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Abstract

For amenable discrete groupoids G and row-finite directed graphs E, let (G, E) be a self-similar groupoid
and let C*(G, E) be the associated C*-algebra. We introduce a weaker faithfulness condition than those in
the existing literature that still guarantees that C*(G) embeds in C*(G, E). Under this faithfulness condition,
we prove a gauge-invariant uniqueness theorem.
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1. Introduction

Roughly speaking, if parts of an object are similar to the whole, repeating the structure
of the object at all scales, then we call the object self-similar. If a group or a
groupoid acts self-similarly on a space, then we simply call it a self-similar group or
a self-similar groupoid. Self-similar groups were introduced by Grigorchuk in [2] and
Gupta and Sidki in [3] to answer the question of existence of groups with intermediate
growth. Recently, operator algebraists have made use of self-similar groups to study
C~-algebras (for example, [1, 4]). Since a groupoid is a generalisation of a group, it is
then natural to think of this notion of self-similarity on a groupoid, as introduced in [5].
Self-similar groups act on the path-spaces of graphs with a single vertex. To study
self-similar actions on more general directed graphs and the associated Cuntz—Krieger
algebras, Laca et al. in [5] introduced the notion of a self-similar groupoid. In [5],
the authors are primarily interested in computing KMS states, so, informed by results
about graph C*-algebras, they restricted their attention to finite graphs. They also
built their self-similar groupoids by generalising the process whereby automata are
used to build self-similar groups, so by definition their self-similar actions satisfy a

This work is supported by a PhD scholarship of The Ministry of Education, Culture, Research and
Technology of the Republic of Indonesia.

© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

150

()]

Check f
https://doi.org/10.1017/50004972722001204 Published online by Cambridge University Press Updates.


http://dx.doi.org/10.1017/S0004972722001204
https://orcid.org/0000-0001-5657-0334
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972722001204&domain=pdf
https://doi.org/10.1017/S0004972722001204

[2] Self-similar action of groupoids 151

faithfulness condition that simplifies their analysis and, in particular, guarantees that
C*(G) embeds in C*(G, E).

Another approach to self-similar actions on graphs with multiple vertices was
developed by Exel and Pardo [1] and does not require a faithfulness condition. We
combine and generalise the constructions in [1, 5]. We consider self-similar actions
of groupoids G on the path spaces E* of row-finite directed graphs E that are not
necessarily faithful in the sense of [5]. We develop a new faithfulness condition that
is weaker than both faithfulness as in [5] and pseudo-faithfulness as in [1], but still
guarantees that C*(G) embeds in C*(G, E), and we prove a gauge-invariant uniqueness
theorem. In particular, our theorems apply to conventional actions of groups on graphs
(see Example 3.7). We also depart from [5] in that we work solely with generators and
relations, without employing the machinery of Hilbert modules and Cuntz—Pimsner
algebras.

The paper is organised as follows. We define our notion of a self-similar groupoid
(G, E) in Definition 2.1 and construct the associated C*-algebras C*(G, E) in Section 3
following the approach of [6]. We introduce our injectivity condition in our key
technical result Proposition 3.6. We analyse the fixed-point algebra C*(G, E)” for the
gauge action 7y in Section 4. By applying all the results in the previous sections, we
prove the gauge-invariant uniqueness theorem in Theorem 5.1.

2. Self-similar groupoids

Recall that a groupoid G is a small category with inverses. We write G for the
set of identity morphisms and r,s : G — G for the maps induced by the codomain
and domain range maps. Throughout this paper, G will denote a countable discrete
groupoid. We will assume that G is amenable in the sense of [7]. Since G is discrete,
this is equivalent to requiring that its full and reduced C*-algebras coincide, and is also
equivalent to requiring that each of its isotropy groups is amenable.

