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In this paper, we consider the following nonlinear Schrödinger equations with the
critical Sobolev exponent and mixed nonlinearities:⎧⎨⎩ − Δu + λu = t|u|q−2u + |u|2∗−2u in R

N ,

u ∈ H1(RN ),

where N � 3, t > 0, λ > 0 and 2 < q < 2∗ = 2N
N−2

. Based on our recent study on the

normalized solutions of the above equation in [J. Wei and Y. Wu, Normalized
solutions for Schrodinger equations with critical Sobolev exponent and mixed
nonlinearities, e-print arXiv:2102.04030[Math.AP].], we prove that

(1) the above equation has two positive radial solutions for N = 3, 2 < q < 4 and t > 0 suf-
ficiently large, which gives a rigorous proof of the numerical conjecture in [J. Dávila,
M. del Pino and I. Guerra. Non-uniqueness of positive ground states of non-linear
Schrödinger equations. Proc. Lond. Math. Soc. 106 (2013), 318–344.];

(2) there exists t∗q > 0 for 2 < q � 4 such that the above equation has ground-states for t � t∗q
in the case of 2 < q < 4 and for t > t∗4 in the case of q = 4, while the above equation has no
ground-states for 0 < t < t∗q for all 2 < q � 4, which, together with the well-known results on
ground-states of the above equation, almost completely solve the existence of ground-states,
except for N = 3, q = 4 and t = t∗4.

Moreover, based on the almost completed study on ground-states to the above
equation, we introduce a new argument to study the normalized solutions of the
above equation to prove that there exists 0 < ta,q < +∞ for 2 < q < 2 + 4

N
such

that the above equation has no positive normalized solutions for t > ta,q with∫
RN |u|2dx = a2, which, together with our recent study in [J. Wei and Y. Wu,

Normalized solutions for Schrodinger equations with critical Sobolev exponent and
mixed nonlinearities, e-print arXiv:2102.04030[Math.AP].], gives a completed answer
to the open question proposed by Soave in [N. Soave. Normalized ground states for
the NLS equation with combined nonlinearities: The Sobolev critical case. J. Funct.
Anal. 279 (2020) 108610.]. Finally, as applications of our new argument, we also
study the following Schrödinger equation with a partial confinement:⎧⎪⎨⎪⎩

− Δu + λu + (x2
1 + x2

2)u = |u|p−2u in R
3,

u ∈ H1(R3),

∫
R3

|u|2dx = r2,
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where x = (x1, x2, x3) ∈ R
3, 10

3
< p < 6, r > 0 is a constant and (u, λ) is a pair of

unknowns with λ being a Lagrange multiplier. We prove that the above equation has
a second positive solution, which is also a mountain-pass solution, for r > 0
sufficiently small. This gives a positive answer to the open question proposed by
Bellazzini et al. in [J. Bellazzini, N. Boussaid, L. Jeanjean and N. Visciglia.
Existence and Stability of Standing Waves for Supercritical NLS with a Partial
Confinement. Commun. Math. Phys. 353 (2017), 229–251].

Keywords: Ground state; normalized solution; Schrödinger equation; power-type
nonlinearity

2020 Mathematics subject classification: Primary: 35B09; 35B33; 35B40; 35J20

1. Introduction

In the celebrated paper [17], the well-known Gidas–Ni–Nirenberg theorem asserts
that the positive solution of the following equation,{

− Δu = f(u) in R
N ,

u → 0 as |x| → +∞,
(1.1)

must be radially symmetric up to translations under some suitable conditions on
the nonlinearities f(u), where N � 1. Since then, an interesting and important
problem is the uniqueness of the positive solution to (1.1). Kwong proved such
uniqueness result in [22] for the power-type nonlinearities f(u) = up−1 − u with 2 <
p < 2∗, where 2∗ is the critical Sobolev exponent given by 2∗ = +∞ for N = 1, 2 and
2∗ = 2N/(N − 2) for N � 3 (see the earlier papers [12] for the cubic nonlinearity
f(u) = u3 − u and [27–29] for general nonlinearities). The extension of Kwong’s
result can be found in [26, 30, 31] and so far, to our best knowledge, the most
general extension of Kwong’s result is due to Serrin and Tang in [31]: The positive
solution of (1.1) is unique if there exists b > 0 such that f(u)−u

u−b > 0 for u �= b and the

quotient f ′(u)u−u
f(u)−u is nonincreasing of u ∈ (b,+∞), which is not the case of the mixed

nonlinearities f(u) = μuq−1 + νup−1 − λu with 2 < q �= p < 2∗ and μ, ν, λ > 0. In
this case, (1.1) reads as

{
− Δu + λu = μ|u|q−2u + ν|u|p−2u in R

N ,

u → 0 as |x| → +∞.
(1.2)

By rescaling, (1.2) is equivalent to

{
− Δu + λu = t|u|q−2u + |u|p−2u in R

N ,

u → 0 as |x| → +∞.
(1.3)

In an interesting paper [14], Davila et al. proved that for N = 3, 2 < q < 4, p < 6
with sufficiently close to 6 and t > 0 sufficiently large, (1.3) has three positive radial
solutions, which yields a rather striking result that Kwong’s uniqueness result is in
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Schrödinger equations 1505

general not true for the mixed nonlinearities. Thus, the uniqueness of the positive
radial solution of (1.3) (or more general, (1.1)) remains largely open. It is worth
pointing out that the mentioned papers are all devoted to the Sobolev subcritical
case for N � 3, that is, limu→+∞

f(u)
u2∗ = 0.

In the Sobolev critical case for N � 3, that is, limu→+∞
f(u)

u2∗−1 > 0, the well-
known Gidas–Ni–Nirenberg theorem still holds, that is, positive solutions must
be radially symmetric up to translations. However, for N � 3, compared to the
Sobolev subcritical case (cf. [8]), the existence of positive solutions of (1.1) is more
complicated in the Sobolev critical case. For example, for (1.3), the special case of
(1.1), the existence of positive solutions is established in [2, 4, 6, 24, 35], which
can be summarized as follows:

Theorem 1.1. Let N � 3 and p = 2∗. Then (1.3) has a positive radial solution
which is also a ground-state, provided that

(a) N � 4, 2 < q < 2∗ and t > 0;

(b) N = 3, 4 < q < 6 and t > 0;

(c) N = 3, 2 < q � 4 and t > 0 sufficiently large.

Theorem 1.1 is proved by adapting the classical ideas of Breźıs and Nirenberg in
[9], that is, using the Aubin–Talanti bubbles (cf. (2.1)) as test functions to control
the energy values so that the (PS) sequences of the associated functional, corre-
sponding to (1.3) with p = 2∗, are compact at the ground-state level. This strategy
is invalid for N = 3, 2 < q � 4 and t > 0 not sufficiently large. Thus, whether (1.3)
with p = 2∗ always has a positive radial solution is not clear. Note that accord-
ing to the concentration-compactness principle (cf. [23]), the only possible way
that the (PS) sequences of the associated functional loss the compactness at the
ground-state level is that they concentrate at single points and behaviour like a
Aubin–Talanti bubble under some suitable scalings in passing to the limit. Thus,
by the energy estimates in [2, 4, 6, 24, 35], it is reasonable to think that (1.3)
with p = 2∗ has no ground-states for N = 3, 2 < q � 4 and t > 0 not sufficiently
large. On the other hand, the uniqueness of positive radial solutions to (1.3) with
p = 2∗ seems also very complicated. If 3 � N � 6 and (N + 2)/(N − 2) < q < 2∗

then Pucci and Serrin in [30] proved that (1.3) with p = 2∗ has at most one posi-
tive radial solution. Recently, Akahori et al. in [1, 3, 4] and Coles and Gustafson
in [13] proved that the radial ground-state of (1.3) with p = 2∗ is unique and non-
degenerate for all small t > 0 when N � 5 and q ∈ (2, 2∗) or N = 3 and q ∈ (4, 2∗);
and for all large t > 0 when N � 3 and 2 + 4/N < q < 2∗. However, the uniqueness
of positive radial solutions seems not true for (1.3) with p = 2∗ in general, since it is
suggested in [14] by the numerical evidence that (1.3) with p = 2∗ has two positive
radial solutions for N = 3, 2 < q < 4 and t > 0 sufficiently large. Moreover, Chen
et al. in [10] proved the existence of arbitrary large number of bubble-tower pos-
itive solutions of (1.3) in the slightly supercritical case when q < 2∗ < p = 2∗ + ε
with ε > 0 sufficiently small. We also mention the paper [16], in which the authors
proved the existence of positive radial solutions to (1.3) for 2 < q < 2∗ � p with
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t > 0 sufficiently large and (1.3) has no positive solutions for 2 < q < 2∗ < p with
t > 0 sufficiently small via ODE’s methods.

