Published online by Cambridge University Press: 08 October 2009
The problem of abduction can be characterized as finding the best explanation of a set of data. In this chapter we focus on one type of abduction in which the best explanation is the most plausible combination of hypotheses that explains all the data. We then present several computational complexity results demonstrating that this type of abduction is intractable (NP-hard) in general. In particular, choosing between incompatible hypotheses, reasoning about cancellation effects among hypotheses, and satisfying the maximum plausibility requirement are major factors leading to intractability. We also identify a tractable, but restricted, class of abduction problems.
Introduction
What kinds of abduction problems can be solved efficiently? To answer this question, we must formalize the problem and then consider its computational complexity. However, it is not possible to prescribe a specific complexity threshold for all abduction problems. If the problem is “small,” then exponential time might be fast enough. If the problem is sufficiently large, then even O(n2) might be too slow. However, for the purposes of analysis, the traditional threshold of intractability, NP-hard, provides a rough measure of what problems are impractical (Garey & Johnson, 1979). Clearly, NP-hard problems will not scale up to larger, more complex domains.
Our approach is the following. First, we formally characterize abduction as a problem of finding the most plausible composite hypothesis that explains all the data. Then we consider several classes of problems of this type, the classes being differentiated by additional constraints on how hypotheses interact.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.