Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T16:27:13.954Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  10 June 2021

Maxime Crochemore
Affiliation:
Université Paris-Est
Thierry Lecroq
Affiliation:
University of Rouen Normandy
Wojciech Rytter
Affiliation:
Warsaw University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
125 Problems in Text Algorithms
with Solutions
, pp. 318 - 331
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczyk, Z. and Rytter, W.. A note on a simple computation of the maximal suffix of a string. J. Discrete Algorithms, 20:6164, 2013.Google Scholar
Adjeroh, D., Bell, T. and Mukherjee, A.. The Burrows-Wheeler Transform. Springer, 2008.Google Scholar
Aho, A. V. and Corasick, M. J.. Efficient string matching: An aid to bibliographic search. Commun. ACM, 18(6):333340, 1975.CrossRefGoogle Scholar
Aho, A. V., Hopcroft, J. E. and Ullman, J. D.. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.Google Scholar
Allauzen, C., Crochemore, M. and Raffinot, M.. Factor oracle: A new structure for pattern matching. In J. Pavelka, G. Tel and M. Bartosek, eds., SOFSEM’99, Theory and Practice of Informatics, 26th Conference on Current Trends in Theory and Practice of Informatics, Milovy, Czech Republic, 27 November– 4 December 1999, Lecture Notes in Computer Science, vol. 1725, pp. 295–310. Springer, 1999.Google Scholar
Allouche, J. and Shallit, J. O.. The ubiquitous Prouhet-Thue-Morse sequence. In C. Ding, T. Helleseth and H. Niederreiter, eds., Sequences and Their Applications, proceedings SETA 98, pp. 1–16. Springer-Verlag, 1999.Google Scholar
Allouche, J. and Shallit, J. O.. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, 2003.CrossRefGoogle Scholar
Almeida, J., Costa, A., Kyriakoglou, R. and Perrin, D.. Profinite semigroups and symbolic dynamics, volume 2274 of Lecture Notes in Mathematics, Springer, 2020.Google Scholar
Alzamel, M., Crochemore, M., Iliopoulos, C. S., et al. How much different are two words with different shortest periods? In L. S. Iliadis, I. Maglogiannis and V. P. Plagianakos, eds., Artificial Intelligence Applications and Innovations AIAI 2018 IFIP WG 12.5 International Workshops, SEDSEAL, 5G-PINE, MHDW, and HEALTHIOT, Rhodes, Greece, 25–27 May 2018, IFIP Advances in Information and Communication Technology, vol. 520, pp. 168–178. Springer, 2018.CrossRefGoogle Scholar
Amir, A. and Farach, M.. Efficient matching of nonrectangular shapes. Ann. Math. Artif. Intell., 4:211224, 1991.CrossRefGoogle Scholar
Amir, A., Farach, M. and Muthukrishnan, S.. Alphabet dependence in parameterized matching. Inf. Process. Lett., 49(3):111115, 1994.Google Scholar
Amir, A., Iliopoulos, C. S. and Radoszewski, J.. Two strings at Hamming distance 1 cannot be both quasiperiodic. Inf. Process. Lett., 128:5457, 2017.Google Scholar
Amoroso, S. and Cooper, G.. Tessellation structures for reproduction of arbitrary patterns. J. Comput. Syst. Sci., 5(5):455464, 1971.Google Scholar
Apostolico, A. and Crochemore, M.. Optimal canonization of all substrings of a string. Inf. Comput., 95(1):7695, 1991.Google Scholar
Apostolico, A. and Giancarlo, R.. Pattern matching machine implementation of a fast test for unique decipherability. Inf. Process. Lett., 18(3):155158, 1984.CrossRefGoogle Scholar
Apostolico, A. and Giancarlo, R.. The Boyer-Moore-Galil string searching strategies revisited. SIAM J. Comput., 15(1):98105, 1986.CrossRefGoogle Scholar
Assayag, G. and Dubnov, S.. Using factor oracles for machine improvisation. Soft Comput., 8(9):604610, 2004.Google Scholar
Badkobeh, G.. Infinite words containing the minimal number of repetitions. J. Discrete Algorithms, 20:3842, 2013.Google Scholar
Badkobeh, G. and Crochemore, M.. Fewest repetitions in infinite binary words. RAIRO Theor. Inf. Applic., 46(1):1731, 2012.CrossRefGoogle Scholar
Badkobeh, G., Fici, G. and Puglisi, S. J.. Algorithms for anti-powers in strings. Inf. Process. Lett., 137:5760, 2018.Google Scholar
Baeza-Yates, R. A.. Searching subsequences. Theor. Comput. Sci., 78(2):363– 376, 1991.Google Scholar
Bai, H., Deza, A. and Franek, F.. On a lemma of Crochemore and Rytter. J. Discrete Algorithms, 34:1822, 2015.Google Scholar
Baker, B. S.. A theory of parameterized pattern matching: Algorithms and applications. In S. R. Kosaraju, D. S. Johnson and A. Aggarwal, eds., Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, 16-18 May 1993, San Diego, CA, pp. 71–80. ACM, 1993.Google Scholar
Baker, B. S.. Parameterized pattern matching: Algorithms and applications. J. Comput. Syst. Sci., 52(1):2842, 1996.Google Scholar
Bannai, H., Giraud, M., Kusano, K., W. Matsubara, A. Shinohara and J. Simpson. The number of runs in a ternary word. In J. Holub and J. Zdárek, eds., Proceedings of the Prague Stringology Conference 2010, Prague, Czech Republic, 30 August–1 September 2010, pp. 178–181. Prague Stringology Club, Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, 2010.Google Scholar
Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M. and Tsuruta, K.. The “runs” theorem. SIAM J. Comput., 46(5):15011514, 2017.Google Scholar
Baturo, P., Piatkowski, M. and Rytter, W.. Usefulness of directed acyclic subword graphs in problems related to standard sturmian words. Int. J. Found. Comput. Sci., 20(6):10051023, 2009.CrossRefGoogle Scholar