Inspired by the above facts, we shall explore the existence and nonexistence of
positive solutions of (1.3) with p = 2∗ by studying the existence and nonexistence of
ground-states of (1.3) for N = 3 and 2 < q � 4. We shall also explore the uniqueness
of positive solutions of (1.3) with p = 2∗ by giving a rigorous proof of the numerical
conjecture in [14].

Let us first introduce some necessary notations. By classical elliptic estimates,
for N � 3 and p = 2∗, (1.3) is equivalent to

{
− Δu + λu = t|u|q−2u + |u|2∗−2u in R

N ,

u ∈ H1(RN ),
(1.4)

where t > 0, λ > 0 and 2 < q < 2∗. Clearly, by rescaling if necessary, it is sufficiently
to consider the case λ = 1 for (1.4). Let

m(t) = inf
v∈Nt

Et(v), (1.5)

where

Et(v) =
1
2
(‖∇v‖2

2 + ‖v‖2
2) −

t

q
‖v‖q

q −
1
2∗

‖v‖2∗
2∗ (1.6)

is the corresponding functional of (1.4) with λ = 1 and

Nt = {v ∈ H1(RN )\{0} | E ′
t(v)v = 0}

is the usual Nehari manifold. Here, ‖ · ‖p is the usual norm in the Lebesgue space
Lp(RN ).

Definition 1.1. We say that u is a ground-state of (1.4) if u is a nontrivial solution
of (1.4) with Et(u) = m(t).

Now, our main result is the following.

Theorem 1.2. Let λ = 1, N = 3 and 2 < q � 4. Then there exists t∗q > 0, which
may depend on q, such that

(1) (1.4) has ground-states for t � t∗q and has no ground-states for 0 < t < t∗q in
the case of 2 < q < 4.

(2) (1.4) has ground-states for t > t∗4 and has no ground-states for 0 < t < t∗4 in
the case of q = 4.
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Moreover, if 2 < q < 4 then there exists tq > 0, which may depend on q, such that
(1.4) has two positive radial solutions ut,1 and ut,2 for t > tq, where ut,1 is a ground-
state with ‖ut,1‖∞ ∼ t−

1
q−2 and ut,2 is a blow-up solution with

‖ut,2‖∞ ∼

⎧⎪⎪⎨⎪⎪⎩
t

1
4−q , 3 < q < 4,

t ln t, q = 3,

t
1

q−2 , 2 < q < 3,

as t → +∞.

Remark 1.1. Theorem 1.2, together with theorem 1.1, almost completely solves the
existence of ground-states to (1.4), except for N = 3, q = 4 and t = t∗4. Moreover,
theorem 1.2 also verifies the numerical conjecture in [14].

The proof of theorem 1.2 is based on our very recent study on the normalized
solution of (1.4) with the additional condition ‖u‖2

2 = a2, where a > 0. We remark
that we shall call u is a fixed-frequency solution of (1.4) if the frequency λ is fixed,
since for the normalized solution of (1.4), the frequency λ is a part of unknowns,
which appears as a Lagrange multiplier. Now, let us explain our ideas in proving
theorem 1.2. Let μ > 0, a > 0 and (uμ, λμ) be a normalized solution of (1.4) for
t = μ with the additional condition ‖uμ‖2

2 = a2, that is, (uμ, λμ) is a solution of the
following system: {

− Δu + λu = μ|u|q−2u + |u|2∗−2u in R
N ,

u ∈ H1(RN ), ‖u‖2
2 = a2,

(1.7)

then by the Pohozaev identity satisfied by uμ (cf. [33, (4.7)]),

λμa2 = λμ‖uμ‖2
2 = (1 − γq)μ‖uμ‖q

q > 0, (1.8)

where γq = N(q−2)
2q . Let

vμ(x) = λ
−N−2

4
μ uμ(λ− 1

2
μ x), (1.9)

then by direct calculations, we know that vμ is a fixed-frequency solution of (1.4)

for λ = 1 and t = μλ
qγq−q

2
μ . By (1.8), we also have

λμ =
(1 − γq)μ

a2
λ

qγq−q

2
μ ‖vμ‖q

q.

Thus, by letting

tμ = μλ
qγq−q

2
μ , (1.10)

we know that (vμ, tμ) solves the following system:⎧⎪⎨⎪⎩
− Δv + v = t|v|q−2v + |v|2∗−2v in R

N ,

v ∈ H1(RN ), t
2

qγq−q −1 =
1 − γq

a2μ
2

q−qγq

‖v‖q
q.

(1.11)
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Clearly, if (v, t) is a solution of the system (1.11), then by letting

λμ =
(

t

μ

) 2
qγq−q

and uμ(x) = λ
N−2

4
μ v(λ

1
2
μ x), (1.12)

(uμ, λμ) is also a normalized solution of (1.4) for t = μ with the additional condition
‖uμ‖2

2 = a2, that is (uμ, λμ) is also a normalized solution of (1.7). Thus, by our above
observations, normalized solutions of (1.4) is equivalent to fixed-frequency solutions
of (1.4) with another additional condition. Since we made a detail study on some
special normalized solutions of (1.4) in [33], we could use these detailed estimates
to derive theorem 1.2.

Our observations on the relations between fixed-frequency solutions and nor-
malized solutions of (1.4) also bring in some new lights to study the normalized
solutions of (1.4). Indeed, let vt be a fixed-frequency solution of (1.4), then by the
above observations, finding normalized solutions of (1.4) is equivalent to finding
solutions of the following equation:

t
2

qγq−q −1 − 1 − γq

a2μ
2

q−qγq

‖vt‖q
q = 0. (1.13)

This is a reduction, which heavily depends on the scaling technique and the
Pohozaev identity, since we reduce the solvability of (1.4) in H1(RN ) to the
solvability of (1.13) in R

+. Let

Aμ(u) =
1
2
‖∇u‖2

2 −
μ

q
‖u‖q

q −
1
2∗

‖u‖2∗
2∗ .

Then, Aμ|Sa
(u) is the corresponding functional of (1.7), where Sa = {u ∈ H1(RN ) |

‖u‖2
2 = a2}.

Definition 1.2. We say that u is a normalized ground-state of (1.7) if u is a
solution of (1.7) and Aμ(u) � Aμ(v) for any other solutions of (1.7).

