Skip to main content Accessibility help
×
  • Cited by 100
Publisher:
Cambridge University Press
Online publication date:
January 2014
Print publication year:
2014
Online ISBN:
9781107239425

Book description

The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] Adams, D. R., and Hedberg, L. I. 1996. Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften, vol. 314. Berlin: Springer-Verlag.
[2] Agler, J. 1988. Some interpolation theorems of Nevanlinna-Pick type. Unpublished manuscript.
[3] Agler, J. 1990. A disconjugacy theorem for Toeplitz operators. Amer. J. Math., 112(1), 1–14.
[4] Agler, J., and McCarthy, J. E. 2002. Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics, vol. 44. Providence, RI: American Mathematical Society.
[5] Ahlfors, L. V. 1973. Conformai Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. New York: McGraw-Hill.
[6] Aikawa, H., and Essen, M. 1996. Potential Theory—Selected Topics. Lecture Notes in Mathematics, vol. 1633. Berlin: Springer-Verlag.
[7] Aleman, A. 1993. The multiplication operator on Hilbert spaces of analytic functions. Habilitationsschrift, Fern Universität, Hagen.
[8] Arazy, J., and Fisher, S. D. 1985. The uniqueness of the Dirichlet space among Mobius-invariant Hilbert spaces. Illinois J. Math., 29(3), 449–462.
[9] Arcozzi, N., Rochberg, R., and Sawyer, E. T. 2002. Carleson measures for analytic Besov spaces. Rev. Mat. Iberoamericana, 18(2), 443–510.
[10] Arcozzi, N., Rochberg, R., and Sawyer, E. T. 2008. Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls. Adv. Math., 218(4), 1107–1180.
[11] Arcozzi, N., Rochberg, R., Sawyer, E. T., and Wick, B. D. 2011. The Dirichlet space: a survey. New York J. Math., 17A, 45–86.
[12] Armitage, D. H., and Gardiner, S. J. 2001. Classical Potential Theory. Springer Monographs in Mathematics. London: Springer-Verlag.
[13] Bénéteau, C., Condori, A., Liaw, C., Seco, D., and Sola, A.Cyclicity in Dirichlet-type spaces and extremal polynomials. J. Anal. Math. To appear.
[14] Berenstein, C. A., and Gay, R. 1991. Complex Variables. Graduate Texts in Mathematics, vol. 125. New York: Springer-Verlag.
[15] Beurling, A. 1933. Etudes sur un problème de majoration. Doctoral thesis, Uppsala University.
[16] Beurling, A. 1940. Ensembles exceptionnels. Acta Math., 72, 1–13.
[17] Bishop, C. J. 1994. Interpolating sequences for the Dirichlet space and its multipliers. Unpublished manuscript.
[18] Bøe, B. 2005. An interpolation theorem for Hilbert spaces with Nevanlinna-Pick kernel. Proc. Amer. Math. Soc., 133(7), 2077–2081.
[19] Bogdan, K. 1996. On the zeros of functions with finite Dirichlet integral. Kodai Math. J., 19(1), 7–16.
[20] Borichev, A. 1993. A note on Dirichlet-type spaces. Uppsala University Department of Mathematics Report 11.
[21] Borichev, A. 1994. Boundary behavior in Dirichlet-type spaces. Uppsala University Department of Mathematics Report 3.
[22] Bourdon, P. S. 1986. Cellular-indecomposable operators and Beurling's theorem. Michigan Math J., 33(2), 187–193.
[23] Brown, L., and Cohn, W. 1985. Some examples of cyclic vectors in the Dirichlet space. Proc. Amer. Math. Soc., 95(1), 42–46.
[24] Brown, L., and Shields, A. L. 1984. Cyclic vectors in the Dirichlet space. Trans. Amer. Math. Soc., 285(1), 269–303.
[25] Carleson, L. 1952a. On the zeros of functions with bounded Dirichlet integrals. Math. Z., 56, 289–295.
