Published online by Cambridge University Press: 08 November 2022
For amenable discrete groupoids $\mathcal {G}$ and row-finite directed graphs E, let $(\mathcal {G},E)$ be a self-similar groupoid and let $C^*(\mathcal {G}, E)$ be the associated $C^*$-algebra. We introduce a weaker faithfulness condition than those in the existing literature that still guarantees that $C^*(\mathcal {G})$ embeds in $C^*(\mathcal {G}, E)$. Under this faithfulness condition, we prove a gauge-invariant uniqueness theorem.
This work is supported by a PhD scholarship of The Ministry of Education, Culture, Research and Technology of the Republic of Indonesia.