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In the usual shock models, the shocks arrive from a single source. Bozbulut and Eryilmaz [(2020). Generalized
extreme shock models and their applications. Communications in Statistics – Simulation and Computation 49(1):
110–120] introduced two types of extreme shock models when the shocks arrive from one of 𝑚 ≥ 1 possible
sources. In Model 1, the shocks arrive from different sources over time. In Model 2, initially, the shocks randomly
come from one of 𝑚 sources, and shocks continue to arrive from the same source. In this paper, we prove that the
lifetime of Model 1 is less than Model 2 in the usual stochastic ordering. We further show that if the inter-arrival
times of shocks have increasing failure rate distributions, then the usual stochastic ordering can be generalized to
the hazard rate ordering. We study the stochastic behavior of the lifetime of Model 2 with respect to the severity
of shocks using the notion of majorization. We apply the new stochastic ordering results to show that the age
replacement policy under Model 1 is more costly than Model 2.

1. Introduction

In the reliability context, a shock model depends on the severity and damage of a shock, inter-arrival
times between two consecutive shocks, and the type of system failure. The lifetime of a reliability system
based on a shock model is a function of the above factors. Suppose a system is subject to a sequence of
shocks. Let 𝑌𝑖 , 𝑖 ≥ 1, be the severity of the ith shock, 𝑋𝑖 , 𝑖 ≥ 1, be the inter-arrival time between the
(𝑖 − 1)th and the ith shocks, and 𝑁 be the number of shocks that cause the failure of the system. Then,
the lifetime of the system is given by

𝑇 =
𝑁∑
𝑖=1

𝑋𝑖 .

Various shock models have been defined in the literature based on the various causes of failure, which
depend on the definition of N. For instance, cumulative shock models [8], run shock models [14], extreme
shock models [9,21] , and 𝛿-shock models [12]. By combining these models, several mixed shock models
have also been introduced. Gut [10] introduced a mixed model composed of the cumulative and extreme
shock models; Parvardeh and Balakrishnan [17] defined a mixed model by combining the 𝛿-shock and
the extreme shock models; Eryilmaz and Tekin [7] presented a mixed model, a combination of run and
extreme shock models. Eryilmaz and Kan [6] proposed a new shock model in which the distribution
of the magnitudes of shocks changes after the first shock of size at least 𝑑1, and the system fails upon
the occurrence of the first shock above 𝑑2(> 𝑑1). The optimal replacement policy of the system under
shock models has been considered by, for example, Wang and Zhang [22], Eryilmaz [3,4] , Zhao et al.
[23] and Eryilmaz and Devrim [5]. The reliability properties of some coherent systems subject to shock
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have been studied by some researchers, including Li and Zhao [11], Eryilmaz and Devirm [5], Lorvand
and Kelkinnama [13], and Zhao et al. [24].

In this paper, we focus on the extreme shock model in which for a given threshold 𝑑, 𝑁 = min{𝑛;𝑌1 <
𝑑, . . . , 𝑌𝑛−1 < 𝑑,𝑌𝑛 ≥ 𝑑}. In the usual shock models, the shocks arrive from a single source. Bozbulut
and Eryilmaz [2] introduced two types of extreme shock models (generalized extreme shock models)
when the shocks arrive from one of 𝑚 possible sources. We assume a shock arrives from source 𝑘 with
probability 𝜋𝑘 , 𝑘 = 1, . . . , 𝑚, such that

∑𝑚
𝑘=1 𝜋𝑘 = 1, and the probability of the simultaneous shocks

from two or more sources is zero.
In Model 1, the shocks arrive from different sources over time. That is, two arbitrary consecutive

shocks may come from two different sources. In Model 2, initially the shocks randomly come from one
of the 𝑚 sources, say 𝑘 , and shocks continue to arrive from the same source 𝑘 . Both models generalize
the usual extreme shock model when 𝑚 = 1. For some examples of these models, the reader is referred
to Bozbulut and Eryilmaz [2].