Béal, M., Mignosi, F. and Restivo, A.. Minimal forbidden words and symbolic dynamics. In C. Puech and R. Reischuk, eds., STACS 96, 13th Annual Symposium on Theoretical Aspects of Computer Science, Grenoble, France, 22-24 February 1996, Lecture Notes in Computer Science, vol. 1046, pp. 555–566. Springer, 1996.Google Scholar
Béal, M. and Perrin, D.. Synchronised automata. In V. Berthé and M. Rigo, eds., Combinatorics, Words and Symbolic Dynamics. Encyclopedia of Mathematics and Its Applications, pp. 213–240. Cambridge University Press, 2016.Google Scholar
Béal, M.-P., Crochemore, M., Mignosi, F., Restivo, A. and Sciortino, M.. Forbidden words of regular languages. Fundam. Inform., 56(1, 2):121–135, 2003.Google Scholar
Bentley, J. L. and Sedgewick, R.. Fast algorithms for sorting and searching strings. In M. E. Saks, ed., Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, LA, 5–7 January 1997, New Orleans, pp. 360–369. ACM/SIAM, 1997.Google Scholar
Berstel, J.. Langford strings are square free. Bull. EATCS, 37:127128, 1989.Google Scholar
Berstel, J. and de Luca, A.. Sturmian words, Lyndon words and trees. Theor. Comput. Sci., 178(1–2):171203, 1997.Google Scholar
Berstel, J. and Karhumäki, J.. Combinatorics on words: A tutorial. EATCS, 79:178, 2003.Google Scholar
Berstel, J., Lauve, A., Reutenauer, C. and Saliola, F.. Combinatorics on Words, CRM Monograph Series, vol. 27. Université de Montréal et American Mathematical Society, 2008.CrossRefGoogle Scholar
Berstel, J. and Perrin, D.. Theory of Codes. Academic Press, 1985.Google Scholar
Berstel, J. and Savelli, A.. Crochemore factorization of sturmian and other infinite words. In Mathematical Foundations of Computer Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, 28 August–1 September 2006, Lecture Notes in Computer Science, vol. 4162, pp. 157–166. Springer, 2006.Google Scholar
Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M. T. and Seiferas, J. I.. The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci., 40:3155, 1985.CrossRefGoogle Scholar
Booth, K. S.. Lexicographically least circular substrings. Inf. Process. Lett., 10(4/5):240242, 1980.CrossRefGoogle Scholar
Bourdon, J. and Rusu, I.. Statistical properties of factor oracles. J. Discrete Algorithms, 9(1):5766, 2011.Google Scholar
Boyer, R. S. and Moore, J. S.. A fast string searching algorithm. Commun. ACM, 20(10):762772, 1977.Google Scholar
Brandenburg, F.. Uniformly growing k-th power-free homomorphisms. Theor. Comput. Sci., 23:6982, 1983.Google Scholar
Breslauer, D.. An on-line string superprimitivity test. Inf. Process. Lett., 44(6):345347, 1992.Google Scholar
Breslauer, D., Colussi, L. and Toniolo, L.. Tight comparison bounds for the string prefix-matching problem. Inf. Process. Lett., 47(1):5157, 1993.Google Scholar
Breslauer, D., Grossi, R. and Mignosi, F.. Simple real-time constant-space string matching. Theor. Comput. Sci., 483:29, 2013.Google Scholar
Brlek, S., Jamet, D. and Paquin, G.. Smooth words on 2-letter alphabets having same parity. Theor. Comput. Sci., 393(1–3):166181, 2008.Google Scholar
Burkhardt, S. and Kärkkäinen, J.. Fast lightweight suffix array construction and checking. In R. A. Baeza-Yates, E. Chávez and M. Crochemore, eds., Combinatorial Pattern Matching, CPM 2003, Lecture Notes in Computer Science, vol. 2676, pp. 55–69. Springer, 2003.Google Scholar
Carayol, A. and Göller, S.. On long words avoiding Zimin patterns. In H. Vollmer and B. Vallée, eds., 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, 8–11 March, 2017, Hannover, Germany, vol. 66 of LIPIcs, pp. 19:1–19:13. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2017.Google Scholar
Césari, Y. and Vincent, M.. Une caractérisation des mots périodiques. C. R. Acad. Sci., 286:1175, 1978.Google Scholar
Chairungsee, S. and Crochemore, M.. Efficient computing of longest previous reverse factors. In Shoukourian, Y., ed., Seventh International Conference on Computer Science and Information Technologies, CSIT 2009, pp. 2730. The National Academy of Sciences of Armenia Publishers, Yerevan, Armenia, 2009.Google Scholar
Chairungsee, S. and Crochemore, M.. Using minimal absent words to build phylogeny. Theor. Comput. Sci., 450(1):109116, 2012.Google Scholar
Chairungsee, S. and Crochemore, M.. Longest previous non-overlapping factors table computation. In X. Gao, H. D. and M. Han, eds., Combinatorial Optimization and Applications - 11th International Conference, COCOA 2017, Shanghai, China, 10-18 December, 2017, Proceedings, Part II, vol. 10628 Lecture Notes in Computer Science, pp. 483–491. Springer, 2017.Google Scholar
Champarnaud, J., Hansel, G. and Perrin, D.. Unavoidable sets of constant length. IJAC, 14(2):241251, 2004.Google Scholar
Cho, S., Na, J. C., Park, K. and Sim, J. S.. A fast algorithm for order-preserving pattern matching. Inf. Process. Lett., 115(2):397402, 2015.Google Scholar
Cleary, J. G., Teahan, W. J. and Witten, I. H.. Unbounded length contexts for PPM. In J. A. Storer and M. Cohn, eds., Proceedings of the IEEE Data Compression Conference, DCC 1995, Snowbird, UT, 28–30 March, 1995, pp. 52–61. IEEE Computer Society, 1995.Google Scholar
Cleary, J. G. and Witten, I. H.. A comparison of enumerative and adaptive codes. IEEE Trans. Inf. Theory, 30(2):306315, 1984.Google Scholar