By (1.12), if (uμ, λμ) is a solution of (1.7), then,

Aμ(uμ) +
λμa2

2
= Etμ

(vμ), (1.14)

where (vμ, tμ) is a solution of (1.11). Thus, normalized ground-states of (1.7) must
be generated by positive fixed-frequency ground-states of (1.4) through the equation
(1.13), that is, Dnor ⊂ Pnor where

Dnor = {(uμ, λμ) ∈ H1(Rd) × R | (uμ, λμ) is a normalized ground-state of (1.7)}
and

Pnor = {(λ
N−2

4
μ u(λ

1
2
μ x), λμ) ∈ H1(RN ) × R+|u ∈ Dfre},

with λμ = ( t
μ )

2
qγq−q and

Dfre = {vt ∈ H1(Rd) | vt is a fixed-frequency ground-state of (1.11)}.
Indeed, let (u∗,μ, λ∗,μ) be any solution of (1.8) with λ∗,μ > 0. If v∗,μ is not a
fixed-frequency ground-state of (1.4) with t = t∗,μ where v∗,μ and t∗,μ are given
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by (1.9) and (1.10), respectively, then there exists v ∈ H1(RN ) such that v is a
fixed-frequency ground-state of (1.11) and

Et∗,μ
(u∗,μ) > Et∗,μ

(u).

It follows that

Aμ(u∗,μ) +
λ∗,μa2

2
= Et∗,μ

(v∗,μ) > Et∗,μ
(v) = Aμ(uμ) +

λ∗,μa2

2
,

which implies that Aμ(v∗,μ) > Aμ(vμ) where uμ is given by (1.12). Therefore, if
(1.7) has a solution then Dnor ⊂ Pnor. In other words, either (1.7) has no solutions
or Dnor ⊂ Pnor. Note that by theorems 1.1 and 1.2, Dfre �= ∅. Thus, Pnor �= ∅ which
implies that Dnor ⊂ Pnor. It is worth pointing out that this fact has also been
pointed out in [15, 20]. With these in minds, we can obtain the following results.

Theorem 1.3. Let N � 3 and 2 < q < 2 + 4
N . Then there exist 0 < t̂q,a � tq,a <

+∞, which may depend on q and a, such that (1.4) has normalized ground-states
with the additional condition ‖u‖2

2 = a2 for 0 < t < t̂q,a and (1.4) has no normalized
ground-states with the additional condition ‖u‖2

2 = a2 for t > tq,a.

Remark 1.2. Theorem 1.3, together with our recent study in [33], gives a
completed answer to the open question proposed by Soave in [32].

As an application of our new reduction in finding normalized solutions of (1.4),
we shall also consider the following Schrödinger equation:{

− Δu + λu + V (x)u = |u|p−2u in R
3,

u ∈ H1(R3), ‖u‖2
2 = r2,

(1.15)

where x = (x1, x2, x3) ∈ R
3, V (x) = x2

1 + x2
2,

10
3 < p < 6 and r > 0 is a constant.

(1.15) is studied recently by Bellazzini et al. in [7], in which the authors proved
that (1.15) has a ground-state normalized solution, which is also a local minimizer
of the associated functional on the L2-sphere ‖u‖2

2 = r2, with a negative Lagrange
multiplier λ for r > 0 sufficiently small. According to the geometry of the associated
functional on the L2-sphere ‖u‖2

2 = r2, Bellazzini et al. also conjectured in [7] that
(1.15) has a second normalized solution, which is also a mountain-pass solution, for
r > 0 sufficiently small. In this paper, we prove this conjecture by obtaining the
following result.

Theorem 1.4. Let 10
3 < p < 6. Then for r > 0 sufficiently small, (1.15) has a sec-

ond positive normalized solution ur,2, which is also a mountain-pass solution, with
a positive Lagrange multiplier

λr,2 = (1 + or(1))
[
(6 − p)‖w∞‖p

p

2pr2

] 2(p−2)
3p−10

→ +∞ as r → 0, (1.16)
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where w∞ is the unique (up to translations) positive solution of the following
equation: {

− Δw + w = |w|p−2w in R
3,

w ∈ H1(R3).
(1.17)

Moreover,

wr(x) = λ
− 1

p−2
r,2 ur,2(λ

− 1
2

r,2 x) = w∞ + or(1) in H1(R3) as r → 0. (1.18)

To prove theorem 1.4, we introduce

f(r, t) := r2 − t
10−3p
2(p−2)

(
6 − p

2p
‖wt‖p

p − 2t−2

∫
R3

V (x)w2
t dx

)
, (1.19)

where wt is a positive ground-state of the following equation:{
− Δw + w + t−2V (x)w = |w|p−2w in R

3,

w ∈ H1(R3).

Then by applying our new reduction argument to (1.15), we reduce finding nor-
malized solutions of (1.15) to finding solutions of the equation f(r, t) = 0 for fixed
small r > 0. By the uniqueness and nondegeneracy of w∞, we prove that the curve
wt is continuous for t > 0 sufficiently large in a suitable space. Thus, (1.19) can be
solved easily by the continuation method. We believe this method will be helpful
in studying normalized solutions of other elliptic equations.

Notations. Throughout this paper, C and C ′ are indiscriminately used to denote
various absolutely positive constants. a ∼ b means that C ′b � a � Cb and a � b
means that a � Cb.

2. Blow-up solutions for N = 3 and 2 < q < 4

It is well known that the Aubin–Talanti babbles,

Uε(x) = [N(N − 2)]
N−2

4

(
ε

ε2 + |x|2
)N−2

2

, (2.1)

is the only solutions to the following equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− Δu = u2∗−1 in R
N ,

u(0) = max
x∈RN

u(x),

u(x) > 0 in R
N ,

u(x) → 0 as |x| → +∞.

By [33, theorem 1.2], for μ > 0 sufficiently small, (1.7) has a positive radial solution

ũμ with the Lagrange multiplier λ̃μ > 0 such that ε
1
2
μ ũμ(εμx) → Uε0 strongly in
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D1,2(R3) for some ε0 > 0 as μ → 0 up to a subsequence, where Uε0 is given by (2.1)
and εμ satisfies

μ ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε
q
2−1
μ , 3 < q < 6,

ε
1
2
μ

ln( 1
εμ

)
, q = 3,

ε
5− 3q

2
μ , 2 < q < 3.

(2.2)

Moreover, by [33, lemma 4.1], we have

1 ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μσ
6−q
2

μ

λ̃μ

, 3 < q < 6,

μσ
3
2
μ

λ̃μ

ln

⎛⎝ 1√
λ̃μσμ

⎞⎠ , q = 3,

μσ
q
2
μ

λ̃
5−q
2

μ

, 2 < q < 3.

(2.3)

On the other hand, in the proof of [33, proposition 4.2], we also show that

σμ ∼ εμ as μ → 0. (2.4)

Proposition 2.1. Let λ = 1, N = 3 and 2 < q < 4. Then there exists tq > 0, which
may depend on q, such that (1.4) has two positive radial solutions ut,1 and ut,2 for
t > tq, where ut,1 is a ground-state with ‖ut,1‖∞ ∼ t−

1
q−2 and ut,2 is a blow-up

solution with

‖uμ,2‖∞ ∼

⎧⎪⎪⎨⎪⎪⎩
t

1
4−q , 3 < q < 4,

t ln t, q = 3,

t
1

q−2 , 2 < q < 3,

as t → +∞.

Proof. By (1.9) and (1.10), (ṽμ, t̃μ) is a solution of (1.11). In particular, ṽμ

is a solution of (1.4) for λ = 1 and t = t̃μ = μλ̃
qγq−q

2
μ . By the well-known

Gidas–Ni–Nirenberg theorem [17], ṽμ is radial and decreasing for r = |x| up
to translations. Thus, without loss of generality, we may assume that ṽμ(0) =

maxx∈RN ṽμ. Recall that ε
1
2
μ ũμ(εμx) → Uε0 strongly in D1,2(R3) for some ε0 > 0

as μ → 0 up to a subsequence, by the classical elliptic regularity and the Sobolev
embedding theorem, ε

1
2
μ ũμ(εμx) → Uε0 strongly in C1,α

loc (R3) for some α ∈ (0, 1) as

μ → 0 up to a subsequence. In particular, ε
1
2
μ ũμ(0) → Uε0(0) as μ → 0 up to a
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subsequence. Thus, by (2.1),

ṽμ(0) = λ̃
− 1

4
μ ũμ(0) ∼ λ̃

− 1
4

μ ε
− 1

2
μ as μ → 0 up to a subsequence. (2.5)

In the following, let us estimate ṽμ(0) and t̃μ as μ → 0. We begin with the estimate
of t̃μ. We first consider the case 2 < q < 3. In this case, by (2.2), (2.3) and (2.4),
λ̃μ ∼ ε2

μ, which, together with (1.10), implies

t̃μ ∼ ε
10−3q

2
μ (ε2

μ)
q−6
4 = ε2−q

μ → +∞ as μ → 0.