Let 𝑍𝑘 be the magnitude of a shock from source 𝑘 , and 𝑁1,p and 𝑁2,p be the number of shocks
that cause failure of the system under Models 1 and 2, respectively, where p = (𝑝1, . . . , 𝑝𝑚) and
𝑝𝑘 = P(𝑍𝑘 ≥ 𝑑), 𝑘 = 1, . . . , 𝑚. As shown in Bozbulut and Eryilmaz [2], 𝑁1,p has geometric distribution
with parameter

∑𝑛
𝑘=1 𝜋𝑘 𝑝𝑘 and 𝑁2,p is a mixture of geometric distributions given by

P(𝑁2,p = 𝑛) =
𝑚∑
𝑘=1

𝜋𝑘 𝑝𝑘 (1 − 𝑝𝑘 )
𝑛−1, 𝑛 = 1, 2, . . . .

Then the lifetime of systems under Models 1 and 2 are, respectively,

𝑇1,p =
𝑁1,p∑
𝑖=1

𝑋𝑖 and 𝑇2,p =
𝑁2,p∑
𝑖=1

𝑋𝑖 .

The aim of this paper is to establish some stochastic ordering results between𝑇1 and𝑇2 using the notions
of stochastic orders and majorization. Then, we apply the obtained results to an optimization problem
in age replacement policy.

Next, we recall notions of stochastic orderings and majorization that are used later in this paper.
Throughout this paper, increasing means nondecreasing and decreasing means nonincreasing, and we
will assume that all expectations exist. Let 𝑋 and 𝑌 be two non-negative random variables with density
(probability mass) functions 𝑓 and 𝑔, distribution functions 𝐹 and 𝐺, survival functions 𝐹̄ = 1 − 𝐹
and 𝐺̄, and hazard rate functions 𝑟𝐹 = 𝑓 /𝐹̄ and 𝑟𝐺 , respectively. The random variable X is said to be
smaller than the random variable Y according to

• the usual stochastic order (denoted by 𝑋 ≤st 𝑌 ) if 𝐹̄ (𝑥) ≤ 𝐺̄ (𝑥), for all 𝑥.
• the hazard rate order (denoted by 𝑋 ≤hrY) if 𝑟𝐹 (𝑡) ≥ 𝑟𝐺 (𝑡), which is equivalent to that

𝐺̄ (𝑡)

𝐹̄ (𝑡)
is increasing in 𝑡 > 0. (1.1)

• the likelihood ratio order if 𝑔(𝑥)/ 𝑓 (𝑥) is increasing in 𝑥.
• the mean residual life order (denoted by 𝑋 ≤mrl 𝑌 ) if 𝐸 (𝑋 − 𝑡 | 𝑋 > 𝑡) ≤ 𝐸 (𝑌 − 𝑡 |𝑌 > 𝑡), for all 𝑡 > 0.

It is known that the likelihood ratio order implies the hazard rate order, which, in turn, implies both
the usual stochastic and the mean residual life orders. For more details on the above notions of stochastic
orderings, the reader is refereed to Shaked and Shakthikumar [20] and Belzunce et al. [1].

For any real vector x = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, let 𝑥 (1) ≤ 𝑥 (2) ≤ · · · ≤ 𝑥 (𝑛) denote the increasing
arrangement of the components of x. It is said that vector x ∈ R𝑛 is majorized by vector y ∈ R𝑛 (denoted
by x ≤𝑚 y) if

∑ 𝑗
𝑖=1 𝑦 (𝑖) ≤

∑ 𝑗
𝑖=1 𝑥 (𝑖) for 𝑗 = 1, . . . , 𝑛 − 1 and

∑𝑛
𝑖=1 𝑥 (𝑖) =

∑𝑛
𝑖=1 𝑦 (𝑖) . A real valued function
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𝜓 defined on set A ⊂ R𝑛 is said to be Schur-convex (Schur-concave) on A, if

x ≤𝑚 y on A =⇒ 𝜓(x) ≤ (≥)𝜓(y).