As in [6], a (directed) graph is a quadruple E = (E°, E', r, 5) consisting of countable
sets E°, E' and maps r,s : E' — E°. Elements of E' are called edges and elements of
EV are called vertices. We will assume that all our graphs are row-finite and have no
sources in the sense that 0 < |r~!(v)| < co forall v € E°. Let e, f € E' with s(e) = r(f).
Then, ef is a path of length 2 and we write |ef| = 2. In general, a path u of length n in
E is a sequence pjuy - - - 4, such that s(u;) = r( ;1) for 1 < i < n— 1. The vertices are
viewed as paths of length 0. The paths of length n are collected in a set denoted by E”.
We let E* := | J;so EX. It is natural to extend the maps r, s to E* by putting r( u) = r( ;)
and s(u) = s(4,) where |u| > 1, and r(v) = v = s(v) for v € E°.

DEFINITION 2.1. Let E be a row-finite graph with no sources and let G be a groupoid
with G = EO. Write

G*E ={(g,n) €GXE"|s(g) = r(w)}
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and

E' +G:={(u,8) | s(p) =r(g)}.

We will often denote the element (u, g) € E* = G by the shorthand ug. A self-similar
action of G on E* consists of two maps: (1) an action (g, u) + g - u of G on the set E*
and (2) amap ¢ : G * E* — G such that:

O g B = (g Wp(g - P

(i) r(g-p)=g-r(u)ands(g-p) = @(g,p) - s(u);
(i) g -l =uls

(iv) (g, v) =g

(v)  @(gh, 1) = (g, h - wp(h, p;

(vi) (g, uB) = p(p(g, 1), p); and

i) (g™ ) = (p(g. g7 - )L

We write this self-similar action of the groupoid G on E* as a pair (G, E) and call it a
self-similar groupoid (G, E).

3. The universal C*-algebra C*(G, E)

Recall that a Toeplitz—Cuntz—Krieger family for a row-finite directed graph E
with no sources consists of partial isometries {7, | ¢ € E'} and mutually orthogonal
projections {W, | v € E°} satisfying T:T, = Wy, and W, > 3 ,c,p T.T; for all v e
E°. Tt is a Cuntz—Krieger E-family if W, = 3 .,z T.T: for all v € E°. A unitary
representation in a unital C*-algebra A of a discrete groupoid G is a family {U, | g € G}
of partial isometries such that U,Uj, = 6g),r(yUgn and Ug-1 = U; forall g,h € G, and
such that } g0 U, = 14.

DEFINITION 3.1. Let (G,E) be a self-similar groupoid. A Toeplitz (G, E)-family
consists of partial isometries {T, | e € E'} and a unitary representation (W,lgegGl}
of G such that {T, | e € E'} U {W, | v € E} is a Toeplitz—Cuntz—Krieger E-family. It is
a Cuntz—Krieger (G, E)-family if {T,, W, } is a Cuntz—Krieger E-family.

EXAMPLE 3.2. Suppose that G acts self-similarly on E. Let H := *(E* * G) with

orthonormal basis {e,, | 1 € E*,g € G}. For e € E' and he G, let T,, W, € B(H) be
the operators such that

ren - Jews 5@ =r(w,
e 0 otherwise,

Wie,. = | Ctmietg i s(r) = r(),
0 otherwise.
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For ve E°, W, is the projection onto P>({ug|r(u) =v}) C H, and a routine
calculation shows that for e € E',

Tre,. = 1 if u=eu,
e otherwise.

It is routine to check that the family {T,|e € E'}U{W,|he G} is a Toeplitz
(G, E)-family in B(H).

The proofs of the following two lemmas are more or less identical to those of the
cited results in [4-6].

LEMMA 3.3 (See [4, Lemma 3.4] and [5, Lemma 4.6]). Let (G, E) be a self-similar
groupoid. Suppose that {T,, W,} is a Toeplitz (G, E)-family in a C*-algebra B. Then for
all u,B,a,p e E*, g,h e G,

Tp(g-a’)W«p(g,a')hT; ifa = o,
(TﬂWgTB*)(TaWhT;) = THWgso(h»h_l',B/)T;(hflﬁr) lfﬂ = a/,B’,
0 otherwise.

LEMMA 3.4 (See [6, Corollary 1.16]). Let (G, E) be a self-similar groupoid. Suppose
that {T,, W} is a Toeplitz (G, E)-family. Then

C'(T, W) = Spam{T, W, T, | B € E*, g € Giyly), s(u) = g - s(B)}.

