Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T18:56:27.440Z Has data issue: false hasContentIssue false

11 - Phase shifters and tuneable delay lines

Published online by Cambridge University Press:  05 February 2014

Laurent Dussopt
Affiliation:
Commissariat à l’Énergie Atomique – Laboratoire d’Electronique et de Technologie de l’Information (CEA-LETI)
Stepan Lucyszyn
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Advanced RF MEMS , pp. 307 - 342
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Koul, S. K. and Bhat, B., Microwave and Millimetre-Wave Phase Shifters, Artech House, 1992
Bahl, I. and Bhartia, P., Microwave Solid State Circuit Design, 2nd edn. Hoboken, NJ: John Wiley & Sons, 2003Google Scholar
Parker, D. and Zimmermann, D. C., “Phased-arrays-Part I: theory and architectures”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 678–87, Mar. 2002CrossRefGoogle Scholar
Parker, D. and Zimmermann, D. C., “Phased-arrays-Part II: Implementations, applications and future trends”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 688–98, Mar. 2002CrossRefGoogle Scholar
Lucyszyn, S., Robertson, I. D. and Aghvami, A. H., “24 GHz serrodyne frequency translator using a 360° analog CPW MMIC phase shifter”, IEEE Microw. Guided Wave Lett., vol. 4, no. 3, pp. 71–73, Mar. 1994CrossRefGoogle Scholar
Lucyszyn, S. and Robertson, I. D., “Vector modulators for adaptive and multi-function microwave communication systems”, Microwaves 94 Conference Proceedings, London, UK, pp. 103–6, Oct. 1994Google Scholar
Norvell, R., Hancock, R. J., Smith, J. K., Pugh, M. L., Theis, S. W. and Kviatkofsky, J., “Micro electro mechanical switch (MEMS) technology applied to electronically scanned arrays for space based radar”, IEEE Aerospace Conference, pp. 239–47, Mar. 1999
Brookner, E., “Phased-array and radar breakthroughs,” CIE International Conference on Radar, Shanghai, China, Oct. 2006Google Scholar
Lee, J. J., Quan, C., Allison, R., Reinehr, A. and Pierce, B., “Array antennas using low loss MEMS phase shifters”, IEEE Antennas and Prop. Soc. Int. Symp., San Antonio, TX, vol. 2, pp. 14–17, Jun. 2002CrossRefGoogle Scholar
Topalli, K., Unlu, M., Aydin Civi, O., Demir, S., Koc, S. and Akin, T., “A monolithic phased-array using 3-bit DMTL RF MEMS phase shifters,” IEEE Antennas and Prop. Soc. Int. Symp., Albuquerque, NM, pp. 517–520, Jul. 2006Google Scholar
Van Caekenberghe, K., Vaha-Heikkila, T., Rebeiz, G. M. and Sarabandi, K., “Ka-band MEMS TTD passive electronically scanned array (ESA),” IEEE Antennas and Prop. Soc. Int. Symp., Albuquerque, NM, pp. 513–16, Jul. 2006Google Scholar
Radant MEMS Company, “World's first demonstration of microelectromechanical systems-based X-band radar”, Apr. 2006
Sakiotis, N. G. and Chait, H. N., “Ferrites at microwaves”, Proc. IRE, vol. 41, no. 1, pp. 87–93, Jan. 1953CrossRefGoogle Scholar
Rodrigue, G. P., “A generation of microwave ferrite devices”, Proc. IEEE, vol. 76, no. 2, pp. 121–37, Feb. 1988CrossRefGoogle Scholar
Pozar, D. M., Microwave Engineering, 3rd edn. Hoboken, NJ: John Wiley & Sons, 2005Google Scholar
Lucyszyn, S. and Joshi, J. S. “Phase shifters”, in RFIC and MMIC Design and Technology, Robertson, I. D. and Lucyszyn, S., eds. London, UK: IEE, (London, Nov. 2001, pp. 381–427CrossRefGoogle Scholar
“Special issue on applications of ferroelectrics in microwave technology”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, part 2, Feb. 2007
Ellinger, F., Vogt, R. and Bachtold, W., “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining”, IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002CrossRefGoogle Scholar
