Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T09:40:48.430Z Has data issue: false hasContentIssue false

3 - Two RED systems – abduction machines 1 and 2

Published online by Cambridge University Press:  08 October 2009

John R. Josephson
Affiliation:
Ohio State University
Susan G. Josephson
Affiliation:
Ohio State University
Get access

Summary

In chapters 1 and 2, we describe abduction, design science, and the generictask approach to building knowledge-based systems. In this chapter we examine the first two of our abductive systems, which we call here RED-1 and RED-2. RED-2 extended RED-1 in several dimensions, the most important being a more sophisticated strategy for assembling composite hypotheses. RED-2 was widely demonstrated and served as a paradigm for our subsequent work on abduction. The RED systems show that abduction can be described precisely enough so that it can be programmed on a digital computer. Moreover, the RED systems do not use methods that are explicitly or recognizably deductive or probabilistic, and thus the RED systems demonstrate evidence-combining inference that apparently goes beyond those classical frameworks.

The red-cell antibody identification task

The RED systems are medical test-interpretation systems that operate in the knowledge domain of hospital blood banks. Our domain experts for these two RED systems were Patricia L. Strohm, MT (ASCP) SBB and John Svirbely, MD. The blood bank is a medical laboratory responsible for providing safe blood and blood products for transfusion. The major activities required are A-B-O and Rh blood typing, red-cell antibody screening, redcell antibody identification, and compatibility testing. The RED systems provide decision support for red-cell antibody identification.

Blood cells have chemical structures on their surfaces called red-cell antigens. When a donor's cells are transfused into a patient, these antigens can be recognized as foreign by the patient's immune system.

Type
Chapter
Information
Abductive Inference
Computation, Philosophy, Technology
, pp. 63 - 93
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×