A standard argument along the lines of Propositions 1.20 and 1.21 of [6] shows
that there exists a C*-algebra 7 C*(G, E) generated by a Toeplitz (G, E)-family {z,, w,}
that is universal in the sense that for any Toeplitz (G, E)-family {T,, W,}, there is a
homomorphism nry : T C*(G, E) = C*(T, W) such that nrw(z,) = T, for all e € E!
and w7 w(w,) = W, forall g € G.

Let I be the ideal of 7C*(G, E) generated by {w, — 3, )=y tef, | V € E°%). Then
Se:=t,+1 for all e € E' and ug := wg + 1 for all g € G defines a Cuntz—Krieger
(G, E)-family and C*(G,E) := 7 C*(G, E)/I is universal for Cuntz—Krieger (G, E)-
families. We will need to know that the generators of C*(G, E) are nonzero. For this,
we construct a concrete Cuntz—Krieger (G, E)-family (see Proposition 3.6).

LEMMA 3.5. Let (G, E) be a self-similar groupoid. Let n : C*(T, W) — B(I*(E* * G))
be the representation induced by the Toeplitz (G, E)-family {T,, W,} of Example 3.2.
For every a € I and every € > 0, there exists N € N such that for all n > N,

lIm(@)kpamte  1eEr gegnll < &

PROOF. First, note that for v € E°, 1 € E* and k € G*V,

0 if A ,
(WV—ZT(;T:)W:{ nAEy 3.0

e otherwise.
ecvE! Ak
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Now fix ve E®, y,f € E*and g € G3*, h € G2'P. Then,

Tﬂwg(WV -, TeT:)W,’;Tﬁ*eﬂk

ecvE!

_ T#Wg(WV - ZeEVE] TET:)e(h‘l-/l')tp(h‘l,/l/)k ifd= B/l/’
0 otherwise.

By (3.1), this equals 0 if || > 0. Hence,

Tﬂwg(WV -3 TeT:)W;Tgeﬂk =0 whenever || > |8l (3.2)
ecvE!
Fix a finite linear combination ag =, . TuWe(W, = X ocp T.THW,Ts. Let

N = max{| 8| | a,4np # 0}. Then (3.2) implies that ||lage x|l = 0 whenever || > N.
Finally, fix a € I, and & > 0. A routine argument gives

I= span{tﬂwg(wv - Z tet;”)w;t;. |u,BEE, g, heG,ve EO}.

e€vE!

So there exists

ao € span{TﬂWg(WV - TeT:)W;T; |wBeE g heGve EO},
e€vE!
such that ||7(a) — agl| < &.
Take N as above and fix n > N. Then,

|l77(@) |spante wlae e kegylI<Slim(a) — aoll+laolspanie wlae e kegoy |l < €. o

The following proposition will be used in describing our fixed-point algebra in
the next section. Let G be a discrete group and let H = I*(G) = span{d, | g € G}. For
g € G, define 4, € U(P(G)) by Ao(0p) = O, for all h € G. We get a representation
A: C(G) = B(H) such that A(ug) = A, for all g € G; we call this the regular
representation. If G is amenable, then the representation A is faithful. Since our
groupoid is an amenable (discrete) groupoid, its (discrete) isotropy groups are also
amenable.

PROPOSITION 3.6. Let (G, E) be a self-similar groupoid. Let {s., ug} be the universal
Cuntz—Krieger (G, E)-family in C*(G,E). Then each s, and each u, is nonzero.
Fix v € E°. The universal property of C*(G") gives a homomorphism n, : C*(G)) —
C* (G, E) such that rr,(6) = uy, for all h € G\. Suppose that for each k € N, there exists
A € VE* such that the map g — (g - D)p(g, A) is injective. Then r,, is injective.

PROOF. By the universal property, it suffices to construct a Cuntz—Krieger
(G, E)-family {S.,U,} consisting of nonzero partial isometries. If {S,,U,} is a
Cuntz—Krieger (G, E)-family and each U, # 0, then S, # 0 for all e € E' and Uy, #0
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for all g € G, because Uy = S;S. and Uy = U,U,. So, it suffices to construct a
(G, E)-family with U, # 0 for all v € E°.