Lucyszyn, S. and Robertson, I. D., “Analog reflection topology building blocks for adaptive microwave signal processing applications”, IEEE Trans. Microw. Theory Tech., vol. MTT-43, no. 3, pp. 601–11, Mar. 1995CrossRefGoogle Scholar
Lee, S., Park, J.-H., Kim, H.-T., Kim, J.-M., Kim, Y.-K.and Kwon, Y., “Low-loss analog and digital reflection-type MEMS phase shifters with 1:3 bandwidth”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 31, pp. 211–19, Jan. 2004CrossRefGoogle Scholar
Park, J.-H., Kim, H.-T., Choi, W., Kwon, Y. and Kim, Y.-K., “V-band reflection-type phase shifters using micromachined CPW coupler and RF switches”, IEEE J. Microelectromech. Syst., vol. 11, no. 6, pp. 808–14, Dec. 2002CrossRefGoogle Scholar
Rizk, J. B. and Rebeiz, G. M., “Digital-type RF MEMS switched capacitors”, IEEE MTT-S Int. Microw. Symp., Seattle, WA, vol. 2, pp. 1217–20, Jun. 2002Google Scholar
Dussopt, L. and Rebeiz, G. M., “High-Q millimeter-wave MEMS varactors : extended tuning range and discrete-position designs”, IEEE MTT-S Int. Microw. Symp., Seattle, WA, vol. 2, pp. 1205–08, Jun. 2002Google Scholar
Dussopt, L. and Rebeiz, G. M., “An X – to Ku-band 3-bit digital MEMS varactor”, IEEE Microw. Compon. Lett., vol. 13, no. 9, pp. 361–3, Sep. 2003CrossRefGoogle Scholar
Hayden, J. S., Rebeiz, G. M., “Very low-loss distributed X-band and Ka-band MEMS phase shifters using metal-air-metal capacitors”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, part 2, pp. 309–14, Jan. 2003CrossRefGoogle Scholar
Rebeiz, G. M., RF MEMS Theory, Design and Technology. Hoboken, NJ: John Wiley & Sons, Inc., 2003Google Scholar
Lucyszyn, S. and Robertson, I. D., “Synthesis techniques for high performance octave bandwidth 180° analog phase shifters”, IEEE Trans. Microw. Theory Tech., vol. 40, no. 4, pp. 731–40, Apr. 1992CrossRefGoogle Scholar
Miyaguchi, K., Hieda, M., Nakahara, K., Kurusu, H., Nii, M., Kasahara, M., Takagi, T. and Urasaki, S., “An ultra-broad-band reflection-type phase-shifter MMIC with series and parallel LC circuits”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2446–52, Dec. 2001CrossRefGoogle Scholar
Chen, C.-L., Courtney, W. E., Mahoney, L. J., Manfra, M. J., Chu, A. and Atwater, H. A., “A low-loss Ku-band monolothic analog phase shifter”, IEEE Trans. Microw. Theory Tech., vol. 35, no. 3, pp. 315–20, Mar. 1987CrossRefGoogle Scholar
Malczewski, A., Eshelman, S., Pillans, B., Ehmke, J. and Goldsmith, C. L., “X-band RF MEMS phase shifter for phased-array applications”, IEEE Microw. Guided Wave Lett., vol. 9, no. 12, pp. 517–19, Dec. 1999CrossRefGoogle Scholar
Rizk, J. B. and Rebeiz, G. M., “W-band microstrip RF-MEMS switches and phase shifters”, 2003 IEEE MTT-S Int. Microw. Symp., pp. 1485–8, 8-Jun. 2003
Garver, R. V., “Broad-band diode phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 20, no. 5, pp. 314–23, May 1972CrossRefGoogle Scholar
Ayasli, Y., Miller, S. W., Mozzi, R. and Hanes, L. K., “Wide-band monolithic phase shifter”, IEEE Trans. Microw. Theory Tech., vol. 32, no. 12, pp. 1710–14, Dec. 1984CrossRefGoogle Scholar
Kang, D.-W., Lee, H., Lee, K. H., Jeon, S.-I. and Hong, S., “Design of a phase shifter with improved bandwidth using embedded series-shunt switches”, European Microwave Conference, Paris, France, vol. 3, pp. 311–14, Oct. 2005Google Scholar
Moye, C., Sakamoto, G. and Brand, M., “A compact broadband six-bit MMIC phasor with integrated digital drivers”, IEEE MTT-S Int. Microw. Symp., vol. 1, pp. 457–60, May 1990Google Scholar