Clément, J., Flajolet, P. and Vallée, B.. The analysis of hybrid trie structures. In H. J. Karloff, ed., Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 25-27 January 1998, San Francisco, 25–27 January 1998, pp. 531–539. ACM/SIAM, 1998.Google Scholar
Clifford, P. and Clifford, R.. Simple deterministic wildcard matching. Inf. Process. Lett., 101(2):5354, 2007.Google Scholar
Cole, R.. Tight bounds on the complexity of the Boyer-Moore string matching algorithm. SIAM J. Comput., 23(5):10751091, 1994.Google Scholar
Cole, R. and Hariharan, R.. Tighter upper bounds on the exact complexity of string matching. SIAM J. Comput., 26(3):803856, 1997.Google Scholar
Cori, R. and Perrin, D.. Automates et commutations partielles. ITA, 19(1):2132, 1985.Google Scholar
Cormack, G. V. and Horspool, R. N.. Algorithms for adaptive Huffman codes. Inf. Process. Lett., 18(3):159165, 1984.Google Scholar
Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C.. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.Google Scholar
Crochemore, M.. An optimal algorithm for computing the repetitions in a word. Inf. Process. Lett., 12(5):244250, 1981.Google Scholar
Crochemore, M.. Sharp characterization of square-free morphisms. Theor. Comput. Sci., 18(2):221226, 1982.Google Scholar
Crochemore, M.. Régularités évitables. Thèse d’état, Université de Haute-Normandie, 1983.Google Scholar
Crochemore, M.. Transducers and repetitions. Theor. Comput. Sci., 45(1):6386, 1986.Google Scholar
Crochemore, M.. Longest common factor of two words. In H. Ehrig, R. A. Kowalski, G. Levi and U. Montanari, eds., TAPSOFT’87: Proceedings of the International Joint Conference on Theory and Practice of Software Development, Pisa, Italy, 23-27 March, 1987, Volume 1: Advanced Seminar on Foundations of Innovative Software Development I and Colloquium on Trees in Algebra and Programming (CAAP’87), vol. 249, Lecture Notes in Computer Science, pp. 26–36. Springer, 1987.Google Scholar
Crochemore, M.. String-matching on ordered alphabets. Theor. Comput. Sci., 92(1):3347, 1992.Google Scholar
Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq, T., Plandowski, W. and Rytter, W.. Speeding up two string-matching algorithms. Algorithmica, 12(4/5):247267, 1994.Google Scholar
Crochemore, M., Epifanio, C., Grossi, R. and Mignosi, F.. Linear-size suffix tries. Theor. Comput. Sci., 638:171178, 2016.Google Scholar
Crochemore, M., Fazekas, S. Z., Iliopoulos, C. S. and Jayasekera, I.. Number of occurrences of powers in strings. Int. J. Found. Comput. Sci., 21(4):535547, 2010.Google Scholar
Crochemore, M., Grossi, R., Kärkkäinen, J. and Landau, G. M.. Computing the Burrows-Wheeler transform in place and in small space. J. Discrete Algorithms, 32:4452, 2015.Google Scholar
Crochemore, M., Hancart, C. and Lecroq, T.. Algorithms on Strings. Cambridge University Press, 2007.Google Scholar
Crochemore, M., Héliou, A., Kucherov, G., Mouchard, L., Pissis, S. P. and Ramusat, Y.. Absent words in a sliding window with applications. Inf. Comput., 270, 2020.Google Scholar
Crochemore, M. and Ilie, L.. Computing longest previous factors in linear time and applications. Inf. Process. Lett., 106(2):7580, 2008.Google Scholar
Crochemore, M. and Ilie, L.. Maximal repetitions in strings. J. Comput. Syst. Sci., 74(5):796807, 2008.Google Scholar
Crochemore, M., Ilie, L., Iliopoulos, C. S., Kubica, M., Rytter, W. and Waleń, T.. Computing the longest previous factor. Eur. J. Comb., 34(1):1526, 2013.Google Scholar
Crochemore, M., Ilie, L. and Seid-Hilmi, E.. The structure of factor oracles. Int. J. Found. Comput. Sci., 18(4):781797, 2007.Google Scholar
Crochemore, M., Ilie, L. and Tinta, L.. The “runs” conjecture. Theor. Comput. Sci., 412(27):29312941, 2011.Google Scholar
Crochemore, M., Iliopoulos, C. S., Kociumaka, T. et al. Order-preserving indexing. Theor. Comput. Sci., 638:122135, 2016.Google Scholar
Crochemore, M., Iliopoulos, C. S., Kociumaka, T., et al. The maximum number of squares in a tree. In J. Kärkkäinen and J. Stoye, eds., Combinatorial Pattern Matching: 23rd Annual Symposium, CPM 2012, Helsinki, Finland, 3–5 July, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7354, pp. 27–40. Springer, 2012.Google Scholar
Crochemore, M., Iliopoulos, C. S., Kociumaka, T., et al. Near-optimal computation of runs over general alphabet via non-crossing LCE queries. In S. Inenaga, K. Sadakane and T. Sakai, eds., String Processing and Information Retrieval -23rd International Symposium, SPIRE 2016, Beppu, Japan, 18–20 October, 2016, Proceedings, vol. 9954, Lecture Notes in Computer Science, pp. 22–34, 2016.Google Scholar
Crochemore, M., Iliopoulos, C. S., Kubica, M., Radoszewski, J., Rytter, W., Stencel, K. and Waleń, T.. New simple efficient algorithms computing powers and runs in strings. Discrete Appl. Math., 163:258267, 2014.Google Scholar
Crochemore, M., Iliopoulos, C. S., Kubica, M., Radoszewski, J., Rytter, W. and Walen, T.. On the maximal number of cubic runs in a string. In A. Dediu, H. Fernau, and C. Martín-Vide, eds., Language and Automata Theory and Applications, 4th International Conference, LATA 2010, Trier, Germany, 24–28 May, 2010. Proceedings, vol. 6031, Lecture Notes in Computer Science, pp. 227– 238. Springer, 2010.Google Scholar