Let {T., W,} be the Toeplitz (G, E)-family of Example 3.2. For v € E°, we have
w, - Cus(p) = Cus(u) for all,u € vE*. So,

W\ lspamie e lieven geganll = 1.

Thus, Lemma 3.5 gives W, ¢ I. Therefore, S, :=T,+1 and U, :=W,+1 is a
(G, E)-family with each U, # 0.

Now fix v € E®. Let my : C*(G") — B(P(E* * G@)) be the homomorphism such
that 7w (6,) = W),. Fix k € N. Choose A € vE* such that the map h — (h- Dp(h, 1)
is injective. Let H, := span{ex.a,ma) | h € Gy} C PP(E* * G). By construction, H; is
invariant for myy.

Since the map g +— (g - A)¢(g, ) is injective, there is an inner-product preserv-
ing map ¢, : 12(g5) — H, that maps the element e, of the orthonormal basis of
12(g5) to the element ey.1)4(g,1) Of the orthonormal basis of H,. For h € G, define
Ve UWP(GY) by V}' = ¢;Wida. We get

A g% g% gk
Vieg = O3 Widaeg = o3 Wheg.axpz.0) = Paeiin(s-0)elhg-De(e.)
= $re((hg) D(plhg. 1) = Chg-

Hence, {V,f |he Gy} C B(lz(gz)) is the regular representation of G, and induces a
faithful representation of C*(G}). Hence, the reduction of my to H, is injective, so
its reduction to [>(E* * @) is injective. Since k was arbitrary, the reduction of my to
P(E* % @) is injective, and hence isometric for all k.

Now, fix a € C*(G)) \ {0}. Then for all &,

lI7ew (@) lsgamie,  Juek* gegonll = llall # 0.

Thus, Lemma 3.5 implies a ¢ I. We have 7,(a) = a + [ # 0. Therefore, the homomor-
phism 7, is injective. ]

To see that our faithfulness condition is strictly weaker than that of [5], we provide
the following example.

EXAMPLE 3.7. Let E be the graph with one vertex and n edges e, ...,e,—; and let
G = Z. Define an action of G on E by m - ¢; = e,,,, where addition is mod n, and define
©(m, e;) = m for all m. Then G does not act faithfully in the sense of [5], because
n - e; = ¢; for all i. However, the map (m, 1) — (m - A, ¢(m, 1)) is injective for each A
because ¢(m, 1) = mand then A = ¢(m, )" - (m - ). It is routine to see using universal
properties that C*(G, E) = O, < Z.

4. The gauge action and the core

Let {s.,u,} be the universal Cuntz—Krieger (G, E)-family in C*(G, E). Then for
z €T, the family {zs.,u,} is also a Cuntz—Krieger (G, E)-family. So, the universal
property gives a homomorphism vy, : C*(G, E) = C*(G, E) such that vy,(s.) = zs, and
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v.(ug) = u, for all e, g. Since vy agrees with the identity and y, o v,, agrees with vy,
on generators, z — 7y, is an action. A standard £/3 argument shows that it is a strongly
continuous action, which we call the gauge action on C*(G, E). The fixed-point algebra
of y is the *-subalgebra

C(G,E) :={a€ C(G,E) | y,(a) = aforall z € T}
of C*(G, E). The following corollary describes C*(G, E)” concretely.

COROLLARY 4.1. Let (G,E) be a self-similar groupoid and let ® : C*(G,E) —
C*(G, E)Y be the conditional expectation, ®(a) = nyZ(a) dz. Then,

D(syttgsy) = Slupisuttgsy for wB € E' and g € Giyly.

Further, C*(G,E)” = span{s,,ugs; | s(u) = g-s(B)and |u| = |8}

PROOF. We have y.(sttgsy) = 2#WPls,ugsy, so @(s,iugsy) = 61, pSuttesy. Moreover,
O(C*(G,E)) = span{sﬂugs; | s(u) =g-s(B) and |u| =|Bl}. Proposition 3.2 of [6]
shows that ®(C*(G,E)) = C*(G,E)". O

Let (G,E) be a self-similar groupoid and let {S.,U,} be a Cuntz—Krieger
(G, E)-family. For k € N, we define

Fi(S, U) := span{S,U,Sj | u, B € Ef, g€ giig;,s(,u) =g-s(B)}.