[26] Carleson, L. 1952b. Sets of uniqueness for functions regular in the unit circle. Acta Math., 87, 325–345.
[27] Carleson, L. 1960. A representation formula for the Dirichlet integral. Math. Z., 73, 190–196.
[28] Carleson, L. 1962. Interpolations by bounded analytic functions and the corona problem. Ann. Math. (2), 76, 547–559.
[29] Carleson, L. 1967. Selected Problems on Exceptional Sets. Van Nostrand Mathematical Studies, No. 13. Princeton, NJ: Van Nostrand.
[30] Carlsson, M. 2008. On the Cowen-Douglas class for Banach space operators. Integral Equations Operator Theory, 61(4), 593–598.
[31] Caughran, J. G. 1969. Two results concerning the zeros of functions with finite Dirichlet integral. Canad. J. Math., 21, 312–316.
[32] Caughran, J. G. 1970. Zeros of analytic functions with infinitely differentiable boundary values. Proc. Amer. Math. Soc., 24, 700–704.
[33] Chacón, G. R. 2011. Carleson measures on Dirichlet-type spaces. Proc. Amer. Math. Soc., 139(5), 1605–1615.
[34] Chang, S.-Y. A., and Marshall, D. E. 1985. On a sharp inequality concerning the Dirichlet integral. Amer. J. Math., 107(5), 1015–1033.
[35] Chartrand, R. 2002. Toeplitz operators on Dirichlet-type spaces. J. Operator Theory, 48(1), 3–13.
[36] Cowen, C. C., and MacCluer, B. D. 1995. Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press.
[37] Cowen, M. J., and Douglas, R. G. 1978. Complex geometry and operator theory. Acta Math., 141(3–4), 187–261.
[38] Doob, J. L. 1984. Classical Potential Theory and its Probabilistic Counterpart. Grundlehren der Mathematischen Wissenschaften, vol. 262. New York: Springer-Verlag.
[39] Douglas, J. 1931. Solution of the problem of Plateau. Trans. Amer. Math. Soc., 33(1), 263–321.
[40] Duren, P. L. 1970. Theory of Hp Spaces. Pure and Applied Mathematics, Vol. 38. New York: Academic Press.
[41] Dyn′kin, E. M. 1972. Extensions and integral representations of smooth functions of one complex variable. Dissertation, Leningrad.
[42] El-Fallah, O., Kellay, K., Mashreghi, J., and Ransford, T.One-box conditions for Carleson measures for the Dirichlet space. Proc. Amer. Math. Soc. To appear.
[43] El-Fallah, O., Kellay, K., and Ransford, T. 2006. Cyclicity in the Dirichlet space. Ark. Mat., 44(1), 61–86.
[44] El-Fallah, O., Kellay, K., and Ransford, T. 2009. On the Brown-Shields conjecture for cyclicity in the Dirichlet space. Adv. Math., 222(6), 2196–2214.
[45] El-Fallah, O., Kellay, K., Shabankhah, M., and Youssfi, H. 2011. Level sets and composition operators on the Dirichlet space. J. Funct. Anal., 260(6), 1721–1733.
[46] El-Fallah, O., Kellay, K., Mashreghi, J., and Ransford, T. 2012. A self-contained proof of the strong-type capacitary inequality for the Dirichlet space. Pages 1–20 of: Complex Analysis and Potential Theory. CRM Proc. Lecture Notes, vol. 55. Providence, RI: American Mathematical Society.
[47] Essén, M. 1987. Sharp estimates of uniform harmonic majorants in the plane. Ark. Mat., 25(1), 15–28.
[48] Frostman, O. 1935. Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Thesis. Meddel. Lunds Univ. Mat. Sem., 3, 1–118.
[49] Gallardo-Gutiérrez, E. A., and González, M. J. 2003. Exceptional sets and Hilbert-Schmidt composition operators. J. Funct. Anal., 199(2), 287–300.
[50] Garnett, J. B. 2007. Bounded Analytic Functions. revised first edn. Graduate Texts in Mathematics, vol. 236. New York: Springer.