Crochemore, M., Iliopoulos, C. S., Kubica, M., Radoszewski, J., Rytter, W. and Walen, T.. The maximal number of cubic runs in a word. J. Comput. Syst. Sci., 78(6):18281836, 2012.Google Scholar
Crochemore, M., Iliopoulos, C. S., Kubica, M., Rytter, W. and Walen, T.. ´ Efficient algorithms for three variants of the LPF table. J. Discrete Algorithms, 11:51–61, 2012.Google Scholar
Crochemore, M., Landau, G. M. and Ziv-Ukelson, M.. A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM J. Comput., 32(6):16541673, 2003.Google Scholar
Crochemore, M. and Lecroq, T.. Tight bounds on the complexity of the Apostolico-Giancarlo algorithm. Inf. Process. Lett., 63(4):195203, 1997.Google Scholar
Crochemore, M., Lerest, M. and Wender, P.. An optimal test on finite unavoidable sets of words. Inf. Process. Lett., 16(4):179180, 1983.Google Scholar
Crochemore, M. and Mercas, R.. On the density of Lyndon roots in factors. Theor. Comput. Sci., 656:234240, 2016.Google Scholar
Crochemore, M., Mignosi, F. and Restivo, A.. Automata and forbidden words. Inf. Process. Lett., 67(3):111117, 1998.Google Scholar
Crochemore, M., Mignosi, F., Restivo, A. and Salemi, S.. Text compression using antidictonaries. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, eds., International Conference on Automata, Languages an Programming (Prague, 1999), Lecture Notes in Computer Science, pp. 261–270. Springer-Verlag, 1999. Rapport I.G.M. 98-10, Université de Marne-la-Vallée.Google Scholar
Crochemore, M. and Perrin, D.. Two-way string-matching. J. ACM, 38(3):651– 675, 1991.Google Scholar
Crochemore, M. and Porat, E.. Fast computation of a longest increasing subsequence and application. Inf. Comput., 208(9):10541059, 2010.Google Scholar
Crochemore, M. and Rytter, W.. Text Algorithms. Oxford University Press, 1994.Google Scholar
Crochemore, M. and Rytter, W.. Squares, cubes, and time-space efficient string searching. Algorithmica, 13(5):405425, 1995.Google Scholar
Crochemore, M. and Rytter, W.. Jewels of Stringology. World Scientific Publishing, Hong-Kong, 2002.Google Scholar
Crochemore, M. and Tischler, G.. Computing longest previous non-overlapping factors. Inf. Process. Lett., 111(6):291295, 2011.Google Scholar
Crochemore, M. and Tronícek, Z.. On the size of DASG for multiple texts. In A. H. F. Laender and A. L. Oliveira, eds., String Processing and Information Retrieval, 9th International Symposium, SPIRE 2002, Lisbon, Portugal, 11–13 September, 2002, Proceedings, vol. 2476, Lecture Notes in Computer Science, pp. 58–64. Springer, 2002.Google Scholar
Crochemore, M. and Vérin, R.. On compact directed acyclic word graphs. In J. Mycielski, G. Rozenberg, and A. Salomaa, eds., Structures in Logic and Computer Science, A Selection of Essays in Honor of Andrzej Ehrenfeucht, vol. 1261 Lecture Notes in Computer Science, pp. 192–211. Springer, 1997.Google Scholar
Deza, A. and Franek, F.. A d-step approach to the maximum number of distinct squares and runs in strings. Discrete Appl.Math., 163(3):268274, 2014.Google Scholar
Deza, A., Franek, F. and Thierry, A.. How many double squares can a string contain? Discrete Appl. Math., 180:5269, 2015.Google Scholar
Durand, F. and Leroy, J.. The constant of recognizability is computable for primitive morphisms. CoRR, abs/1610.05577, 2016.Google Scholar
Duval, J.. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363– 381, 1983.Google Scholar
Duval, J., Kolpakov, R., Kucherov, G., Lecroq, T. and Lefebvre, A.. Linear-time computation of local periods. Theor. Comput. Sci., 326(1-3):229240, 2004.CrossRefGoogle Scholar
Effros, M.. PPM performance with BWT complexity: A new method for lossless data compression. In Data Compression Conference, DCC 2000, Snowbird, UT, 28–30 March, 2000, pp. 203–212. IEEE Computer Society, 2000.Google Scholar
Faller, N.. An adaptive system for data compression. In Record of the 7th Asilomar Conference on Circuits, Systems, and Computers, pp. 593–597, 1973.Google Scholar
Fan, H., Yao, N. and Ma, H.. Fast variants of the Backward-Oracle-Marching algorithm. In ICICSE’09, Fourth International Conference on Internet Computing for Science and Engineering, pp. 56–59. IEEE Computer Society, 2009.Google Scholar
Farach, M.. Optimal suffix tree construction with large alphabets. In 38th Annual Symposium on Foundations of Computer Science, FOCS’97, Miami Beach, FL, 19–22 October, 1997, pp. 137–143. IEEE Computer Society, 1997.Google Scholar
Faro, S. and Lecroq, T.. Efficient variants of the Backward-Oracle-Matching algorithm. Int. J. Found. Comput. Sci., 20(6):967984, 2009.Google Scholar
Ferragina, P. and Manzini, G.. Indexing compressed text. J. ACM, 52(4):552581, 2005.Google Scholar
Fici, G., Restivo, A., Silva, M. and L. Q. Zamboni. Anti-powers in infinite words. J. Comb. Theory, Ser. A, 157:109–119, 2018.Google Scholar
Fine, N. J.. Binomial coefficients modulo a prime. Am. Math. Mon., 54(10, Part 1):589–592, December 1947.Google Scholar
Fischer, J. and Heun, V.. Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE. In M. Lewenstein and G. Valiente, eds., Combinatorial Pattern Matching, 17th Annual Symposium, CPM 2006, Barcelona, Spain, 5–7 July, 2006, Proceedings, vol. 4009 Lecture Notes in Computer Science, pp. 36–48. Springer, 2006.Google Scholar