Campbell, C. F. and Brown, S. A., “A compact 5-bit phase-shifter MMIC for K-band satellite communication systems,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2652–6, Dec. 2000CrossRefGoogle Scholar
Adler, D. and Popovich, R., “Broadband switched-bit phase sifter using all-pass networks”, IEEE MTT-S Int. Microw. Symp., vol. 1, pp. 265–8, Jun. 1991Google Scholar
Darlington, S., “Realization of constant phase difference”, Bell System Tech. J., vol. 29, pp. 94–104, Jan. 1950CrossRefGoogle Scholar
Kim, D., Choi, Y., Ahn, M., Allen, M. G., Kenney, J. S. and Marry, P., “2.4 GHz continuously variable ferroelectric phase shifters using all-pass networks,” IEEE Microw. Compon. Lett., vol. 13, no. 10, pp. 434–6, Oct. 2003Google Scholar
Tan, G. L., Mihailovich, R. E., Hacker, J. B., DeNatale, J. F., Rebeiz, G. M., “4-bit miniature X-band MEMS phase shifter using switched-LC networks”, 2003 IEEE MTT-S Int. Microw. Symp., Philadelphia, PA, vol. 3, pp. 1477–80, Jun. 2003CrossRefGoogle Scholar
Doddamani, N. D., Harishchandra, and Nandi, A. V., “Design of SPDT switch 6 bit digital attenuator, 6 bit digital phase shifter for L-band T/R module using 0.7 um GaAs MMIC technology,” International Conference on Signal Processing, Communications and Networking (ICSCN’07), Chennai, India, pp. 302–7, Feb. 2007CrossRefGoogle Scholar
Wallace, J., Redd, H. and Furlow, R., “Low cost MMIC DBS chip sets for phased-array applications”, 1999 IEEE MTT-S Int. Microw. Symp., Anaheim, CA, vol. 2, pp. 677–80, Jun. 1999Google Scholar
Taniguchi, E., Hieda, M., Kurusu, H., Funada, M., Iyama, Y. and Takagi, T., “A Ku-band matched embedded-FET phase shifter,” 29th European Microwave Conference, Munich, Germany, vol. 2, pp. 357–60, Oct. 1999Google Scholar
United Monolithic Semiconductors, Datasheet of Components: CHP6013 and CHP4511,
M/A-COM corporation, Datasheet of Components: MAPS-008342-PKG003, MAPCGM0001-DIE and MAPCGM0005-DIE;
Triquint Semiconductor Inc., Datasheet of Components: TGP1439-EPU, TGP2100-EPU, TGP2103-EPU,
Zhao, Z., Wang, X., Choi, K., Lugo, C. and Hunt, A. T., “Ferroelectric phase shifters at 20 and 30 GHz”, IEEE Trans. Microw. Theory Tech., vol. 55, no.2, pp. 430–7, Feb 2007CrossRefGoogle Scholar
Simmons, A. J., “Phase shift by periodic loading of waveguide and its application to broad-band circular polarization”, IRE Trans. Microw. Theory Tech., vol. 3, no. 6, pp. 18–21, Dec. 1955CrossRefGoogle Scholar
White, J. F., “High power, p-i-n diode controlled, microwave transmission phase shifters”, IEEE Trans. Microw. Theory Tech., vol. 13, no. 2, pp. 233–42, Mar. 1965CrossRefGoogle Scholar
Opp, F. L. and Hoffman, W. F., “Design of digital loaded-line phase-shift networks for microwave thin film applications”, IEEE J. Solid-State Circuits, vol. 3, no. 2, pp. 124–30, Jun. 1968CrossRefGoogle Scholar
Burns, R. W., Holden, R. L. and Tang, R., “Low cost design techniques for semiconductor phase shifters”, IEEE Trans. Microw. Theory Tech., vol. 22, no. 6, pp. 675–88, Jun. 1974CrossRefGoogle Scholar
White, J. F., “Diode phase shifters for array antennas”, IEEE Trans. Microw. Theory Tech., vol. 22, no. 6, pp. 658–74, Jun. 1974CrossRefGoogle Scholar
Bahl, I. J. and Gupta, K. C., “Design of loaded-line p-i-n diode phase shifter circuits”, IEEE Trans. Microw. Theory Tech., vol. 28, no. 3, pp. 219–24, Mar. 1980CrossRefGoogle Scholar
Atwater, H. A., “Circuit design of the loaded-line phase shifter”, IEEE Trans. Microw. Theory Tech., vol. 33, no. 7, pp. 626–34, Jul. 1985CrossRefGoogle Scholar
Davis, W. A., “Design equations and bandwidth of loaded-line phase shifters”, IEEE Trans. on Microwave Theory and Tech., vol. 22, no. 5, pp. 561–563, May 1974CrossRefGoogle Scholar