For q = 3, by (2.2), (2.3) and (2.4),

λ̃μ ∼ ε2
μ

ln( 1√
λ̃μεμ

)

ln( 1
εμ

)
� ε2

μ.

It follows that

ln
(

1
εμ

)
� ln

⎛⎝ 1√
λ̃μεμ

⎞⎠ � ln(
1
εμ

).

Thus, we also have λ̃μ ∼ ε2
μ for q = 3. By (1.10) and (2.2),

t̃μ ∼ ε
1
2
μ

1
ln( 1

εμ
)
(ε2

μ)−
3
4 = ε−1

μ

1
ln( 1

εμ
)
→ +∞ as μ → 0.

For 3 < q < 4, by (2.2), (2.3) and (2.4), λ̃μ ∼ ε2
μ. Now, by (1.10),

t̃μ ∼ ε
q−2
2

μ (ε2
μ)

q−6
4 = εq−4

μ → +∞ as μ → 0.

Thus, for all 2 < q < 4, we always have

λ̃μ ∼ ε2
μ and t̃μ ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εq−4
μ , 3 < q < 4,

ε−1
μ

1
ln( 1

εμ
)
, q = 3,

ε2−q
μ , 2 < q < 3,

(2.6)

as μ → 0. Now, by (2.2)–(2.4) and (2.5), we have

ṽμ(0) ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ− 2
q−2 , 3 < q < 4,(

1
μ| ln μ|

)2

, q = 3,

μ− 2
10−3q , 2 < q < 3.
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It follows from (2.2) and (2.6) that

ṽμ(0) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t̃

1
4−q
μ , 3 < q < 4,

t̃μ ln t̃μ, q = 3,

t̃
1

q−2
μ , 2 < q < 3.

Thus, by (2.6), ṽμ is a blow-up solution of (1.4) for N = 3, λ = 1, 2 < q < 4 and
t = t̃μ. Note that by [25, theorem 2.2], the ground-states of (1.4) for λ = 1, say
vt, satisfies ‖vt‖∞ ∼ t−

1
q−2 as t → +∞. For μ > 0 sufficiently small, ṽμ is a second

positive radial solution of (1.4) with N = 3, λ = 1, 2 < q < 4 and t > 0 sufficiently
large. �

Remark 2.1. Let ṽμ be given in the proof of proposition 2.1 and define

w̃μ(x) = t̃
1

q−2
μ ṽμ(x),

then w̃μ satisfies the following equation:⎧⎨⎩ − Δw + w = |w|q−2w + t̃
− 2∗−2

q−2
μ |w|2∗−2w in R

N ,

v ∈ H1(RN ),
(2.7)

where t = t̃μ is also given in the proof of proposition 2.1. By similar arguments as
that used for [14, lemma 5.3], (2.7) has a unique bounded positive radial solution
for t > 0 sufficiently large. However, by (1.10) and (2.5),

w̃μ(0) ∼ μ
1

q−2 λ̃
− 1

q−2
μ ε

− 1
2

μ as μ → 0. (2.8)

By (2.2), (2.6) and (2.8),

w̃μ(0) ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε
− 2

q−2
μ , 2 < q < 3,

ε−2
μ

1
ln( 1

εμ
)
, q = 3,

ε
− 2

q−2
μ , 3 < q < 4.

Thus, w̃μ is also a blow-up solution of (2.7) as t̃μ → +∞.

3. Ground-states for N = 3 and 2 < q � 4

The associated fibering map of (1.6) for every v �= 0 in H1(R3) is given by

E(s) =
s2

2
(‖∇v‖2

2 + ‖v‖2
2) −

tsq

q
‖v‖q

q −
s6

6
‖v‖6

6. (3.1)

Since q > 2, it is standard to show that for every v �= 0 in H1(R3), there exists
a unique s0 > 0 such that E(s) is strictly increasing for 0 < s < s0 and strictly
decreasing for s > s0.
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Lemma 3.1. Let N = 3, λ = 1 and 2 < q � 4. Then m(t) = 1
3S

3
2 for t > 0 suffi-

ciently small, where m(t) is given by (1.5).

Proof. We argue in the contrary by supposing that there exists tn → 0 as n → ∞
such that m(tn) < 1

3S
3
2 . Then, it is standard to show (cf.[6]) that m(tn) is attained

by a positive and radial function, which is also a solution of (1.4) with λ = 1,
N = 3 and t = tn. We denote this solution by vtn

. Since tn → 0 as n → ∞, it is also
standard to show that

‖∇vtn
‖2
2 = ‖vtn

‖6
6 + on(1) = S

3
2 + on(1) as n → ∞. (3.2)

Thus, {vtn
} is a minimizing sequence of the Sobolev inequality. By Lions’ result

(cf. [34, theorem 1.41]), up to a subsequence, there exists σn > 0 such that for some
ε∗ > 0,

wtn
(x) = σ

1
2
n vtn

(σnx) → Uε∗ strongly in D1,2(R3) as n → ∞.

Clearly, by direct computations, we know that wtn
satisfies the following equation:

− Δwtn
+ σ2

nwtn
= tnσ

3− q
2

n wq−1
tn

+ w5
tn

in R
3. (3.3)

Since vtn
is positive and radial, wtn

is also positive and radial. Thus, by the bound-
edness of {wtn

} in D1,2(R3), the Sobolev embedding theorem and Strusss radial
lemma (cf. [8, lemma A.2]),

wtn
� r−

1
2 for all r � 1 uniformly as n → ∞.

On the other hand, since wtn
→ Uε∗ strongly in D1,2(R3) as n → ∞, by applying

the Moser iteration in a standard way and using the Sobolev embedding theorem,
we know that wtn

→ Uε∗ strongly in C1,α
loc (R3) as n → ∞ for some α ∈ (0, 1). Thus,

wtn
� (1 + r)−

1
2 for all r � 0 uniformly as n → ∞.

Now, we can adapt the ODE’s argument in [5, 18, 21] as that in the proof of
[33, lemma 4.1] to obtain

wtn
� 1

(1 + r2)
1
2

for all r � 0 uniformly as n → ∞. (3.4)

On the other hand, since N = 3, it is easy to check that r−1e−σnr is a subsolution
of −Δu + σ2

nu = 0 for r � 1. Thus, by the fact that wtn
→ Uε∗ strongly in C1,α

loc (R3)
as n → ∞ for some α ∈ (0, 1), we can use the maximum principle in a standard way
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to show that

wtn
� r−1e−σnr for r � 1 uniformly as n → ∞.

It follows that

‖wtn
‖q

q �
∫ 1

σn

1

r2−qe−qσnrdr ∼

⎧⎪⎨⎪⎩
σq−3

n , 2 � q < 3,

| ln σn|, q = 3,

1, 3 < q < 6.

(3.5)

Since tn → 0 as n → ∞, by (3.4), for r � ( 1
σn

)
1
2 , (3.3) reads as

−Δwtn
+

1
4
σ2

nwtn
� 0 in R

3.