[51] Garnett, J. B., and Marshall, D. E. 2005. Harmonic Measure. New Mathematical Monographs, vol. 2. Cambridge: Cambridge University Press.
[52] Guillot, D. 2012a. Blaschke condition andzero sets in weighted Dirichlet spaces. Ark. Mat., 50(2), 269–278.
[53] Guillot, D. 2012b. Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces. Complex Anal. Operator Theory, 6(6), 1211–1230.
[54] Hansson, K. 1979. Imbedding theorems of Sobolev type in potential theory. Math. Scand., 45(1), 77–102.
[55] Hardy, G. H. 1949. Divergent Series. Oxford: Clarendon Press.
[56] Hastings, W. W. 1975. A Carleson measure theorem for Bergman spaces. Proc. Amer. Math. Soc., 52, 237–241.
[57] Hayman, W. K., and Kennedy, P. B. 1976. Subharmonic Functions, vol. 1. London Mathematical Society Monographs, No. 9. London: Academic Press [Harcourt Brace Jovanovich Publishers].
[58] Hedenmalm, H., and Shields, A. L. 1990. Invariant subspaces in Banach spaces of analytic functions. Michigan Math. J., 37(1), 91–104.
[59] Helms, L. L. 1975. Introduction to Potential Theory. Pure and Applied Mathematics, vol. 22. Huntington, NY: Robert E. Krieger.
[60] Hille, E. 1962. Analytic Function Theory, vol. II. Introductions to Higher Mathematics. Boston, MA: Ginn and Co.
[61] Kahane, J.-P., and Salem, R. 1994. Ensembles parfaits et séries trigono-métriques. Second edn. Paris: Hermann.
[62] Kellay, K. 2011. Poincaré type inequality for Dirichlet spaces and application to the uniqueness set. Math. Scand., 108(1), 103–114.
[63] Kellay, K., and Mashreghi, J. 2012. On zero sets in the Dirichlet space. J. Geom. Anal., 22(4), 1055–1070.
[64] Kerman, R., and Sawyer, E. T. 1988. Carleson measures and multipliers of Dirichlet-type spaces. Trans. Amer. Math. Soc., 309(1), 87–98.
[65] Koosis, P. 1992. The Logarithmic Integral II. Cambridge Studies in Advanced Mathematics, vol. 21. Cambridge: Cambridge University Press.
[66] Koosis, P. 1998. Introduction to Hp Spaces. Second edn. Cambridge Tracts in Mathematics, vol. 115. Cambridge: Cambridge University Press.
[67] Korenblum, B. I. 1972. Invariant subspaces of the shift operator in a weighted Hilbert space. Math. USSR-Sb., 18, 111–138.
[68] Korenblum, B. I. 2006. Blaschke sets for Bergman spaces. Pages 145–152 of: Bergman Spaces and Related Topics in Complex Analysis. Contemp. Math., vol. 404. Providence, RI: American Mathematical Society.
[69] Korolevič, V. S. 1970. A certain theorem of Beurling and Carleson. Ukrainian Math. J., 22(6), 710–714.
[70] Landkof, N. S. 1972. Foundations of Modern Potential Theory. Grundlehren der mathematischen Wissenschaften, vol. 180. New York: Springer-Verlag.
[71] Lefèvre, P., Li, D., Queffélec, H., and Rodríguez-Piazza, L. 2013. Compact composition operators on the Dirichlet space and capacity of sets of contact points. J. Funct. Anal., 264(4), 895–919.
[72] Luecking, D. H. 1987. Trace ideal criteria for Toeplitz operators. J. Funct. Anal., 73(2), 345–368.
[73] MacCluer, B. D., and Shapiro, J. H. 1986. Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canad. J. Math., 38(4), 878–906.
[74] Malliavin, P. 1977. Sur l'analyse harmonique de certaines classes de séries de Taylor. Pages 71–91 of: Symposia Mathematica, Vol. XXII (Convegno sull'Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, IN-DAM, Rome, 1976). London: Academic Press.