Fischer, J., Holub, Š., I, T. and Lewenstein, M.. Beyond the runs theorem. In 22nd SPIRE, Lecture Notes in Computer Science, vol. 9309, pp. 272281, 2015.Google Scholar
Fraenkel, A. S. and Simpson, J.. How many squares must a binary sequence contain? Electr. J. Comb., 2, 1995.Google Scholar
Fraenkel, A. S. and Simpson, J.. How many squares can a string contain? J. Comb. Theory, Ser. A, 82(1):112–120, 1998.Google Scholar
Franek, F., Islam, A. S. M. S., Rahman, M. S. and Smyth, W. F.. Algorithms to compute the Lyndon array. CoRR, abs/1605.08935, 2016.Google Scholar
Fredricksen, H. and Maiorana, J.. Necklaces of beads in k colors and k-ary de bruijn sequences. Discrete Math., 23(3):207210, 1978.Google Scholar
Fruchtman, A., Gross, Y., Klein, S. T. and Shapira, D.. Weighted adaptive Huffman coding. In A. Bilgin, M. W. Marcellin, J. Serra-Sagrista and J. A. Storer, eds., Data Compression Conference, DCC 2020, Snowbird, UT, 24–27 March 2020, pp. 368–385. IEEE, 2020. http://arxiv.org/abs/2005.08232vl.Google Scholar
Galil, Z.. On improving the worse case running time of the Boyer-Moore string matching algorithm. Commun. ACM, 22(9):505508, 1979.Google Scholar
Galil, Z. and Giancarlo, R.. On the exact complexity of string matching: Upper bounds. SIAM J. Comput., 21(3):407437, 1992.Google Scholar
Galil, Z. and Seiferas, J. I.. Time-space-optimal string matching. J. Comput. Syst. Sci., 26(3):280294, 1983.Google Scholar
Gallager, R. G.. Variations on a theme by Huffman. IEEE Trans. Inf. Theory, 24(6):668674, 1978.Google Scholar
Gallant, J., Maier, D. and Storer, J. A.. On finding minimal length superstrings. J. Comput. Syst. Sci., 20(1):5058, 1980.Google Scholar
Gawrychowski, P., Kociumaka, T., Radoszewski, J., Rytter, W. and Walen, T.. Universal reconstruction of a string. In F. Dehne, J. Sack and U. Stege, eds, Algorithms and Data Structures: 14th International Symposium, WADS 2015, Victoria, BC, Canada, 5–7 August, 2015. Proceedings, vol. 9214, Lecture Notes in Computer Science, pp. 386–397. Springer, 2015.Google Scholar
Gawrychowski, P., Kociumaka, T., Rytter, W. and Walen, T.. Faster longest common extension queries in strings over general alphabets. In R. Grossi and M. Lewenstein, eds., 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016, 27–29 June, 2016, Tel Aviv, Israel, vol. 54, LIPIcs, pp. 5:1–5:13. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.Google Scholar
Gawrychowski, P. and Uznanski, P.. Order-preserving pattern matching with k mismatches. In A. S. Kulikov, S. O. Kuznetsov and P. A. Pevzner, eds., Combinatorial Pattern Matching: 25th Annual Symposium, CPM 2014, Moscow, Russia, 16–18 June , 2014. Proceedings, vol. 8486, Lecture Notes in Computer Science, pp. 130–139. Springer, 2014.Google Scholar
Glen, A., Justin, J., Widmer, S. and Zamboni, L. Q.. Palindromic richness. Eur. J. Comb., 30(2):510531, 2009.Google Scholar
Golomb, S. W.. Shift Register Sequences 3rd rev. ed. World Scientific, 2017.Google Scholar
Grytczuk, J., Kosinski, K. and Zmarz, M.. How to play Thue games. Theor. Comput. Sci., 582:8388, 2015.Google Scholar
Guo, C., Shallit, J. and Shur, A. M.. On the combinatorics of palindromes and antipalindromes. CoRR, abs/1503.09112, 2015.Google Scholar
Gusfield, D.. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997.Google Scholar
Gusfield, D. and Stoye, J.. Linear time algorithms for finding and representing all the tandem repeats in a string. J. Comput. Syst. Sci., 69(4):525546, 2004.Google Scholar
Hancart, C.. On Simon’s string searching algorithm. Inf. Process. Lett., 47(2):95– 99, 1993.Google Scholar
Harju, T. and Kärki, T.. On the number of frames in binary words. Theor. Comput. Sci., 412(39):52765284, 2011.Google Scholar
Hartman, A. and Rodeh, M.. Optimal parsing of strings. In A. Apostolico and Z. Galil, eds., Combinatorial Algorithms on Words, vol. 12, NATO ASI Series F: Computer and System Sciences, pp. 155–167, Springer, 1985.Google Scholar
Hasan, M. M., Islam, A. S. M. S., Rahman, M. S. and Rahman, M. S.. Order preserving pattern matching revisited. Pattern Recogn. Lett., 55:1521, 2015.Google Scholar
Hendrian, D., Takagi, T. and Inenaga, S.. Online algorithms for constructing linear-size suffix trie. CoRR, abs/1901.10045, 2019.Google Scholar
Hickerson, D.. There are at most 2n distinct twins in any finite string of length n. Personal communication by D. Gusfield, 2003.Google Scholar
Hohlweg, C. and Reutenauer, C.. Lyndon words, permutations and trees. Theor. Comput. Sci., 307(1):173178, 2003.Google Scholar
Houston, R.. Tackling the minimal superpermutation problem. CoRR, abs/1408.5108, 2014.Google Scholar
Huffman, D. A.. A method for the construction of minimum redundancy codes. Proc. I.R.E., 40:1098–1101, 1951.Google Scholar
Idury, R. M. and Schäffer, A. A.. Multiple matching of parameterized patterns. Theor. Comput. Sci., 154(2):203224, 1996.Google Scholar
Ilie, L.. A simple proof that a word of length n has at most 2n distinct squares. J. Comb. Theory, Ser. A, 112(1):163–164, 2005.Google Scholar
Ilie, L.. A note on the number of squares in a word. Theor. Comput. Sci., 380(3):373376, 2007.Google Scholar
Ilie, L. and Smyth, W. F.. Minimum unique substrings and maximum repeats. Fundam. Inform., 110(1-4):183195, 2011.Google Scholar