Thus, by (3.4), we can use the maximum principle in a standard way again to obtain

wtn
� r−1e−

σn
4 r for r �

(
1
σn

) 1
2

uniformly as n → ∞.

On the other hand, since ‖wtn
‖6
6 = ‖vtn

‖6
6 = S

3
2 + on(1), by (3.8) and the Hölder

inequality,

σ2
n‖wtn

‖2
2 � tnσ

3− q
2

n ‖wtn
‖q

q � tnσ
3− q

2
n ‖wtn

‖
6−q
2

2 ,

which implies

σn‖wtn
‖2 � t

2
q−2
n .

Since wtn
→ Uε∗ strongly in D1,2(R3) as n → ∞ and Uε∗ �∈ L2(R3), by the Fatou

lemma,

lim inf
n→∞ ‖wtn

‖2 = +∞.

Thus, by tn → 0 as n → ∞, we have σn → 0 as n → ∞. It follows from (3.4) once
more that

‖wt‖q
q � 1 +

∫ 1
σn

1

r2−qdr +
∫ +∞

( 1
σn

)
1
2

r2−qe−
q
4 σnrdr ∼

⎧⎪⎨⎪⎩
σq−3

n , 2 � q < 3,

| ln σn|, q = 3,

1, 3 < q < 6.

(3.6)

Thus, by (3.5) and (3.6), we have

‖wtn
‖q

q ∼

⎧⎪⎨⎪⎩
σq−3

n , 2 � q < 3,

| ln σn|, q = 3,

1, 3 < q < 6.

(3.7)

Note that as that of (1.8), by the Pohozaev identity, we have

σ2
n‖wtn

‖2
2 = (1 − γq)tnσ

3− q
2

n ‖wtn
‖q

q. (3.8)
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Thus, by (3.7),

σn ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tnσ

q
2
n , 2 < q < 3,

tnσ
3
2
n | ln σn|, q = 3,

tnσ
3− q

2
n , 3 < q < 6,

which implies

tn ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ

2−q
2

n , 2 < q < 3,

σ
− 1

2
n

1
| ln σn|

, q = 3,

σ
q−4
2

n , 3 < q < 6.

(3.9)

(3.9) contradicts the facts that tn, σn → 0 as n → ∞ for 2 < q � 4. It follows that
m(t) � 1

3S
3
2 for t > 0 sufficiently small in the case of 2 < q � 4. On the other hand,

since m(t) is the minimum of Et(v) on the Nehari manifold Nt, it is standard
(cf. [33, lemma 3.3]) to use the fibering maps (3.1) to show that m(t) is nonin-
creasing for t > 0. Note that it is well known that m(0) = 1

3S
3
2 , thus, m(t) � 1

3S
3
2

for all t > 0. It follows that m(t) = 1
3S

3
2 for t > 0 sufficiently small in the case of

2 < q � 4. �

Let

t∗q = sup
{

t > 0 | mt =
1
3
S

3
2

}
. (3.10)

Then by lemma 3.1, t∗q > 0 for 2 < q � 4. Since it is well known (cf. [6]) that m(t) <
1
3S

3
2 for t > 0 sufficiently large in the case of 2 < q � 4, we have 0 < t∗q < +∞ for

all 2 < q � 4. Since m(t) < 1
3S

3
2 for t > t∗q , it is standard (cf. [6]) to show that m(t)

is attained for t > t∗q . Let vt be a ground-state of (1.4), which is radial and positive
for t > t∗q in the case of 2 < q < 4. Then, we have the following.

Proposition 3.1. Let N = 3, λ = 1 and 2 < q < 4. Then, ‖vt‖q
q ∼ 1 as t → t∗q .

Proof. The conclusion ‖vt‖q
q � 1 as t → t∗q is standard so we omit it. For the con-

clusion ‖vt‖q
q � 1 as t → t∗q , we argue in the contrary. Then there exists tn → t∗q as

n → ∞ such that ‖vtn
‖q

q → 0 as n → ∞. Similar to that of (3.2), we also have

‖∇vtn
‖2
2 = ‖vtn

‖6
6 + on(1) = S

3
2 + on(1) as n → ∞.

Thus, {vtn
} is a minimizing sequence of the Sobolev inequality. By Lions’ result

(cf. [34, theorem 1.41]), up to a subsequence, there exists σ′
n > 0 such that for some
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ε∗ > 0,

wn(x) = (σ′
n)

1
2 vtn

(σ′
nx) → Uε∗ strongly in D1,2(R3) as n → ∞.

Now, repeating the arguments for (3.9), we will arrive at

t∗q ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(σ′

n)
2−q
2 , 2 < q < 3,

(σ′
n)−

1
2

1
| ln σ′

n|
, q = 3,

(σ′
n)

q−4
2 , 3 < q < 4.

This is impossible since σ′
n → 0 as n → ∞ by similar arguments as that used for

σn in the proof of lemma 3.1. Thus, we must have ‖vt‖q
q � 1 as t → t∗q . �

Now, we are arriving at the following.

Proposition 3.2. Let λ = 1, N = 3 and 2 < q � 4. Then

(1) (1.4) has ground-states for t � t∗q and has no ground-states for 0 < t < t∗q in
the case of 2 < q < 4.

(2) (1.4) has ground-states for t > t∗4 and has no ground-states for 0 < t < t∗4 in
the case of q = 4.

Here, t∗q is given by (3.10).

Proof. We first prove that there is no ground-states of (1.4) for 0 < t < t∗q in the
case of 2 < q � 4. Suppose the contrary that (1.4) has a ground-state for some
0 < t < t∗q in the case of 2 < q � 4. Then m(t) is attained. Now, by use the fibering
maps (3.1) in a standard way (cf. [33, lemma 3.3]), we have m(t′) < m(t) for all
t′ > t. It follows that m(t′) < 1

3S
3
2 for all t′ > t, which contradicts the definition

of t∗q given by (3.10). Thus, there is no ground-states of (1.4) for 0 < t < t∗q in the
case of 2 < q � 4. It remains to prove that (1.4) has a ground-state for t = t∗q in the
case of 2 < q < 4, which is equivalent to prove that m(t∗q) is attained for 2 < q < 4.
Let vt be a ground-state of (1.4), which is radial and positive for t > t∗q in the case
of 2 < q < 4 such that t → t∗q . By proposition 3.1, ‖vt‖q

q � 1 as t → t∗q . Since vt is
radial, it is standard to show that vt → vt∗q �= 0 strongly in H1(R3) as t → t∗q up to
a subsequence. Thus, m(t∗q) is attained by vt∗q , which is also a ground-state of (1.4)
for t = t∗q in the case of 2 < q < 4. �

Remark 3.1. Upon to theorem 1.2, the existence of ground-states of (1.4) is almost
completely solved, except for N = 3, q = 4 and t = t∗4. In this case, we believe
that there is no ground-states of (1.4). Indeed, let μ > 0, a > 0 and (uμ, λμ) be a
normalized solution of (1.7), then by (1.9) and (1.10), ṽμ is a solution of (1.4) with

λ = 1 and t = t̃μ = μλ̃
qγq−q

2
μ . By (2.2) and (2.6),

t̃μ ∼ με2
μ ∼ μ

2(q−4)
q−2 as μ → 0 for 4 � q < 6.

Thus, t̃μ → 0 as μ → 0 for 4 < q < 6 and t̃μ ∼ 1 as μ → 0 for q = 4. Note that
ṽμ, generated by ũμ though (1.9), is a solution of (1.4) for t = t̃μ and by
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[33, theorem 1.2],

‖∇ṽμ‖2
2 = ‖∇ũμ‖2

2 = S
3
2 + oμ(1) as μ → 0.

It seems that ṽμ will approximate the ground-state level m(t) = 1
3S

3
2 for N = 3,

λ = 1, q = 4 and t = t∗4 as μ → 0, which suggests that the concentration phe-
nomenon will happen at the ground-state level m(t) = 1

3S
3
2 for N = 3, λ = 1, q = 4

and t = t∗4.