[75] Marshall, D. E. 1989. A new proof of a sharp inequality concerning the Dirichlet integral. Ark. Mat., 27(1), 131–137.
[76] Marshall, D. E., and Sundberg, C. 1989. Interpolating sequences for the multipliers ofthe Dirichlet space. Unpublished manuscript.
[77] Mashreghi, J. 2009. Representation Theorems in Hardy Spaces. London Mathematical Society Student Texts, vol. 74. Cambridge: Cambridge University Press.
[78] Mashreghi, J., Ransford, T., and Shabankhah, M. 2010. Arguments of zero sets in the Dirichlet space. Pages 143–148 of: Hilbert Spaces ofAnalytic Functions. CRM Proc. Lecture Notes, vol. 51. Providence, RI: American Mathematical Society.
[79] Maz′ya, V. G., and Havin, V. P. 1973. Application of the (p, l)-capacity to certain problems of the theory of exceptional sets. Mat. Sb. (N.S.), 90(132), 558–591, 640.
[80] Meyers, N. G. 1970. A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand., 26, 255–292 (1971).
[81] Monterie, M. A. 1997. Capacities of certain Cantor sets. Indag. Math. (N.S.), 8(2), 247–266.
[82] Nagel, A., and Stein, E. M. 1984. On certain maximal functions and approach regions. Adv. Math., 54(1), 83–106.
[83] Nagel, A., Rudin, W., and Shapiro, J. H. 1982. Tangential boundary behavior of functions in Dirichlet-type spaces. Ann. Math. (2), 116(2), 331–360.
[84] Nagel, A., Rudin, W., and Shapiro, J. H. 1983. Tangential boundary behavior of harmonic extensions of Lp potentials. Pages 533–548 of: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, IL, 1981). Wadsworth Math. Ser. Belmont, CA: Wadsworth.
[85] Nehari, Z. 1975. Conformai Mapping. New York: Dover Publications.
[86] Novinger, W. P. 1971. Holomorphic functions with infinitely differentiable boundary values. Illinois J. Math., 15, 80–90.
[87] Ohtsuka, M. 1957. Capacité d'ensembles de Cantor généralisés. Nagoya Math. J., 11, 151–160.
[88] Olin, R. F., and Thomson, J. E. 1984. Cellular-indecomposable subnormal operators. Integral Equations Operator Theory, 7(3), 392–430.
[89] Parrott, S. 1978. On a quotient norm and the Sz.-Nagy–Foia lifting theorem. J. Funct. Anal., 30(3), 311–328.
[90] Peller, V. V., and Hruscev, S. V. 1982. Hankel operators, best approximations and stationary Gaussian processes. Russian Math. Surveys, 37(1), 61–144.
[91] Pommerenke, Ch. 1975. Univalent Functions. Göttingen: Vandenhoeck & Ruprecht.
[92] Pommerenke, Ch. 1992. Boundary Behaviour ofConformal Maps. Grundlehren der Mathematischen Wissenschaften, vol. 299. Berlin: Springer-Verlag.
[93] Ransford, T. 1995. Potential Theory in the Complex Plane. London Mathematical Society Student Texts, vol. 28. Cambridge: Cambridge University Press.
[94] Ransford, T., and Selezneff, A. 2012. Capacity and covering numbers. Potential Anal., 36, 223–233.
[95] Richter, S. 1988. Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math., 386, 205–220.
[96] Richter, S. 1991. A representation theorem for cyclic analytic two-isometries. Trans. Amer. Math. Soc., 328(1), 325–349.
[97] Richter, S., and Shields, A. L. 1988. Bounded analytic functions in the Dirichlet space. Math. Z., 198(2), 151–159.
[98] Richter, S., and Sundberg, C. 1991. A formula for the local Dirichlet integral. Michigan Math. J., 38(3), 355–379.