Tan, G. L., Mihailovich, R. E., Hacker, J. B., DeNatale, J. F. and Rebeiz, G. M., “Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T switches”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, part 2, pp. 297–304, Jan. 2003Google Scholar
Kingsley, N. and Papapolymerou, J., “Organic wafer-scale packaged miniature 4-bit RF MEMS phase shifter”, IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp. 1229–1236, Mar. 2006CrossRefGoogle Scholar
Muldavin, J., Bozler, C. and Keast, C., “Wafer-scale packaged RF-MEMS switches,” IEEE MTT-S Int. Microw. Symp., San Francisco, CA, pp. 267–70, Jun. 2006Google Scholar
Rebeiz, G. M., G.-Tan, L. and Hayden, J. S., “RF MEMS phase shifters: design and applications”, IEEE Microw. Mag., vol. 3, no. 2, pp. 72–81, Jun. 2002CrossRefGoogle Scholar
Nordquist, C. D., Dyck, C. W., Kraus, G. M., Reines, I. C., Goldsmith, C. L., Cowan, W. D., Plut, T. A., Austin, F., Finnegan, P. S., Balance, M. H. and Sullivan, C. T., “A DC to 10-GHz 6-b RF MEMS time delay circuit”, IEEE Microw. Compon. Lett., vol. 16, no. 5, pp. 305–7, May 2006CrossRefGoogle Scholar
Rizk, J. B., Rebeiz, G. M., “W-band CPW RF MEMS circuits on quartz substrates”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 7, pp. 1857–62, Jul. 2003CrossRefGoogle Scholar
Pillans, B., Eshelman, S., Malczewski, A., Ehmke, J. and Goldsmith, C., “Ka-band RF MEMS phase shifters”, IEEE Microw. Guided Wave Lett., vol. 9, no. 12, pp. 520–2, Dec. 1999CrossRefGoogle Scholar
Nordquist, C. D., Dyck, C. W., Kraus, G. M., Sullivan, C. T., Austin, F., Finnegan, P. S. and Ballance, M. H., “Ku-band six-bit RF MEMS time delay network,” 2008 Compound Semiconductor Integrated Circuits Symp., CSICS’08, Monterey, CA, pp. 1–4, Oct. 2008Google Scholar
Barker, N. S., “Distributed MEMS transmission lines”, Ph.D. Dissertation, The University of Michigan, 1999Google Scholar
Barker, N. S. and Rebeiz, G. M., “Optimization of distributed MEMS transmission-line phase shifters – U-band and W-band designs”, IEEE Trans. Microwave Theory Tech., vol. 48, no. 11, part 1, pp. 1957–1966, Nov. 2000Google Scholar
Hayden, J. S., “High performance digital X-band and Ka-band distributed MEMS phase shifters”, Ph.D. Dissertation, The University of Michigan, 2002Google Scholar
Hung, J. J., Dussopt, L. and Rebeiz, G. M., “Distributed 2 – and 3-bit W-band MEMS phase shifters on glass substrates”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 600–6, Feb. 2004CrossRefGoogle Scholar
Rodwell, M. J. W., Allen, S. T., Yu, R. Y., Case, M. G., Bhattacharya, U., Reddy, M., Carman, E., Kamegawa, M., Konishi, Y., Pusl, J. and Pullela, R., “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics”, Proc. IEEE, vol. 82, no. 7, pp. 1037–59, Jul. 1994CrossRefGoogle Scholar
Nagra, A. S. and York, R. A., “Distributed analog phase shifters with low insertion loss”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1705–11, Sep. 1999CrossRefGoogle Scholar
Liu, Y., Nagra, A. S., Erker, E. G., Periaswamy, P., Taylor, T. R., Speck, J. and York, R. A., “BaSrTiO3 interdigitated capacitors for distributed phase shifter applications”, IEEE Microwave Guided Wave Lett., vol. 10, no. 11, pp. 448–50, Nov. 2000Google Scholar
Acikel, B., Taylor, T. R., Hansen, P. J., Speck, J. S., York, R. A., “A new high performance phase shifter using BaxSr1-xTiO3 thin films”, IEEE Microw. Compon. Lett., vol. 12, no. 7, pp. 237–39, Jul. 2002CrossRefGoogle Scholar