We close this section by the proof of theorem 1.2.

Proof of theorem 1.2. It follows from propositions 2.1 and 3.2. �

4. Normalized ground-states for 2 < q < 2 + 4/N

Let

t∗∗q =

{
0, N � 4,

t∗q , N = 3,
(4.1)

where t∗q is given by (3.10). Then, by [6, theorem 1.2] and theorem 1.2, (1.4) has
a ground-state vt for t > t∗∗q and 2 < q < 2 + 4

N , which is positive and radial. By
(1.11) and (1.12), (ut, λt) is a positive normalized solution of (1.7) if and only if

F (t, μ) := t
2

qγq−q −1 − 1 − γq

a2μ
2

q−qγq

‖vt‖q
q = 0.

Clearly, for every t > t∗∗q , there exists a unique

μt = aqγq−q

[
(1 − γq)‖vt‖q

qt
q−qγq+2

q−qγq

] q−qγq
2

(4.2)

such that F (t, μt) = 0. Let

μq,a = sup{μt > 0 | t > t∗∗q }.

Then, (1.7) has a positive normalized solution if and only if μ < μq,a and μ = μt.
Now, we are prepared for the proof of theorem 1.3.

Proof of theorem 1.3. By [33, theorem 1.1] and [19, theorem 1.6], (1.7) has a nor-
malized ground-state for μ > 0 sufficiently small. Thus, we only need to prove (1.7)
has no normalized ground-states for μ > 0 sufficiently large, which is equivalent to
show that μq,a < +∞. Recall that γq = N(q−2)

2q , we always have q > qγq. It follows
from (4.2) that μt → 0 as t → t∗∗q for N � 4 since t∗∗q = 0 for N � 4. For N = 3,
we have t∗∗q = t∗q > 0 and ‖vt‖q

q ∼ 1 as t → t∗q by proposition 3.1. Thus, μt � 1 as
t → t∗∗q for all N � 3. Since vt is a ground-state of (1.4) with the least energy m(t)
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on the Nehari manifold Nt, by standard arguments (cf. [11, lemma 2.2]),

m(t) =
1
N

S
N
2 −

∫ t

t∗∗q

1
q
‖vτ‖q

qdτ for all t > t∗∗q (4.3)

and

m′(t) = −1
q
‖vt‖q

q for a.e. t > t∗∗q . (4.4)

As that of (1.8), by the Pohozaev identity, we have

‖∇vt‖2
2 = γqt‖vt‖q

q + ‖vt‖2∗
2∗ and ‖∇vt‖2

2 = Nm(t). (4.5)

Thus, by (4.3) and (4.4),

Nm(t) + qγqm
′(t)t � 0 for a.e. t > t∗∗q ,

which implies m(t)t
N

qγq is increasing for t > t∗∗q . Now, let t0 > t∗∗q with t0 − t∗∗q > 0
sufficiently small such that μt � 1 for t < t0, then

m(t) � t
− N

qγq for t � t0. (4.6)

On the other hand, by the definition of t∗∗q given by (4.1), [6, theorem 1.2] and
theorem 1.2, m(t) < 1

N S
N
2 for t > t∗∗q . Thus, it is standard to apply the classical

elliptic estimates to show that ‖vt‖∞ � 1 for all t � t0. By (4.4) and (4.5),

Nm(t) = ‖∇vt‖2
2 �

(
1 + O

(
1
t

))
γq‖vt‖q

qt

= −
(

1 + O

(
1
t

))
qγqm

′(t)t for a.e. t � t0,

which implies that for every ε > 0 there exists tε > 0 such that m(t) � t
− N

qγq+ε for
t � tε. It follows from (4.5) once more that

‖vt‖q
q � t

− N
qγq+ε−1 for t � tε.

Thus, by (4.5) and ‖vt‖∞ � 1 for all t � t0, we have

Nm(t) = ‖∇vt‖2
2 � γq‖vt‖q

qt + C0t
− N

qγq+ε−1 for t � tε,

which implies m(t)t
N

qγq − C1t
− N

qγq+ε is decreasing for t � tε. Therefore, m(t) �
t
− N

qγq for t > 0 sufficiently large, which, together with (4.6), implies that

m(t) ∼ t
− N

qγq as t → +∞.

It follows from (4.5) and ‖vt‖∞ � 1 for all t � t0 that

‖vt‖q
q ∼ t

− N
qγq

−1 as t → +∞.
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Since

2
q − qγq

− N

qγq
=

2N(q − 2 − 4
N )

(q − 2)(2N − q(N − 2))
< 0 for 2 < q < 2 +

4
N

,

by (4.2), μq,a < +∞ for 2 < q < 2 + 4
N . �

5. An application

In this section, we shall apply our above strategy to study the Schrödinger equation
(1.15). Since there is an additional condition ‖u‖2

2 = r2 in (1.15), λ in (1.15) is not
fixed but appears as a Lagrange multiplier.

Let (ur, λr) be a solution of (1.15). Since V (x) = x2
1 + x2

2, we have ∇V (x) · x =
2V (x). Thus, the Pohozaev identity of (1.15) (cf. [7]) is given by

1
6
‖∇ur‖2

2 +
λrr

2

2
+

5
6

∫
R3

V (x)u2
rdx =

1
p
‖ur‖p

p,

which, combining the equation (1.15), implies that

λrr
2 =

6 − p

2p
‖ur‖p

p − 2
∫

R3
V (x)u2

rdx. (5.1)

We define

wr(x) = λ
− 1

p−2
r ur(λ

− 1
2

r x) and tr = λr (5.2)

Then by V (x) = x2
1 + x2

2 and (5.1), (wr, tr) is a solution of the following equation:⎧⎪⎨⎪⎩
− Δw + w + t−2V (x)w = |w|p−2w in R

3,

u ∈ H1(R3), r2 = t
10−3p
2(p−2)

(
6 − p

2p
‖w‖p

p − 2t−2

∫
R3

V (x)w2dx

)
.

(5.3)

Clearly, if (wr, tr) is a solution of (5.3), then, by (5.2), (ur, λr) is also a solution of
(1.15).

With these basic observations in hands, to find normalized solutions of (1.15) with
positive Lagrange multipliers, it is equivalent to study the existence of solutions of
(5.3). For this purpose, let us first consider the following equation:{

− Δw + w + t−2V (x)w = |w|p−2w in R
3,

w ∈ H1(R3).
(5.4)

The corresponding functional of (5.4) is given by

Jt(w) =
1
2

(
‖∇w‖2

2 + ‖w‖2
2 +

∫
R3

t−2V (x)w2dx

)
− 1

p
‖w‖p

p.

By [7, lemma 2.1] and the Sobolev embedding theorem, this functional is well
defined and of class C2 in the Hilbert space

X =
{

w ∈ H1(R3) |
∫

R3
V (x)w2dx < +∞

}
(5.5)
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with the norm

‖w‖X =
(
‖∇w‖2

2 +
∫

R3
V (x)w2dx

) 1
2

.

We also define the usual Nehari manifold of Jt(w) as follows:

Mt = {w ∈ X\{0} | J ′
t (w)w = 0}.

The associated fibering map for every w �= 0 in X is given by

J(s) =
s2

2

(
‖∇w‖2

2 + ‖w‖2
2 +

∫
R3

t−2V (x)w2dx

)
− sp

p
‖w‖p

p. (5.6)

Since p > 2, it is standard to show that for every w �= 0 in X, there exists a unique
s′0 > 0 such that J(s) is strictly increasing for 0 < s < s′0 and is strictly decreasing
for s > s′0. Let

m(t) = inf
v∈Mt

Jt(v).