[99] Richter, S., and Sundberg, C. 1992. Multipliers and invariant subspaces in the Dirichlet space. J. Operator Theory, 28(1), 167–186.
[100] Richter, S., and Sundberg, C. 1994. Invariant subspaces of the Dirichlet shift and pseudocontinuations. Trans. Amer. Math. Soc., 341(2), 863–879.
[101] Richter, S., Ross, W. T., and Sundberg, C. 2004. Zeros of functions with finite Dirichlet integral. Proc. Amer. Math. Soc., 132(8), 2361–2365.
[102] Rochberg, R., and Wu, Z. J. 1992. Toeplitz operators on Dirichlet spaces. Integral Equations Operator Theory, 15(2), 325–342.
[103] Ross, W. T. 2006. The classical Dirichlet space. Pages 171–197 of: Recent Advances in Operator-Related Function Theory. Contemp. Math., vol. 393. Providence, RI: American Mathematical Society.
[104] Rudin, W. 1987. Real and Complex Analysis. Third edn. New York: McGraw-Hill.
[105] Rudin, W. 1992. Power series with zero-sum on countable sets. Complex Variables Theory Appl., 18(3–4), 283–284.
[106] Saff, E. B., and Totik, V. 1997. Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften, vol. 316. Berlin: Springer-Verlag.
[107] Sarason, D. 1986. Doubly shift-invariant spaces in H2. J. Operator Theory, 16(1), 75–97.
[108] Sarason, D. 1997. Local Dirichlet spaces as de Branges-Rovnyak spaces. Proc. Amer. Math. Soc., 125(7), 2133–2139.
[109] Seip, K. 2004. Interpolation and Sampling in Spaces of Analytic Functions. University Lecture Series, vol. 33. Providence, RI: American Mathematical Society.
[110] Shapiro, H. S., and Shields, A. L. 1962. On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Z., 80, 217–229.
[111] Shapiro, J. H. 1980. Cauchy transforms and Beurling-Carleson-Hayman thin sets. Michigan Math. J., 27(3), 339–351.
[112] Shapiro, J. H. 1987. The essential norm of a composition operator. Ann. Math. (2), 125(2), 375–404.
[113] Shapiro, J. H. 1993. Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. New York: Springer-Verlag.
[114] Shields, A. L. 1983. An analogue of the Fejér-Riesz theorem for the Dirichlet space. Pages 810–820 of: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, IL, 1981). Wadsworth Math. Ser. Belmont, CA: Wadsworth.
[115] Shimorin, S. M. 1998. Reproducing kernels and extremal functions in Dirichlet-type spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 255 (Issled. po Linein. Oper. i Teor. Funkts. 26), 198–220, 254. Translation in J. Math. Sci. (New York) 107(4) (2001), 4108–4124.
[116] Shimorin, S. M. 2002. Complete Nevanlinna-Pick property of Dirichlet-type spaces. J. Funct. Anal., 191(2), 276–296.
[117] Stegenga, D. A. 1980. Multipliers of the Dirichlet space. Illinois J. Math., 24(1), 113–139.
[118] Taylor, B. A., and Williams, D. L. 1970. Ideals in rings of analytic functions with smooth boundary values. Canad. J. Math., 22, 1266–1283.
[119] Taylor, G. D. 1966. Multipliers on Dα. Trans. Amer. Math. Soc., 123, 229–240.
[120] Tsuji, M. 1975. Potential Theory in Modern Function Theory. New York: Chelsea.
[121] Twomey, J. B. 1989. Tangential limits for certain classes of analytic functions. Mathematika, 36(1), 39–49.
[122] Twomey, J. B. 2002. Tangential boundary behaviour of harmonic and holomorphic functions. J. London Math. Soc. (2), 65(1), 68–84.
[123] Wojtaszczyk, P. 1991. Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, vol. 25. Cambridge: Cambridge University Press.
[124] Wynn, A. 2011. Sufficient conditions for weighted admissibility of operators with applications to Carleson measures and multipliers. Q. J. Math., 62(3), 747–770.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.