Iliopoulos, C. S., Moore, D. and Smyth, W. F.. A characterization of the squares in a Fibonacci string. Theor. Comput. Sci., 172(1–2):281291, 1997.Google Scholar
Inenaga, S., H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri and G. Pavesi. On-line construction of compact directed acyclic word graphs. In A. Amir and G. M. Landau, eds., Combinatorial Pattern Matching, 12th Annual Symposium, CPM 2001, Jerusalem, Israel, 1-4 July 2001, Proceedings, vol. 2089, Lecture Notes in Computer Science, pp. 169–180. Springer, 2001.Google Scholar
Jackson, B. W.. Universal cycles of k-subsets and k-permutations. Discrete Math., 117(1-3):141150, 1993.Google Scholar
Johnston, N.. All minimal superpermutations on five symbols have been found. www.njohnston.ca/2014/08/all-minimal-superpermutations-on-five-symbolshave-been-found/, 2014.Google Scholar
Kärkkäinen, J. and P. Sanders. Simple linear work suffix array construction. In J. C. M. Baeten, J. K. Lenstra, J. Parrow and G. J. Woeginger, eds., Automata, Languages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, 30–4 June, 2003. Proceedings, vol. 2719, Lecture Notes in Computer Science, pp. 943–955. Springer, 2003.Google Scholar
Kärkkäinen, J. Sanders, P. and Burkhardt, S.. Linear work suffix array construction. J. ACM, 53(6):918936, 2006.Google Scholar
Kasai, T., Lee, G., Arimura, H., S. Arikawa and K. Park. Linear-time longest-common-prefix computation in suffix arrays and its applications. In A. Amir and G. M. Landau, eds., Combinatorial Pattern Matching, 12th Annual Symposium, CPM 2001, Jerusalem, Israel, 1–4 July 2001, Proceedings vol. 2089, Lecture Notes in Computer Science, pp. 181–192. Springer, 2001.Google Scholar
Katajainen, J., A. Moffat and A. Turpin. A fast and space-economical algorithm for length-limited coding. In J. Staples, P. Eades, N. Katoh and A. Moffat, eds., Algorithms and Computation, 6th International Symposium, ISAAC’95, Cairns, Australia, 4–6 December 1995, Proceedings vol. 1004, Lecture Notes in Computer Science, pp. 12–21. Springer, 1995.Google Scholar
Kempa, D., A. Policriti, N. Prezza and E. Rotenberg. String attractors: Verification and optimization. CoRR, abs/1803.01695, 2018.Google Scholar
Kfoury, A. J.. A linear-time algorithm to decide whether A binary word contains an overlap. ITA, 22(2):135145, 1988.Google Scholar
Kim, D. K., Sim, J. S., Park, H. and Park, K.. Constructing suffix arrays in linear time. J. Discrete Algorithms, 3(2-4):126142, 2005.Google Scholar
Kim, J., Eades, P., Fleischer, R., Hong, S., Iliopoulos, C. S., Park, K., Puglisi, S. J. and Tokuyama, T.. Order-preserving matching. Theor. Comput. Sci., 525:6879, 2014.Google Scholar
Knuth, D. E.. Dynamic Huffman coding. J. Algorithms, 6(2):163180, 1985.Google Scholar
Knuth, D. E., Morris, J. H. Jr. and Pratt, V. R.. Fast pattern matching in strings. SIAM J. Comput., 6(2):323350, 1977.Google Scholar
Ko, P. and Aluru, S.. Space efficient linear time construction of suffix arrays. J. Discrete Algorithms, 3(2-4):143156, 2005.Google Scholar
Kociumaka, T., Pachocki, J., Radoszewski, J., Rytter, W. and Walen, T.. Efficient counting of square substrings in a tree. Theor. Comput. Sci., 544:6073, 2014.Google Scholar
Kociumaka, T., Radoszewski, J., W. Rytter, J. Straszynski, T. Walen and W. Zuba. Efficient representation and counting of antipower factors in words. In C. Martín-Vide, A. Okhotin and D. Shapira, eds., Language and Automata Theory and Applications: 13th International Conference, LATA 2019, St. Petersburg, Russia, 26–29 March, 2019, Proceedings, vol. 11417, Lecture Notes in Computer Science, pp. 421–433. Springer, 2019.Google Scholar
Kolakoski, W.. Problem 5304. Am. Math. Mon., 72(674), 1965.Google Scholar
Kolpakov, R. M. and G. Kucherov. Finding maximal repetitions in a word in linear time. In 40th Annual Symposium on Foundations of Computer Science, FOCS’99, 17–18 October 1999, New York, pp. 596–604. IEEE Computer Society, 1999.Google Scholar
Kolpakov, R. M. and G. Kucherov. Finding approximate repetitions under Hamming distance. In F. Meyer auf der Heide, ed., Algorithms - ESA 2001, 9th Annual European Symposium, Aarhus, Denmark, 28–31 August 2001, Proceedings, vol. 2161, Lecture Notes in Computer Science, pp. 170–181. Springer, 2001.Google Scholar
Kosinski, K., Mercas, R. and Nowotka, D.. Corrigendum to ‘a note on Thue games’ [Inf. Process. Lett. 118 (2017) 75-77]. Inf. Process. Lett., 130:63–65, 2018.Google Scholar
Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W. and Walen, T.. A linear time algorithm for consecutive permutation pattern matching. Inf. Process. Lett., 113(12):430433, 2013.Google Scholar
Kurka, P.. Topological and Symbolic Dynamics. Société Mathématique de France, 2003.Google Scholar
Larmore, L. L. and Hirschberg, D. S.. A fast algorithm for optimal length-limited Huffman codes. J. ACM, 37(3):464473, 1990.Google Scholar
Lefebvre, A. and Lecroq, T.. Compror: On-line lossless data compression with a factor oracle. Inf. Process. Lett., 83(1):16, 2002.Google Scholar
Lempel, A.. On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers. IEEE Trans. Comput., 19(12):12041209, 1970.Google Scholar
Lothaire, M.. Combinatorics on Words. Addison-Wesley, 1983. Reprinted in 1997.Google Scholar
Lothaire, M.. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2002.Google Scholar