The following lemma, which is a version of Lemma A.2.b in Marshal et al. [15] p. 82, is used to prove
some results in this paper.

Lemma 1.1. Suppose that A ⊆ 𝑅𝑛 is a set such that

y ∈ A and x ≤𝑚 y =⇒ x ∈ A.

A continuous function 𝜓 defined on A is Schur-convex if and only if 𝜓 is symmetric and, for all 𝑐,
𝜓(𝑦1, 𝑐 − 𝑦1, 𝑦3, . . . , 𝑦𝑛) is decreasing in 𝑦1 ≤ 𝑐/2 for each fixed 𝑦3, . . . , 𝑦𝑛.

Suppose that {𝑋𝑖} and {𝑌𝑖} are two sequences of non-negative independent random variables, such
that 𝑋𝑖’s are independent of 𝑌𝑖’s. In Section 2, we prove that

𝑁1,p ≤hr 𝑁2,p (1.2)

which implies
𝑇1,p ≤st 𝑇2,p. (1.3)

We further show that 𝑇1,p ≤hr 𝑇2,p if 𝑋𝑖 , 𝑖 ≥ 1, has a distribution with increasing failure rate (IFR). The
inequality (1.2) is an extension of the expected value order proved in Bozbulut and Eryilmaz [2]. The
inequality (1.3) proves the conjecture given by Bozbulut and Eryilmaz [2]. We also study stochastic
behaviour of 𝑁2,p with respect to 𝑝1, . . . , 𝑝𝑚 and show that for the case when 𝑚 = 2 and 𝜋1 = 𝜋2,

(𝑝1, 𝑝2) ≤𝑚 (𝑝∗1, 𝑝
∗
2) =⇒ 𝑁2,p ≤hr 𝑁2,p∗ =⇒ 𝑇2,p ≤hr 𝑇2,p∗ .

We also provide a similar argument for the case when p and p∗ are component-wise ordered. Section
3 is devoted to an optimization problem in age replacement policies determined by Models 1 and 2.

2. Main result

We need the following lemma to prove the main result of the paper.

Lemma 2.1 [18]. Let 𝑋 be a random variable and 𝑓 and 𝑔 be two increasing functions. Then

Cov( 𝑓 (𝑋), 𝑔(𝑋)) ≥ 0,

provided that Cov( 𝑓 (𝑋), 𝑔(𝑋)) exists.

Theorem 2.1. For Model 𝑖, 𝑖 = 1, 2, let 𝑁𝑖,p be the number of shocks that make the system fail. Then
𝑁1,p ≤hr 𝑁2,p.

Proof. The survival functions of 𝑁1,p and 𝑁2,p are, respectively, given by

𝐹̄𝑁1,p (𝑛) =

(
1 −

𝑚∑
𝑘=1

𝜋𝑘 𝑝𝑘

)𝑛

and

𝐹̄𝑁2,p (𝑛) =
𝑚∑
𝑘=1

𝜋𝑘 (1 − 𝑝𝑘 )
𝑛.
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From (1.1), we need to show that for 𝑛 ≥ 1,

∑𝑚
𝑘=1 𝜋𝑘 (1 − 𝑝𝑘 )

𝑛+1

(1 −
∑𝑚

𝑘=1 𝜋𝑘 𝑝𝑘 )
𝑛+1 ≥

∑𝑚
𝑘=1 𝜋𝑘 (1 − 𝑝𝑘 )

𝑛

(1 −
∑𝑚

𝑘=1 𝜋𝑘 𝑝𝑘 )
𝑛

or equivalently ∑𝑚
𝑘=1 𝜋𝑘 (1 − 𝑝𝑘 )

𝑛+1∑𝑚
𝑘=1 𝜋𝑘 (1 − 𝑝𝑘 )𝑛

≥ 1 −

𝑚∑
𝑘=1

𝜋𝑘 𝑝𝑘 =
𝑚∑
𝑘=1

𝜋𝑘 (1 − 𝑝𝑘 ). (2.1)

Now, consider the random variable 𝑊 with probability mass function

𝑃(𝑊 = 1 − 𝑝𝑘 ) = 𝜋𝑘 , 𝑘 = 1, 2, . . . , 𝑚.

