Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T12:11:46.144Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  06 August 2010

Evencio Mediavilla
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Santiago Arribas
Affiliation:
Space Telescope Science Institute, Baltimore
Martin Roth
Affiliation:
Astrophysikalisches Institut Potsdam
Jordi Cepa-Nogué
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Francisco Sánchez
Affiliation:
Centro Astronónomico Hispano-Alemán de Calar, Alto, Spain
Get access

Summary

3D spectroscopy has a relatively short history. Most of the present instrument concepts were developed in the 1980s and early 1990s. During those pioneering years a great deal of work was done in optical labs in an attempt to understand how the optical fibres, microlenses and image slicers behave. Only a few groups (often formed by one or two people) worked on this topic. Communications were not very good, which explains why virtually all the groups decided to refer to this technique by a different name. So we ended up with ‘spectral imaging’, ‘bidimensional spectroscopy’, ‘integral field spectroscopy’, ‘two-dimensional spectroscopy’, ‘3D spectroscopy’, etc.

During those years it was more than doubtful whether this technique was going to be useful at all. In fact, it looked like a kind of curiosity of limited practical interest to astronomy. However, in the 1990s the first scientific results were obtained and they immediately produced a change of perception.

In the last few years investment in this type of instrumentation has been enormous. Large telescopes all around the world are now equipped with integral field units. Two instruments of the future James Webb Space Telescope will also have integral field spectroscopic capabilities, etc. Instead of being based in the optical lab trying to characterize optical fibres or micro-lenses, more effort is dedicated nowadays to refining techniques for reducing, analysing and interpreting the data obtained with a new generation of 3D spectrographs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×