Lothaire, M.. Applied Combinatorics on Words. Cambridge University Press, 2005.Google Scholar
Maekawa, M.. A √N algorithm for mutual exclusion in decentralized systems. ACM Trans. Comput. Syst., 3(2):145159, 1985.Google Scholar
Main, M. G. and Lorentz, R. J.. An O(n log n) algorithm for recognizing repetition. Report CS-79-056, Washington State University, Pullman, 1979.Google Scholar
Main, M. G. and Lorentz, R. J.. Linear time recognition of square-free strings. In A. Apostolico and Z. Galil, eds., Combinatorial Algorithms on Words, vol. 12, Series F: Computer and System Sciences, pp. 271–278. Springer, 1985.Google Scholar
Makanin, G. S.. The problem of solvability of equations in a free semi-group. Math. Sb., 103(2):147–236, 1977. In Russian. English translation in: Math. USSR-Sb, 32, 129-198, 1977.Google Scholar
Mancheron, A. and Moan, C.. Combinatorial characterization of the language recognized by factor and suffix oracles. Int. J. Found. Comput. Sci., 16(6):1179– 1191, 2005.Google Scholar
Mantaci, S., Restivo, A., Romana, G. Rosone, G. and Sciortino, M.. String attractors and combinatorics on words. CoRR, abs/1907.04660, 2019.Google Scholar
Mantaci, S., Restivo, A., Rosone, G. and Sciortino, M.. Suffix array and Lyndon factorization of a text. J. Discrete Algorithms, 28:28, 2014.Google Scholar
Mantaci, S., Restivo, A. and Sciortino, M.. Burrows-Wheeler transform and Sturmian words. Inf. Process. Lett., 86(5):241246, 2003.Google Scholar
Masek, W. J. and Paterson, M.. A faster algorithm computing string edit distances. J. Comput. Syst. Sci., 20(1):1831, 1980.Google Scholar
McCreight, E. M.. A space-economical suffix tree construction algorithm. J. ACM, 23(2):262272, 1976.Google Scholar
Mendivelso, J. and Pinzón, Y.. Parameterized matching: Solutions and extensions. In Holub, J. and Žd’árek, J., eds., Proceedings of the Prague Stringology Conference 2015, pp. 118131, Czech Technical University in Prague, Czech Republic, 2015.Google Scholar
Mieno, T., Kuhara, Y., Akagi, T., et al. Minimal unique substrings and minimal absent words in a sliding window, International Conference on Current Trends in Theory and Practice of Informatics, pp. 148–160, Springer, 2019.Google Scholar
Moffat, A.. Implementing the PPM data compression scheme. IEEE Trans. Commun., 38(11):19171921, 1990.Google Scholar
Mohanty, S. P.. Shortest string containing all permutations. Discrete Math., 31:9195, 1980.Google Scholar
Moreno, E. and Perrin, D.. Corrigendum to ‘on the theorem of Fredricksen and Maiorana about de Bruijn sequences’. Adv. Appl. Math., 33(2):413415, 2004.Google Scholar
Navarro, G. and Prezza, N.. Universal compressed text indexing. Theor. Comput. Sci., 762:4150, 2019.Google Scholar
Navarro, G. and Raffinot, M.. Flexible Pattern Matching in Strings: Practical On-line Search Algorithms for Texts and Biological Sequences. Cambridge University Press, 2002.CrossRefGoogle Scholar
Nilsson, J.. Letter frequencies in the Kolakoski sequence. Acta Phys. Pol. A, 126(2):549552, 2014.Google Scholar
Ohlebusch, E.. Bioinformatics Algorithms. Oldenbusch Verlag, 2013.Google Scholar
Oldenburger, R.. Exponent trajectories in symbolic dynamics. Trans. AMS, 46:453466, 1939.Google Scholar
Ota, T., Fukae, H. and Morita, H.. Dynamic construction of an antidictionary with linear complexity. Theor. Comput. Sci., 526:108119, 2014.Google Scholar
Ota, T. and Morita, H.. On a universal antidictionary coding for stationary ergodic sources with finite alphabet. In International Symposium on Information Theory and Its Applications, ISITA 2014, Melbourne, Australia, 26–29 October 2014, pp. 294–298. IEEE, 2014.Google Scholar
Ota, T. and Morita, H.. A compact tree representation of an antidictionary. IEICE Trans., 100-A(9):19731984, 2017.Google Scholar
Pansiot, J.. Decidability of periodicity for infinite words. ITA, 20(1):4346, 1986.Google Scholar
Prezza, N.. String attractors. CoRR, abs/1709.05314, 2017.Google Scholar
Puglisi, S. J., Simpson, J. and Smyth, W. F.. How many runs can a string contain? Theor. Comput. Sci., 401(1-3):165171, 2008.Google Scholar
Radoszewski, J. and Rytter, W.. On the structure of compacted subword graphs of Thue-Morse words and their applications. J. Discrete Algorithms, 11:1524, 2012.Google Scholar
Rampersad, N., Shallit, J. and Wang, M.. Avoiding large squares in infinite binary words. Theor. Comput. Sci., 339(1):1934, 2005.Google Scholar
Repke, D. and Rytter, W.. On semi-perfect de Bruijn words. Theor. Comput. Sci., 720:5563, 2018.Google Scholar
Restivo, A. and Salemi, S.. Overlap-free words on two symbols. In M. Nivat and D. Perrin, eds., Automata on Infinite Words, Ecole de Printemps d’Informatique Théorique, Le Mont Dore, 14–18 May, 1984, vol. 192, Lecture Notes in Computer Science, pp. 198–206. Springer, 1985.Google Scholar
Reutenauer, C.. From Christoffel Words to Markov Numbers. Oxford University Press, 2018.Google Scholar
Rozenberg, G. and Salomaa, A.. The Mathematical Theory of L Systems. Academic Press, 1980.Google Scholar
Rubinchik, M. and Shur, A. M.. Eertree: An efficient data structure for processing palindromes in strings. CoRR, abs/1506.04862, 2015.Google Scholar
Ruskey, F. and Williams, A.. An explicit universal cycle for the (n-1)-permutations of an n-set. ACM Trans. Algorithms, 6(3):45:1–45:12, 2010.Google Scholar
