Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T09:37:18.190Z Has data issue: false hasContentIssue false

4 - Generalizing the control strategy – machine 3

Published online by Cambridge University Press:  08 October 2009

John R. Josephson
Affiliation:
Ohio State University
Susan G. Josephson
Affiliation:
Ohio State University
Get access

Summary

The PEIRCE tool

In the first generation of work on generic tasks the invocation of a generictask problem solver was pre-programmed, hard-wired during system programming. In RED-2 we wanted to test many variations of the algorithm empirically, but a significant amount of work was required to reprogram the system each time a change was desired. Also, the RED-2 hypothesis-assembly module seemed too “algorithmic,” too much like a rule follower and not enough like “fluid intelligence.” So we decided to analyze the system in terms of the goals and subgoals of abductive problem solving and to identify the different methods that were used to achieve the various goals. This analysis allowed us to reorganize the program in a way that made adding new methods and modifying the goal structure easy, so that we could better experiment with new strategies for abduction. For multiple methods to be available to achieve problem-solving goals, method selection would occur at run time based on the state of the problem and the availability of needed forms of knowledge. These efforts resulted in a programming tool called “PEIRCE” for building systems that perform abductive assembly and criticism in this more flexible manner.

Systems built with PEIRCE are examples of third generation abduction machines (where RED-1 is taken as the first generation and RED-2 as the second). PEIRCE allows for specifying strategies for dynamically integrating various hypothesis-improvement tactics, or operators, during the course of problem solving. The idea was to capture domain-independent aspects of abductive assembly and criticism and embed them in the tool, leaving domain-specific aspects to be programmed when building particular knowledge-based systems.

Type
Chapter
Information
Abductive Inference
Computation, Philosophy, Technology
, pp. 94 - 116
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×