Velu, G., Blary, K., Burgnies, L., Carru, J. C., Delos, E., Marteau, A. and Lippens, D., “A 310°/3.6-dB K-band phase shifter using paraelectric BST thin films”, IEEE Microw. Compon. Lett., vol. 16, no. 2, pp. 87–89, Feb. 2006CrossRefGoogle Scholar
McFeetors, G. and Okoniewski, M., “Distributed MEMS analog phase shifter with enhanced tuning”, IEEE Microw. Compon. Lett., vol. 16, no. 1, pp. 34–36, Jan. 2006CrossRefGoogle Scholar
Liu, Y., Borgioli, A., Nagra, A. S. and York, R. A., “K-band 3-bit low-loss distributed MEMS phase shifter”, IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 415–17, Oct. 2000CrossRefGoogle Scholar
Hayden, J. S., Rebeiz, G. M., “Very low-loss distributed X-band and Ka-band MEMS phase shifters using Metal-Air-Metal capacitors”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 309–14, Jan. 2003CrossRefGoogle Scholar
Farinelli, P., Margesin, B., Giacomozzi, F., Rantakari, P. and Vähä-Heikkilä, T., “Continuously tunable millimeter wave MEMS phase shifter”, International Joint Conference of the 8th MINT Millimeter-Wave International Symp. (MINT-MIS2007), the 9th Topical Symp. on Millimeter Waves (TSMMW2007), and Millilab Workshop on Millimeter-Wave Technology and Applications, Seoul, Korea, Feb. 2007Google Scholar
Kim, H.-T., Park, J.-H., Lee, S., Kim, S., Kim, J.-M., Kim, Y.-K. and Kwon, Y., “V-band 2-b and 4-b low-loss and low-voltage distributed MEMS digital phase shifter using metal-air-metal capacitors”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2918–23, Dec. 2002Google Scholar
Topalli, K. and Aydin, O. Civi, personal communication
Hines, M. E., “Fundamental limitations in RF switching and phase shifting using semiconductor diodes”, Proc. IEEE, vol. 52, no. 6, pp. 697–708, Jun. 1964CrossRefGoogle Scholar
Dussopt, L. and Rebeiz, G. M., “Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1247–56, Apr. 2003CrossRefGoogle Scholar
Rebeiz, G. M., “Phase-noise analysis of MEMS-based circuits and phase shifters”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 5, pp. 1316–23, May 2002CrossRefGoogle Scholar
Arazm, F. and Benson, F. A., “Nonlinearities in metal contacts at microwave frequencies”, IEEE Trans. Electromagn. Compat., vol. 22, no. 3, pp. 142–9, Aug. 1980CrossRefGoogle Scholar
Johnson, J., Adams, G. G., McGruer, N. E., “Determination of intermodulation distortion in a contact-type MEMS microswitch”, IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3615–20, Nov. 2005CrossRefGoogle Scholar
Radant MEMS Inc., RMSW200 Product Datasheet,
Teravicta Technologies Inc., TT1244 Product Datasheet,
Girbau, D., Otegi, N., Pradell, L. and Lazaro, A., “Study of intermodulation in RF MEMS variable capacitors”, IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1120–30, Mar. 2006CrossRefGoogle Scholar
Mercier, D., Blondy, P., Cros, D. and Guillon, P., “An electromechanical model for MEMS switches”, IEEE MTT-S Int. Microw. Symp., Phoenix, AZ, pp. 2123–26, May 2001Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Phase shifters and tuneable delay lines
    • By Laurent Dussopt, Commissariat à l’Énergie Atomique – Laboratoire d’Electronique et de Technologie de l’Information (CEA-LETI)
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Phase shifters and tuneable delay lines
    • By Laurent Dussopt, Commissariat à l’Énergie Atomique – Laboratoire d’Electronique et de Technologie de l’Information (CEA-LETI)
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Phase shifters and tuneable delay lines
    • By Laurent Dussopt, Commissariat à l’Énergie Atomique – Laboratoire d’Electronique et de Technologie de l’Information (CEA-LETI)
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.012
Available formats
×