Using Lemma 2.1, we conclude that

Cov(𝑊𝑛,𝑊) ≥ 0 ⇐⇒ E(𝑊𝑛+1) ≥ E(𝑊)E(𝑊𝑛),

which is the required result. �

Next, we prove the usual stochastic order and hazard rate order among the lifetimes of shock models
1 and 2.

Theorem 2.2. For Model 𝑖, 𝑖 = 1, 2, let 𝑁𝑖,p be the number of shocks that make the system fail.
Furthermore, assume that the inter-arrival times between consecutive shocks are independent and that
they are independent of 𝑁𝑖,p, 𝑖 = 1, 2. Then 𝑇1,p ≤st 𝑇2,p.

Proof. The hazard rate order between 𝑁1,p and 𝑁2,p implies 𝑁1,p ≤st 𝑁2,p. Using this observation, the
required result follows from Theorem 1.A.4 in Shaked and Shanthikumar [20]. �

Theorem 2.3. For Model 𝑖, 𝑖 = 1, 2, let 𝑁𝑖,p be the number of shocks that make the system fail.
Furthermore, assume that the inter-arrival times between consecutive shocks are independent with IFR
property and that they are independent of 𝑁𝑖,p, 𝑖 = 1, 2. Then 𝑇1,p ≤hr 𝑇2,p.

Proof. The required result follows from Theorem 2.1 and Theorem 1.B.7 in Shaked and Shanthikumar
[20]. �

In the following, we compare the variance of the lifetime of a system under models 1 and 2.

Theorem 2.4. Under the assumptions of Theorem 2.1, Var(𝑁1,p) ≤ Var(𝑁2,p).

Proof. It follows from the distribution of 𝑁2,p,

E(𝑁2,p) =
𝑚∑
𝑘=1

𝜋𝑘
𝑝𝑘
, E(𝑁2

2,p) =
𝑚∑
𝑘=1

(
1 − 𝑝𝑘

𝑝2
𝑘

+
1
𝑝2
𝑘

)
𝜋𝑘 . (2.2)
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Thus,

Var(𝑁2,p) = E(𝑁
2
2,p) − E

2(𝑁2,p)

=
𝑚∑
𝑘=1

(
1 − 𝑝𝑘

𝑝2
𝑘

+
1
𝑝2
𝑘

)
𝜋𝑘 −

(
𝑚∑
𝑘=1

𝜋𝑘
𝑝𝑘

)2

= 2
𝑚∑
𝑘=1

1
𝑝2
𝑘

𝜋𝑘 −
𝑚∑
𝑘=1

1
𝑝𝑘
𝜋𝑘 −

(
𝑚∑
𝑘=1

𝜋𝑘
𝑝𝑘

)2

≥

(
𝑚∑
𝑘=1

𝜋𝑘
𝑝𝑘

)2

−

𝑚∑
𝑘=1

1
𝑝𝑘
𝜋𝑘

=
1 − 1∑𝑚

𝑘=1 𝜋𝑘/𝑝𝑘

( 1∑𝑚
𝑘=1 𝜋𝑘/𝑝𝑘

)2

≥
1 −

∑𝑚
𝑘=1 𝜋𝑘 𝑝𝑘

(
∑𝑚

𝑘=1 𝜋𝑘 𝑝𝑘 )
2

= Var(𝑁1,p)

where the first inequality follows from the Jenson’s inequality and the second inequality follows from
the fact that the function (1 − 𝑥)/𝑥2 is decreasing in 𝑥 ∈ (0, 1) and

𝑚∑
𝑘=1

𝜋𝑘 𝑝𝑘 ≥
1∑𝑚

𝑘=1 𝜋𝑘/𝑝𝑘
.

