Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T20:42:33.522Z Has data issue: false hasContentIssue false

Limit theory for U-statistics under geometric and topological constraints with rare events

Published online by Cambridge University Press:  14 September 2022

Takashi Owada*
Affiliation:
Purdue University
*
*Postal address: Department of Statistics, Purdue University, West Lafayette, 47907, USA. Email address: [email protected]

Abstract

We study the geometric and topological features of U-statistics of order k when the k-tuples satisfying geometric and topological constraints do not occur frequently. Using appropriate scaling, we establish the convergence of U-statistics in vague topology, while the structure of a non-degenerate limit measure is also revealed. Our general result shows various limit theorems for geometric and topological statistics, including persistent Betti numbers of Čech complexes, the volume of simplices, a functional of the Morse critical points, and values of the min-type distance function. The required vague convergence can be obtained as a result of the limit theorem for point processes induced by U-statistics. The latter convergence particularly occurs in the $\mathcal M_0$ -topology.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Björner, A. (1995). Topological methods. In Handbook of Combinatorics, eds R. Graham et al., pp. 18191872. Elsevier, Amsterdam.Google Scholar
Blaszczyszyn, B., Yogeshwaran, D. and Yukich, J. E. (2019). Limit theory for geometric statistics of point processes having fast decay of correlations. Ann. Prob. 47, 835895.CrossRefGoogle Scholar
Bobrowski, O. and Adler, R. J. (2014). Distance functions, critical points, and the topology of random Čech complexes. Homology Homotopy Appl. 16, 311344.CrossRefGoogle Scholar
Bobrowski, O. and Mukherjee, S. (2015). The topology of probability distributions on manifolds. Prob. Theory Related Fields 161, 651686.CrossRefGoogle Scholar
Bobrowski, O. and Weinberger, S. (2017). On the vanishing of homology in random Čech complexes. Random Structures Algorithms 51, 1451.CrossRefGoogle Scholar
Decreusefond, L., Schulte, M. and Thäle, C. (2016). Functional Poisson approximation in Kantorovich–Rubinstein distance with applications to U-statistics and stochastic geometry. Ann. Prob. 44, 21472197.CrossRefGoogle Scholar
Edelsbrunner, H., Letscher, D. and Zomorodian, A. (2002). Topological persistence and simplification. Discrete Comput. Geom. 28, 511533.CrossRefGoogle Scholar
Fasen, V. and Roy, P. (2016). Stable random fields, point processes and large deviations. Stoch. Process. Appl. 126, 832856.CrossRefGoogle Scholar
Fowler, C. F. (2019). Homology of multi-parameter random simplicial complexes. Discrete Comput. Geom. 62, 87127.CrossRefGoogle Scholar
Gershkovich, V. and Rubinstein, H. (1997). Morse theory for min-type functions. Asian J. Math. 1, 696715.CrossRefGoogle Scholar
Hatcher, A. (2002). Algebraic Topology. Cambridge University Press, Cambridge.Google Scholar
Hiraoka, Y., Shirai, T. and Trinh, K. D. (2018). Limit theorems for persistence diagrams. Ann. Appl. Prob. 28, 27402780.CrossRefGoogle Scholar
Hult, H. and Lindskog, F. (2006). Regular variation for measures on metric spaces. Publ. de l’Institut Math. 80, 121140.CrossRefGoogle Scholar
Hult, H. and Samorodnitsky, G. (2010). Large deviations for point processes based on stationary sequences with heavy tails. J. Appl. Prob. 47, 140.CrossRefGoogle Scholar
Kahle, M. (2011). Random geometric complexes. Discrete Comput. Geom. 45, 553573.CrossRefGoogle Scholar
Kahle, M. (2014). Sharp vanishing thresholds for cohomology of random flag complexes. Ann. Math. 179, 10851107.CrossRefGoogle Scholar
Kahle, M. and Meckes, E. (2013). Limit theorems for Betti numbers of random simplicial complexes. Homology Homotopy Appl. 15, 343374.CrossRefGoogle Scholar
Kahle, M. and Pittel, B. (2016). Inside the critical window for cohomology of random k-complexes. Random Structures Algorithms 48, 102124.CrossRefGoogle Scholar
Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer.CrossRefGoogle Scholar
Krebs, J. T. N. and Polonik, W. (2020). On the asymptotic normality of persistent Betti numbers. Available at arXiv:1903.03280.Google Scholar
Krebs, J., Roycraft, B. and Polonik, W. (2021). On approximation theorems for the Euler characteristic with applications to the bootstrap. Electron. J. Statist. 15, 44624509.CrossRefGoogle Scholar
Lachièze-Rey, R. and Reitzner, M. (2016). U-statistics in stochastic geometry. In Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener–Itô Chaos Expansions and Stochastic Geometry, eds G. Peccati and M. Reitzner, pp. 229254. Springer/Bocconi University Press, Milan.CrossRefGoogle Scholar
Last, G. and Penrose, M. (2018). Lectures on the Poisson Process. Cambridge University Press.Google Scholar
Last, G., Peccati, G. and Schulte, M. (2016). Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Prob. Theory Related Fields 165, 667723.CrossRefGoogle Scholar
Lindskog, F., Resnick, S. I. and Roy, J. (2014). Regularly varying measures on metric spaces: hidden regular variation and hidden jumps. Prob. Surveys 11, 270314.CrossRefGoogle Scholar
Munkres, J. R. (1996). Elements of Algebraic Topology, 1st edn. Westview Press.Google Scholar
Owada, T. (2019). Topological crackle of heavy-tailed moving average processes. Stoch. Process. Appl. 129, 49654997.CrossRefGoogle Scholar
Owada, T. (2022). Convergence of persistence diagram in the sparse regime. Ann. Appl. Prob., to appear. Available at arXiv:2103.12943.Google Scholar
Owada, T. and Thomas, A. (2020). Limit theorems for process-level Betti numbers for sparse and critical regimes. Adv. Appl. Prob. 52, 131.CrossRefGoogle Scholar
Penrose, M. (2003). Random Geometric Graphs (Oxford Studies in Probability 5). Oxford University Press, Oxford.CrossRefGoogle Scholar
Reitzner, M. and Schulte, M. (2013). Central limit theorems for U-statistics of Poisson point processes. Ann. Prob. 41, 38793909.CrossRefGoogle Scholar
Resnick, S. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.CrossRefGoogle Scholar
Segers, J., Zhao, Y. and Meinguet, T. (2017). Polar decomposition of regularly varying time series in star-shaped metric spaces. Extremes 20, 539566.10.1007/s10687-017-0287-3CrossRefGoogle Scholar
Skraba, P., Thoppe, G. and Yogeshwaran, D. (2020). Randomly weighted d-complexes: minimal spanning acycles and persistence diagrams. Electron. J. Combinatorics 27.CrossRefGoogle Scholar
Thomas, A. M. and Owada, T. (2021). Functional limit theorems for the Euler characteristic process in the critical regime. Adv. Appl. Prob. 53, 5780.CrossRefGoogle Scholar
Yogeshwaran, D. and Adler, R. J. (2015). On the topology of random complexes built over stationary point processes. Ann. Appl. Prob. 25, 33383380.CrossRefGoogle Scholar
Yogeshwaran, D., Subag, E. and Adler, R. J. (2017). Random geometric complexes in the thermodynamic regime. Prob. Theory Related Fields 167, 107142.CrossRefGoogle Scholar