We define a relation ~ on E° by v ~ w if and only if G, # 0. Then ~ is an equivalence
relation. For & € E*/~, define

Fi(S, U, &) := Span(S, U Sy | 1. B € EX g € Giyly s(p) = g - s(B) € &).

When {S,, U,} is the universal family {s., u,} in C*(G, E), we write F; := F;(s,u) and
Fi(§) := Fils, u, §).

NOTATION 4.2. For the next few results, fix a self-similar groupoid (G, E), an element
£ € E% ~,avertex v € & and for each u € &, an element g, € G, (take g, = v). We call
{8u | u € £} a spanning tree for Gls. We denote EX¢ := {p € E* | s() € €}

PROPOSITION 4.3. With Notation 4.2, let {S., U,} be a Cuntz—Krieger (G, E)-family.
For he Gy and p € E", define Vy, :=S,U,  USUg ). For each k €N, the
series Y cpre Viy converges strictly to a partial unitary Vi in MC*(S,U) and
ViFi(S, U, &) € Fi(S, U, &).

PROOF. Fix h € G'. For u € E*¢,
Vh,,lVZ,# = SuS, = V,’:#Vh,,l. 4.1)
For u # B € E*¢, SMS;‘,SIBS; = 0. So, §,Sp = 0. Therefore, for ' C EX& finite,

(Z Vh,ﬂ)( Z vh,ﬁ)* = Z ViVi, = Z S.S;.

HEF BEF HEF MEF

s(p)
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Now, fix a € C*(S, U). Then a = limg )¢ Pya, where K ranges over all finite
subsets of E°. Let Px = Y,k P,. Fix £ > 0. There exists a finite set K’ C E° such that
[|[Pxa — a|| < &/2 for all finite K D K’.

Let F C EX& be the finite set F = KE*¢. For F/,F” D F,

DisuSia= > SpSpall < | D SuSpall+ || D SpSpa

ueF’ BeF” UEF\F" BEF/\F'
<1 = Prall + lI(1 = Px)all < &.

S0, (Xuer SuS,@)rcere 1s Cauchy and hence converges. Thus, ¥ g SuS,, converges
strictly to a projection Pz € MC*(S, U). Equation (4.1) shows that } cp VZ’MV;,,#
also converges strictly to Pg. Therefore, g Vi converges strictly to a unitary
Vi € PMCH(S, U)Pe.
Now fix a spanning element S, U;S;; of (S, U, £). For each uu € E*¢, we obtain
ViuSaUiSp = 8,48, Ug1Sy  for some g’ € QiEZ ;
which implies that

ViSaUiSy = D 0uaSuUgiSy = SaUgiS;  for some ¢’ € GU0,
HEE*E

€ Fi(S, U, &).
Hence, V, Fi(S, U, &) € Fi(S, U, &). O

PROPOSITION 4.4. Fix £€EY/~ and veé& Let {S,,Uy}) be a Cuntz—Krieger
(G, E)-family. For he@G), let V, be as in Proposition 4.3. Then there is a
homomorphism ny; - C*(Gy) — MC*(S, U) that maps 0, to V.

PROOF. Let h, k € G". Routine calculations show that for k > 1 and u € E*&, we have
ViuViu = Viky and VZ’H = 8uUsg,, Up-1(SuUsg, )" = Vi1, This implies that for any
finite F C EX¢,

s(H)

D Vi D Viw = D Vi

MEF HEF HEF

Thus, ‘_/h‘_/k = ZﬂEEké: Vh# Z,ueE"f Vk,,u = ‘_/hk and

Vi= D Vie= D Vi =V,

HEEKE UEERE

So, the universal property of C*(G)) gives a homomorphism

my 1 CH(G)) = M(C*(S,U)  such that 7(8;) = V. O

PROPOSITION 4.5. Fix & € E°/~. Let {S., U,} be a Cuntz—Krieger (G, E)-family. For
i, € EXE, let ey ® e; denote the rank-one operator on the Hilbert space I>({E*&)), and

https://doi.org/10.1017/5S0004972722001204 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972722001204