�

Theorem 2.5. Assume the inter-arrival times between consecutive shocks are independent and iden-
tically distributed in Models 1 and 2, and that they are independent of 𝑁1,p and 𝑁2,p. Then
Var(𝑇1,p) ≤ Var(𝑇2,p).

Proof. Suppose that 𝜎2 and 𝜇 are the variance and mean of 𝑋𝑖’s, respectively. Then

Var(𝑇2,p) = Var

(
𝑁2,p∑
𝑖=1

𝑋𝑖

)

= E(𝑁2,p)𝜎
2 + 𝜇2

Var(𝑁2,p)

≥ E(𝑁1,p)𝜎
2 + 𝜇2

Var(𝑁1,p)

= Var(𝑇1,p),

where the inequality follows from Theorems 2.1 and 2.4. �

The results of Theorems 2.2, 2.3 and 2.5 are illustrated by the following example.

Example 2.1. Consider a system that is subject to a sequence of shocks coming from three sources
with probabilities 𝜋1 = 0.45, 𝜋2 = 0.30 and 𝜋3 = 0.25. Assume that the times between two consecutive
shocks has Erlang distribution with shape parameter 2 and rate parameter 1. Let 𝑝1 = 0.1, 𝑝2 = 0.3
and 𝑝3 = 0.4. In Figures 1, 2 and 4, we plot the survival functions, hazard rate functions and density
functions of the system lifetime under Models 1 and 2. As expected, the survival function of 𝑇1,p is a
lower bound for that of 𝑇2,p and the hazard rate of 𝑇1,p is larger than that of 𝑇2,p. From Figure 4, we
observe that the distribution of 𝑇2,p is heavier tailed than that of 𝑇1,p, consistent with Theorem 2.5.
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Figure 1. The plot of survival function of a system lifetime under Models 1 and 2

Figure 2. The plot of hazard rate function of a system lifetime under Models 1 and 2

From Figure 3, we also observe that the mean residual lifetime of 𝑇2,p is greater than 𝑇1,p which is
a consequence of the hr order proved in Theorem 2.3. In Table 1, we also derive some characteristic
values of distributions of 𝑇1,p and 𝑇2,p, such as 𝛼th quantile (denoted by𝑄𝛼), variance (denoted by Var)
and mean residual lifetime (denoted by 𝑀𝑅(𝑡)). We see that the 𝑄𝛼 for 𝑇2,p is greater than 𝑇1,p which
explains the st order proved in Theorem 2.2. The mean for 𝑇2,p is about 50% larger than that of 𝑇1,p, and
the standard deviation is almost double.

Remark 2.1. Let 𝑋 and 𝑌 be two non-negative random variables with density functions 𝑓 and 𝑔 and
distribution functions 𝐹 and 𝐺, respectively. The random variable 𝑋 is said to be less dispersed than the
random variable 𝑌 (denoted by 𝑋 ≤disp 𝑌 ) if 𝐹−1(𝛽) − 𝐹−1(𝛼) ≤ 𝐺−1(𝛽) −𝐺−1(𝛼), for 0 ≤ 𝛼 ≤ 𝛽 ≤ 1
where 𝐺−1 and 𝐹−1 are the right continuous inverses of 𝐺 and 𝐹, respectively. It is proved in Shaked
[19] that if 𝑋 ≤st 𝑌 and for all 𝑐 > 0, 𝑓 (𝑥 − 𝑐) − 𝑔(𝑥) has at most two sign changes with the sign
sequence −, +,− in case of two sign changes, then 𝑋 ≤disp 𝑌 . In Example 2.1, from the enters in Table 1,
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Figure 3. The plot of mean residual function of a system lifetime under Models 1 and 2

Figure 4. The plot of density function of a system lifetime under Models 1 and 2

Table 1. Some distribution characteristic values of 𝑇1,p and 𝑇2,p in Example 2.1.

