowpacks on Mars as a water source for gullies, Icarus, 200, 418425.CrossRefGoogle Scholar
Winebrenner, D. P., Koutnik, M. R., Waddington, E. D., et al. (2008) Evidence for ice flow prior to trough formation in the Martian north polar layered deposits, Icarus, 195, 90105.CrossRefGoogle Scholar
Wood, S. E., and Griffiths, S. D. (2007) Mars subsurface warming at low obliquity. In Seventh International Conference on Mars, LPI Contributions, 1353, 3387.Google Scholar
Zent, A. P., and Quinn, R. C. (1995) Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate, J. Geophys. Res., 100, 53415349.CrossRefGoogle Scholar
Zent, A. P., Fanale, F. P., and Postawko, S. E. (1987) Carbon dioxide – adsorption on palagonite and partitioning in the Martian regolith, Icarus, 71, 241249.CrossRefGoogle Scholar
Zimbelman, J. R., and Edgett, K. S. (1992) The Tharsis Montes, Mars – comparison of volcanic and modified landforms, Lunar and Planetary Science Conference Proceedings, 22, 3144.Google Scholar
Zuber, M. T., Phillips, R. J., Andrews-Hanna, J. C., et al. (2007) Density of Mars south polar layered deposits, Science, 317, 1718.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×