158 I. Yusnitha [9]

let ©,5 := 8,Uy,, Uy S5 € C*(S, U). Then there is an injective homomorphism

6 : KIP(E'€)) — Span(©y | . B € E'E)
such that 6(e, ® eg) = ©,p.
PROOF. We claim that the elements ©,, 5 are matrix units. Let 4, 8, @, p € E*¢. Then,

0,500, = (SuUs,,, U;.«w S; )(SaUg,,, Ug,Sp)

8s(p) P
* % . _
_ SuUsyn Uy, Sp 1B =0,
0 otherwise,

and (©,4)" = SpUs,, U, S, = Op,. Hence, (O p,B € E*¢} is a family of matrix
units. Since

1 Usyy U, SoIP = 15U, U,y SyeSuUs

S(B) T 8s(p) M

3k K — —
s( 1) S(P)Ug.‘(ﬁ)SﬁH - “PV” - 1’

by Lemma 3.3, these are nonzero matrix units. Hence, by Corollary A.9 of [6], we get
the injective homomorphism 6 as claimed. ]

PROPOSITION 4.6. Fix £€EY/~ and veé& Let {S,,Uy} be a Cuntz—Krieger
(G, E)-family. Let ny; and 6 be as in Propositions 4.4 and 4.5, respectively. Then,
there exists a homomorphism

0@y KIP(E'EY) ® C(G)) — Fi(S, U, &)
such that
0@ my((e, ® ep) ® 0n) = Bey ® eg)my(0y) = my(6,)0(ey, ® ep)
foralle, ® ey € K(P(E*EY) and for all 5, € C*(G").

PROOF. We have 6(e, ®e/*3) =0.p and my(0p) = V, in Fr(&) for all e, ®e; €
KP((E*¢))) and for all 6§, € C*(Gy). Then,

OupVn = SuUsg Up S5V

s(0)

= U Uy S Y $yUs UnUs, S,

st 8s(p) =B &8sy
yeEkE
_ * s " "
- Z Sll Ugs( ) Ug.x(ﬂ) S,BSY Ugs(w Uh Ug.‘(y) SV
yeEkE
— * k
- Sﬂ ng< w Un ng(,@) Sﬁ :

UpU:_ S Hence, ©,5V), = V,0,4.

A similar calculation gives V0,5 = S,U, 8p B

We claim that

s(p)

Span{@,4V), | 1B € E*é,h € G} = Fu(S, U, €).
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Letu,B,a,p € E"f and hy, hy € G,. Then,
0,18V OapVis = 0,500, Vi, Vi, = 9800 Vi

and (@,43V))" = V10, =0, V,1. So, 5pan(@, 5V, |u,BeEEheG) is a
C*-subalgebra of F((S, U,¢). Moreover, it contains the generators of F(S, U, &),
so it is all of F(S, U, &).

Now the universal property of the (maximal) tensor product gives the desired
homomorphism 6 ® 75;. ]

We show next the homomorphism 6 ® ny; is faithful. To show this, we need to verify
that both 6 and n3; are injective. From Proposition 4.5, we already know that 6 is
injective, so it suffices to show that rry; is injective as well.

LEMMA 4.7. Fix ¢ € E®/~ and v € &. Let {S,, U,} be a Cuntz—Krieger (G, E)-family.

Suppose that the homomorphism my 1 C(G)) = C*(S, U) that maps 0y to Uy, is injec-

tive. Fix k € N and v € E°. Let V), be as in Proposition 4.3. Then, the homomorphism
(‘ “ 1 CN(G)) — Fi(S, U, &) that maps 6y, to V), is injective.