𝑄0.1 𝑄0.2 𝑄0.3 𝑄0.4 𝑄0.5 𝑄0.6 𝑄0.7 𝑄0.8 𝑄0.9

𝑇2,p 1.35 2.37 3.527 4.935 6.725 9.13 12.639 18.448 30.348
𝑇1,p 1.34 2.32 3.396 4.627 6.082 7.862 10.157 13.391 18.921

𝑀𝑅(1) 𝑀𝑅(2) 𝑀𝑅(4) 𝑀𝑅(6) 𝑀𝑅(8) 𝑀𝑅(10) Mean Var
𝑇2,p 12.062 12.443 13.404 14.338 15.193 15.951 12.25 236.854
𝑇1,p 8.064 7.992 7.9776 7.9772 7.9772 7.9972 8.5 63.920
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Figure 5. The plot of 𝑓2(𝑥) and 𝑓1(𝑥 − 𝑐) for 𝑐 = 0, 1, 2, 4, 8, 10.

we observe that the difference between any two quantiles of 𝑇1,p is less than that of 𝑇2,p. In Figure 5, we
also observe that the sign change of 𝑓1(𝑥 − 𝑐) − 𝑓2(𝑥) for 𝑐 = 0, 1, 2, 4, 6, 10 is at most two with the sign
sequence −, +,− in case of two sign changes, where 𝑓𝑖 , 𝑖 = 1, 2, is the density function of 𝑇𝑖,p. Thus,
we conjecture that 𝑇1,p ≤disp 𝑇2,p if the inter-arrival times are IFR, which is stronger than variance order
proved in Theorem 2.5.

Let𝑁2,p be the number of shocks that cause the failure of the system in Model 2 with p = (𝑝1, . . . , 𝑝𝑚).
It is easy to see that if p ≤𝑚 p∗, then 𝑁2,p ≤st 𝑁2,p∗ . In the following theorem, for the case when 𝑚 = 2
and 𝜋1 = 𝜋2 = 1

2 , the st order can be replaced by the hr order.

Theorem 2.6. Let 𝑁2,p be the number of shocks that cause the failure of the system in Model 2, where
p = (𝑝1, . . . , 𝑝𝑚). Then, for 𝑚 = 2 and 𝜋1 = 𝜋2,

(𝑝1, 𝑝2) ≤𝑚 (𝑝∗1, 𝑝
∗
2) =⇒ 𝑁2,p ≤hr 𝑁2,p∗ .

Proof. Using implication (1.1) and Lemma 1.1, we need to show that for 0 ≤ 𝑝∗ ≤ 𝑝 ≤ 𝑐/2 ≤ 1,

(1 − 𝑝∗)𝑛+1 + (1 − 𝑐 + 𝑝∗)𝑛+1

(1 − 𝑝)𝑛+1 + (1 − 𝑐 + 𝑝)𝑛+1 ≥
(1 − 𝑝∗)𝑛 + (1 − 𝑐 + 𝑝∗)𝑛

(1 − 𝑝)𝑛 + (1 − 𝑐 + 𝑝)𝑛

which is equivalent to

(1 − 𝑝)𝑛 (1 − 𝑝∗)𝑛 (𝑝 − 𝑝∗) − (1 − 𝑐 + 𝑝)𝑛 (1 − 𝑐 + 𝑝∗)𝑛 (𝑝 − 𝑝∗)

+ (1 − 𝑝∗)𝑛 (1 − 𝑐 + 𝑝)𝑛 (𝑐 − 𝑝 − 𝑝∗) − (1 − 𝑝)𝑛 (1 − 𝑐 + 𝑝∗)𝑛 (𝑐 − 𝑝 − 𝑝∗)

= ((1 − 𝑝)𝑛 (1 − 𝑝∗)𝑛 − (1 − 𝑐 + 𝑝)𝑛 (1 − 𝑐 + 𝑝∗)𝑛)(𝑝 − 𝑝∗)