Definition 5.1. We say that w is a ground-state of (5.4) if w is a nontrivial solution
of (5.4) with Jt(w) = m(t).

We also need the following equation:{
− Δu + tu + V (x)u = |u|p−2u in R

3,

u ∈ H1(R3).
(5.7)

The corresponding functional of (5.7) is given by

It(u) =
1
2

(
‖∇u‖2

2 + t‖u‖2
2 +

∫
R3

V (x)u2dx

)
− 1

p
‖u‖p

p.

This functional is well defined and of class C2 in the Hilbert space X, which is
given by (5.5). We define the usual Nehari manifold of It(u) by

Pt = {u ∈ X\{0} | I ′
t(u)u = 0}.

The associated fibering map for every u �= 0 in X is given by

I(s) =
s2

2

(
‖∇u‖2

2 + t‖u‖2
2 +

∫
R3

V (x)u2dx

)
− sp

p
‖u‖p

p. (5.8)

Since p > 2, it is standard to show that for every u �= 0 in X, there exists a unique
s∗ > 0 such that I(s) is strictly increasing for 0 < s < s∗ and is strictly decreasing
for s > s∗. Let

M(t) = inf
v∈Pt

It(v).

Definition 5.2. We say that u is a ground-state of (5.7) if u is a nontrivial solution
of (5.7) with It(u) = M(t).
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Now, we have the following result of (5.4).

Proposition 5.1. Let 10
3 < p < 6, then (5.4) has a positive ground-state wt for all

t > 0 satisfying ‖wt‖2
2 ∼ t

3p−10
2(p−2) as t → 0 and wt → w∞ strongly in H1(R3) as t →

+∞, where w∞ is the unique (up to translations) positive solution of the following
equation: {

− Δw + w = |w|p−2w in R
3,

w ∈ H1(R3).
(5.9)

Moreover, wt is unique for t > 0 sufficiently large.

Proof. The proof is standard so we only sketch it here. We first prove the existence
of ground-states of (5.4). By the discussion in [7, 4.2 Symmetry of minimizers], we
know that for the energy level m(t), there exists a minimizing sequence {wn} on
the Nehari manifold Mt such that wn is real and positive. Moreover, wn is radial
and decreasing w.r.t. (x1, x2) for all x3 and wn is even and decreasing w.r.t. x3 for
all (x1, x2). Since 10

3 < p < 6, it is standard to use the fibering maps (5.6) to show
that m(t) > 0 on Mt. Thus, by [7, lemma 3.4], there exists {zn} ∈ R such that

wn(x1, x2, x3 − zn) ⇀ w0 �= 0 weakly in X as n → ∞.

Since 10
3 < p < 6, the fibering map of every w �= 0 in X, see (5.6), has a unique

maximum point s′0 and it interacts the Nehari manifold Mt only at the unique
maximum point s′0. Thus, we can use standard arguments (cf. [33, proposition 3.1])
to show that w0 is a positive ground-state of (5.4). We next prove the convergent
conclusion for t → +∞. Let wt be a positive ground-state of (5.4) for t > 0. Since
V (x) � 0, t > 0 and wt is positive, we know that wt satisfies

− Δwt + wt � wp−1
t in R

3. (5.10)

By using the fibering maps (5.6) in a standard way (cf. [33, lemma 3.2]), we know
that m(t) is decreasing w.r.t. t > 0. Thus, {wt} is bounded in H1(R3). It follows
from (5.10) and the classical elliptic estimates that

wt � (1 + |x|)−1e−
1
2 |x| in R

3 for t � 1. (5.11)

Thus, by V (x) = x2
1 + x2

2,∫
R3

V (x)w2
t dx � 1 for all t � 1,

which implies that

t−2

∫
R3

V (x)w2
t dx = ot(1) as t → +∞. (5.12)

Now, using the fibering maps (5.6) in a standard way, we know that m(t) � m +
ot(1) as t → +∞, where

m = inf
v∈M

J (v)
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with

J (w) =
1
2
(‖∇w‖2

2 + ‖w‖2
2) −

1
p
‖w‖p

p

and

M = {w ∈ H1(R3)\{0} | J ′(w)w = 0}.
On the other hand, it is well known that (5.9) has a unique (up to translations)
positive radial solution w∞, which exponentially decays to zero at infinity. Thus,
using w∞ as a test function and adapting the property of the fibering maps (5.6) in a
standard way, we also have m(t) � m + ot(1) as t → +∞. It follows that m(t) = m +
ot(1) as t → +∞, which implies that ‖wt‖p

p = ‖w∞‖p
p + ot(1). Now, by standard

arguments and the uniqueness of w∞, we can show that wt → w∞ strongly in
H1(R3) as t → +∞. We now turn to the proof of the convergent conclusion for
t → 0. For every t > 0, let wt be a positive ground-state of (5.4), then by (5.2), ut

is a positive solution of (5.7). Moreover, by direct calculations,

Jt(wt) = t
p−6

2(p−2) It(ut) and J ′
t (wt)wt = t

p−6
2(p−2) I ′

t(ut)ut.

Thus, ut is a positive ground-state of (5.7) for all t > 0. On the other hand, by
[7, lemma 2.1], Hölder and Sobolev inequalities,

‖u‖p
p � ‖u‖

6−p
2

2 ‖∇u‖
3p−6

2
2 � ‖u‖p

X for all u ∈ X.

Thus, by using the fibering maps (5.8) in a standard way, we know that M(0) > 0.
By similar arguments as that used above to compare the energy levels M(0) and
M(t), we can obtain that M(t) = M(0) + ot(1) as t → 0. It follows that {ut} is
bounded in X and ‖ut‖p

p ∼ 1 as t → 0. By [7, lemma 2.1], {ut} is also bounded
in H1(R3) as t → 0. Now, by the Lions’ lemma (cf. [23, lemma I.1] or [34, lemma
1.21]), we can conclude that ‖ut‖2

2 ∼ 1 as t → 0. It follows from (5.2) that ‖wt‖2
2 ∼

t
3p−10
2(p−2) as t → 0. We close this proof by showing the uniqueness of wt for t > 0

sufficiently large. Let wt and w′
t be two different positive ground-states of (5.4) and

we define φt = wt−w′
t

‖wt−w′
t‖L∞ (R3) . Then by the Taylor expansion,

−Δφt + φt + t−2V (x)φt = (p − 1)(wt + θ(wt − w′
t)))

p−2φt, in R
3,

where θ ∈ (0, 1). Since V (x) � 0, by (5.11),

−Δ(φt)2 +
3
2
(φt)2 � 0, in R

3.

Thus, by the maximum principle, |φt| � e−
1
2 |x| for |x| � 1. It is standard to show

that φt → φ strongly in any compact sets as t → +∞ and

−Δφ + φ = (p − 1)wp−2
∞ φ, in R

3.

Note that wt and w′
t are radial w.r.t. (x1, x2) for all x3 and even w.r.t. x3 for

all (x1, x2). Thus, φt is also radial w.r.t. (x1, x2) for all x3 and even w.r.t. x3 for
all (x1, x2). Now, by the well-known nondegeneracy of w∞, we have φ∞ ≡ 0. It,
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together with |φt| � e−
1
2 |x| for |x| � 1, contradicts ‖φt‖L∞(R3) = 1. Therefore, wt is

unique for t > 0 sufficiently large. �

Let wt be a positive ground-state of (5.4) given by proposition 5.1 and we define

f(r, t) := r2 − t
10−3p
2(p−2)

(
6 − p

2p
‖wt‖p

p − 2t−2

∫
R3

V (x)w2
t dx

)
.