PROOF. Fix A € E*¢ and let Y, = S,U,,, . Then,

s(2)

YiViYa= ) Us Si8uUs,, UnUs,  SiSaUg

210 Uy = Un-

HEEKE
Define Ady, : Fi(S, U,&) — C*(S, U) by Ady,(a) = Y)aY,. By linearity and conti-

k) (v,k) & k) -

nuity, Ady, o JT(VV’ = ry. Hence, Ady, o e is injective, so e is also injective. O

Since K(({E*¢})) is simple and nuclear, Proposition 4.5 and Lemma 4.7 show
that if 7y is injective on C*(Gy), then the homomorphism of Proposition 4.6 is an
isomorphism. So,

T = KPUE'ED) ® C'(G)). 4.2)
Moreover, we obtain the following corollary. Recall that
Fi = Spants,gsy | s(0) = g - s(B). and |l = || = k).

COROLLARY 4.8. Let (G,E) be a self-similar groupoid. Fix £ € E°/~ and v € .
Suppose that for each k € N, there exists 1 € vE* such that the map g — (g - Dp(g, )
is injective. Then,

Fi= (P A& = P KCE ) '@
£eE0 )~ £eE0 )~
PROOF. For u,B,a,p € E¥ with s(u)=g-s(B8) €& and s(a)=h-s(p) € &, the

equation of Lemma 3.3 gives

. syuupsy iff=a
(SyttgSp)(Saltns,) = { utgttnSy 1B = a,

0 otherwise.
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Hence, 71(£1)F1(&2) = 0, when &) # &, so Corollary A.11 of [6] combined with
(4.2) gives an isomorphism of P ¢eo~ T k(&) onto F.. Equation (4.2) gives the second
isomorphism. o

COROLLARY 4.9. Let (G, E) be a self-similar groupoid. Then,

ce.pr = =J( D no)
k

k  &eE0/~

PROOF. For any k, we claim that 7 C F1. Fix u,8 € EF, g € G with s(u) = g - s(p).

We have
SullgSy = SullgUs(g)Sy = Z SullgSeSeSy = Z Su(ge)lg(g.e)Sge € Fierl-
ees(g)E! ees(g)E!
Hence, F; C ¥ for all k. By Corollary 4.1, the claim follows. O

LEMMA 4.10. Let (G,E) be a self-similar groupoid. Suppose that {T,,W,} is a
(G, E)-family in a C*-algebra B. Let

rw : C*(g, E) - C*(T, W)
be the homomorphism induced by the universal property. Suppose that for each

v € E°, the homomorphism w2 C(G)) — C*(T, W) such that mt, w(6,) = W, for all
g is injective. Then, nr w is isometric on C*(G, E)”.

PROOF. Fix & € E°/~ and v € £ Choose elements g, € GV for w € & with g, = v.
For he G’ and keN, let W, = perre TuWe, ,,WyWg T, as in Proposition 4.3.
Lemma 4.7 shows that the homomorphism 7y : C*(G;) — MC*(T, W) is injective.
Let §® iy be as in Proposition 4.6. Since K (P(E*¢)) is simple and nuclear,
and since each T,T; #0, the map 77y o (6 ® mz) = @ 7y is injective on each
Fr(£). Therefore, it is also injective on F; = P e~ Fir(€). Because every injective
C*-algebra homomorphism is isometric, mry 1s isometric on F;. Hence, myw is
isometric on | J; ¥ and hence on U F; = C*(G, E)”. O

5. The gauge-invariant uniqueness theorem

THEOREM 5.1. Let (G,E) be a self-similar groupoid. Suppose that (T,W) is a
(G, E)-family in a C*-algebra B. The universal property of C*(G, E) gives a homo-
morphism

mrw : C(G,E) — C*(T,W).

If there is a continuous action n : T — AutB such that n,(T,) = zT, and 1,(W,) = W,
for all e € E' and g € G, and if the homomorphism r,y is injective for each v € E°,
then nr w is an isomorphism of C*(G, E) onto C*(T, W).

PrROOF. Let @ : C*(G,E) — C*(G,E)” be the faithful conditional expectation of
Corollary 4.1. Let ¥: C*(T,W) — C*(T,W)" be the corresponding expectation
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obtained from 7. Since 1, o rrw and 7y w oy, agree on generators, they are equal.
Hence, ¥ oy w = iy w o @©. By [8, Lemma 3.14], nrry is injective if it is injective on
C*(G, E)?, which it is by Lemma 4.10. O
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