Rytter, W.. A correct preprocessing algorithm for Boyer-Moore string-searching. SIAM J. Comput., 9(3):509512, 1980.Google Scholar
Rytter, W.. The structure of subword graphs and suffix trees of Fibonacci words. Theor. Comput. Sci., 363(2):211223, 2006.Google Scholar
Rytter, W.. The number of runs in a string. Informat. Comput., 205(9):14591469, 2007.Google Scholar
Rytter, W.. Two fast constructions of compact representations of binary words with given set of periods. Theor. Comput. Sci., 656:180187, 2016.Google Scholar
Rytter, W.. Computing the k-th letter of Fibonacci word. Personal communication, 2017.Google Scholar
Sardinas, A. A. and Patterson, G. W.. A necessary and sufficient condition for the unique decomposition of coded messages. Research Division Report 50-27, Moore School of Electrical Engineering, University of Pennsylvania, 1950.Google Scholar
Sawada, J. and Hartman, P.. Finding the largest fixed-density necklace and Lyndon word. Inf. Process. Lett., 125:1519, 2017.Google Scholar
Sawada, J., Williams, A. and Wong, D.. A surprisingly simple de Bruijn sequence construction. Discrete Math., 339(1):127131, 2016.Google Scholar
Schieber, B.. Computing a minimum weight-link path in graphs with the concave Monge property. J. Algorithms, 29(2):204222, 1998.Google Scholar
Sciortino, M. and Zamboni, L. Q.. Suffix automata and standard Sturmian words. In T. Harju, J. Karhumäki and A. Lepistö, eds., Developments in Language Theory, 11th International Conference, DLT 2007, Turku, Finland, 3–6 July, 2007, Proceedings, vol. 4588, Lecture Notes in Computer Science, pp. 382–398. Springer, 2007.Google Scholar
Shallit, J.. On the maximum number of distinct factors of a binary string. Graphs Combinat., 9(2–4):197200, 1993.Google Scholar
Shiloach, Y.. A fast equivalence-checking algorithm for circular lists. Inf. Process. Lett., 8(5):236238, 1979.Google Scholar
Silva, R. M., Pratas, D., Castro, L., Pinho, A. J. and Ferreira, P. J. S. G.. Three minimal sequences found in ebola virus genomes and absent from human DNA. Bioinformatics, 31(15):24212425, 2015.Google Scholar
Simon, I.. String matching algorithms and automata. In R. Baeza-Yates and N. Ziviani, eds., Proceedings of the 1st South American Workshop on String Processing, pp. 151–157, Belo Horizonte, Brasil, 1993. Universidade Federal de Minas Gerais.Google Scholar
Skiena, S. S.. The Algorithm Design Manual. 2nd ed., Springer, 2008.Google Scholar
Skolem, T.. On certain distributions of integers in pairs with given differences. Math. Scand., 5:5768, 1957.Google Scholar
Smyth, B.. Computing Patterns in Strings. Pearson Education Limited, 2003.Google Scholar
Szykula, M.. Improving the upper bound on the length of the shortest reset word. In R. Niedermeier and B. Vallée, eds., 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, 28 February – 3 March 2018, Caen, France, vol. 96, LIPIcs, pp. 56:1–56:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.Google Scholar
Tarhio, J. and Ukkonen, E.. A greedy approximation algorithm for constructing shortest common superstrings. Theor. Comput. Sci., 57:131145, 1988.Google Scholar
Tronícek, Z. and Melichar, B.. Directed acyclic subsequence graph. In Holub, J. and Simánek, M., eds., Proceedings of the Prague Stringology Club Workshop 1998, Prague, Czech Republic, 3–4 September, 1998, pp. 107118. Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University, 1998.Google Scholar
Tronícek, Z. and Shinohara, A.. The size of subsequence automaton. Theor. Comput. Sci., 341(1–3):379384, 2005.Google Scholar
Tsuruta, K., Inenaga, S., Bannai, H. and M. Takeda. Shortest unique substrings queries in optimal time. In V. Geffert, B. Preneel, B. Rovan, J. Stuller and A. M. Tjoa, eds., SOFSEM 2014: Theory and Practice of Computer Science: 40th International Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, 26–29 January 2014, Proceedings, vol. 8327, Lecture Notes in Computer Science, pp. 503–513. Springer, 2014.Google Scholar
Ukkonen, E.. On-line construction of suffix trees. Algorithmica, 14(3):249260, 1995.Google Scholar
van Leeuwen, J.. On the construction of Huffman trees. In ICALP, pp. 382–410, 1976.Google Scholar
Vitter, J. S.. Design and analysis of dynamic Huffman codes. J. ACM, 34(4):825– 845, 1987.Google Scholar
Vörös, N.. On the complexity measures of symbol-sequences. In A. Iványi, ed., Conference of Young Programmers and Mathematicians, pp. 43–50, Budapest, 1984. Faculty of Sciences, Eötvös Loránd University.Google Scholar
Walczak, B.. A simple representation of subwords of the Fibonacci word. Inf. Process. Lett., 110(21):956960, 2010.Google Scholar
Welch, T. A.. A technique for high-performance data compression. IEEE Computer, 17(6):819, 1984.Google Scholar
Wythoff, W. A.. A modification of the game of Nim. Nieuw Arch. Wisk., 8:199– 202, 1907/1909.Google Scholar
Yang, I.-H., Huang, C.-P. and Chao, K.-M.. A fast algorithm for computing a longest increasing subsequence. Inf. Process. Lett., 93(5):249253, 2005.Google Scholar
Zalinescu, E.. Shorter strings containing all k-element permutations. Inf. Process. Lett., 111(12):605608, 2011.Google Scholar
Ziv, J. and Lempel, A.. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory, 23(3):337343, 1977.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×