By proposition 5.1, for every t > 0 sufficiently large, there exists a unique

rt =
(

t
10−3p
2(p−2)

(
6 − p

2p
‖wt‖p

p − 2t−2

∫
R3

V (x)w2
t dx

)) 1
2

> 0 (5.13)

such that f(rt, t) = 0. Thus, by (5.2), (urt
, t) is a positive normalized solution of

(1.15) with a positive Lagrange multiplier t > 0. We are now prepared for the proof
of theorem 1.4.

Proof of theorem 1.4. By the uniqueness of wt given by proposition 5.1 for t > 0
sufficiently large, say t > T∗. It is standard to show that

∫
R3 V (x)w2

t is continuous
for t > T∗. Note that by proposition 5.1,(

6 − p

2p
‖wt‖p

p − 2t−2

∫
R3

V (x)w2
t dx

)
=

6 − p

2p
‖w∞‖p

p + ot(1).

Thus, by 10
3 < p < 6, for every r < (T

10−3p
2(p−2)
∗ ( 6−p

2p ‖wT∗‖p
p − 2T−2

∗
∫

R3 V (x)w2
T∗dx))

1
2 ,

f(r, t) = 0 has a solution tr > T∗. This, together with [7, theorem 2], implies that
(1.15) has a second positive normalized solution ur,2 with a positive Lagrange mul-
tiplier λr,2. The asymptotic behaviour of ur,2 and λr,2 is obtained by (5.2) and
(5.13). It remains to show that ur,2 is a mountain-pass solution of (1.15) for r > 0
sufficiently small. As that in [7, remark 1.10], we introduce the mountain-pass level

α(r) = inf
g∈Γr

max
t∈[0,1]

Y(g[t]),

where Y(u) = 1
2‖u‖2

X − 1
p‖u‖p

p and

Γr = {g[s] ∈ C([0, 1],Sr) | g[0] = ur,1 and Y(g[1]) < Y(g[0])}

with ur,1 being a local minimizer of Y(u) in Sr found in [7] and Sr = {u ∈ X |
‖u‖2

2 = r2}. Let

Bρ,X,t = {u ∈ X | ‖u‖2
X,t � ρ2},

where ‖u‖X,t is a norm in X given by

‖w‖X,t =
(
‖∇w‖2

2 + ‖w‖2
2 + t−2

∫
R3

V (x)w2dx

) 1
2

.

Then by [7, lemma 2.1] and the Sobolev inequality, for a fixed ρ > 0 sufficiently
small, it can be proved by using 10

3 < p < 6 in a standard way that

m(t) = inf
h∈Θ

max
t∈[0,1]

Jt(h[s]),
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where

Θ = {h[t] ∈ C([0, 1],X) | h[0] ∈ Bρ,X,t and Jt(h[1]) <
1
4
ρ2}.

Now, for every g[s] ∈ Γr, we define g∗[s] = λ
− 1

p−2
r,2 g[s](λ− 1

2
r,2 x). Then

Jλr,2(g
∗[s]) = λ

p−6
2(p−2)
r,2

(
Y(g[s]) +

λr,2r
2

2

)
.

By [7, theorem 1] and (1.16),

‖g∗[0]‖2
X,λr,2

� r2λ
p−6

2(p−2)
r,2 ∼ λ−1

r,2 → 0 as r → 0.

Thus, g∗[0] ∈ Bρ,X,λr,2 for r > 0 sufficiently small and Jt(g∗[0]) → 0 as r → 0. By
the definition of g[t], we also have Jt(g∗[1]) < 1

4ρ2. It follows that g∗[t] ∈ Θ, which
implies

m(λr,2) � λ
p−6

2(p−2)
r,2

(
α(r) +

λr,2r
2

2

)
.

On the other hand, the fibering map of Y(u) at ur,2 is given by

Tur,2(τ) =
τ2

2
‖∇ur,2‖2

2 +
1

2τ2

∫
R3

V (x)u2
r,2dx − τpγp

p
‖ur,2‖p

p.

By direct calculations,

T ′
ur,2

(τ) = τ‖∇ur,2‖2
2 −

1
τ3

∫
R3

V (x)u2
r,2dx − γpτ

pγp−1‖ur,2‖p
p

and

T ′′
ur,2

(τ) = ‖∇ur,2‖2
2 +

3
τ4

∫
R3

V (x)u2
r,2dx − γp(pγp − 1)τpγp−2‖ur,2‖p

p.

Clearly, T ′
ur,2

(1) = 0. Moreover, by (1.18), (5.12) and the Pohozaev identity of w∞,

T ′′
ur,2

(1) = λ
6−p

2(p−2)
r,2 (γp‖w∞‖p

p(2 − pγp) + or(1)) < 0

for r > 0 sufficiently small. Now, let h(τ) = τ4‖∇ur,2‖2
2 − γpτ

pγp+2‖ur,2‖p
p, then,

max
τ�0

h(τ) =
[

4‖∇ur,2‖2
2

γp(pγp + 2)‖ur,2‖p
p

] 4
pγp−2 pγp − 2

pγp + 2
‖∇ur,2‖2

2 >

∫
R3

V (x)u2
r,2dx.

It follows that there exists τr < 1 such that T ′
ur,2

(τr) = 0 and T ′′
ur,2

(τr) > 0. We
claim that τr → 0 as r → 0. If not, then, there exists rn → 0 such that τrn

� 1 as
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n → ∞. Without loss of generality, we may assume τr � 1 for all r > 0 sufficiently
small. By T ′

ur,2
(τr) = 0, (1.18), (5.12) and the Pohozaev identity of w∞,

T ′′
ur,2

(τ) = λ
6−p

2(p−2)
r,2 (4‖∇w∞‖2

2 − γp(pγp + 2)‖w∞‖p
pτ

pγp−2
r + or(1))

= λ
6−p

2(p−2)
r,2 γp(4 − (pγp + 2)τpγp−2

r + or(1))‖w∞‖p
p,

which implies τr < ( 4
pγp+2 )

1
pγp−2 < 1. Without loss of generality, we may assume

that τr → τ0 as r → 0. Then by T ′
ur,2

(τr) = 0, (5.12) and the fact that w∞ solves
(1.17), we must have τ0 = 0. It is impossible. Thus, we must have τr → 0 as r → 0.
By (1.16) and (1.18),

1
τ4
r λ2

r,2

(∫
R3

V (x)w2
∞dx + or(1)

)
= ‖∇w∞‖2

2 + or(1).

It follows from (1.16) and (1.18) that

‖(ur,2)τr
‖2

X = τ2
r ‖∇ur,2‖2

2 + τ−2
r

∫
R3

V (x)u2
r,2dx ∼ λ

10−3p
2(p−2)
r,2 ∼ r2

as r → 0, where (ur,2)τr
= τ

3
2
r ur,2(τrx). Thus, (ur,2)τr

∈ Brχ,X,1 for a fixed and
large χ > 0. Since Brχ,X,1 is connected, we can find a continuous path Υ : [0, 1]
with Υ(0) = ur,1 and Υ(1) = (ur,2)τr

. Now, we define

h∗∗[s] =

⎧⎪⎨⎪⎩
Υ[(2s)], 0 � s � 1

2
,

(ur,2)2(1−s)τr+(2s−1)τr,∗ ,
1
2

� s � 1,

where we choose τr,∗ > 1 such that Tur,2(τr,∗) < Y(ur,1). Note that Y(u) � r2 in
Brχ,X,1 and Y(ur,2) � 1 by (1.16) and (1.18). Thus, for r > 0 sufficiently small,
h∗∗[s] ∈ Γr and

α(r) � max
0�s�1

h∗∗[s] = Tur,2(1) = m(λr,2)λ
6−p

2(p−2)
r,2 − λr,2r

2

2
.

Therefore, m(λr,2)λ
6−p

2(p−2)
r,2 − λr,2r2

2 = α(r) and ur,2 is a mountain-pass solution of
(1.15) for r > 0 sufficiently small. �
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