+ ((1 − 𝑝∗)𝑛 (1 − 𝑐 + 𝑝)𝑛 − (1 − 𝑝)𝑛 (1 − 𝑐 + 𝑝∗)𝑛)(𝑐 − 𝑝 − 𝑝∗) ≥ 0. (2.3)

The first term in (2.3) is non-negative since 𝑝∗ ≤ 𝑝 ≤ 𝑐/2, 1 − 𝑝 ≥ 1 − 𝑐 + 𝑝 and 1 − 𝑝∗ ≥ 1 − 𝑐 + 𝑝∗.
The second term in (2.3) is non-negative since (1 − 𝑝)/(1 − 𝑐 + 𝑝) is a decreasing function in 𝑝 and
(𝑐 − 𝑝 − 𝑝∗) ≥ 0. �
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Figure 6. The plot of 𝐹̄𝑁2,p∗ (𝑛)/𝐹̄𝑁2,p (𝑛) for p = ( 2
8 ,

3
8 ,

5
8 ) and p∗ = ( 2

8 ,
2.9
8 ,

5.1
8 ).

Next, a counterexample is given to illustrate that the result of Theorem 2.6 might not hold for 𝑚 > 2.

Example 2.2. Let 𝐹̄𝑁2,p (𝑛) denote the survival function of 𝑁2,p. For p = ( 2
8 ,

3
8 ,

5
8 ) ≤𝑚 ( 2

8 ,
2.9
8 ,

5.1
8 ) =

p∗, 𝐹̄𝑁2,p∗ (5)/𝐹̄𝑁2,p (5) = 1.025786, 𝐹̄𝑁2,p∗ (10)/𝐹̄𝑁2,p (10) = 1.030184 and 𝐹̄𝑁2,p∗ (20)/𝐹̄𝑁2,p (20) =
1.012353, which indicate that 𝐹̄𝑁2,p∗ (𝑛)/𝐹̄𝑁2,p (𝑛) is not increasing (see also Figure 6).

The following theorem discusses the usual stochastic ordering of 𝑁2,p and 𝑁2,p when p and p∗ are
component-wise ordered. The result follows from the observation that the survival function of 𝑁2,p is
decreasing in 𝑝𝑖 , 𝑖 = 1, . . . , 𝑚.

Theorem 2.7. If 𝑝∗𝑖 ≤ 𝑝𝑖 , 𝑖 = 1, . . . , 𝑚, then 𝑁2,p ≤st 𝑁2,p∗ .

The following counterexample shows that the result of the above theorem can not be extended to the
hazard rate order.

Example 2.3. Let 𝐹̄𝑁2,p (𝑛) denote the survival function of 𝑁2,p. In Figure 7, we plot 𝐹̄𝑁2,p∗ (𝑛)/𝐹̄𝑁2,p (𝑛)
for p = (0.2, 0.3), p∗ = (0.2, 0.25) and 𝜋1 = 𝜋2. The figure shows that the condition 𝑝∗𝑖 ≤ 𝑝𝑖 ,
𝑖 = 1, . . . , 𝑚 does not imply 𝑁2,p ≤hr 𝑁2,p∗ .

The following theorem deals with the stochastic behaviour of 𝑁2,p with respect to 𝝅 = (𝜋1, . . . , 𝜋𝑚).

Theorem 2.8. In Model 2, let 𝑁𝝅
2,p denote the number of shocks that cause the failure of the system with

𝝅 = (𝜋1, . . . , 𝜋𝑚). Then under the condition 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑚,

(a) 𝝅 ≤st 𝝅
∗ =⇒ 𝑁𝝅

2,p ≤st 𝑁
𝝅∗

2,p.
(b) 𝝅 ≤hr 𝝅

∗ =⇒ 𝑁𝝅
2,p ≤hr 𝑁

𝝅∗

2,p.
(c) 𝝅 ≤lr 𝝅

∗ =⇒ 𝑁𝝅
2,p ≤lr 𝑁

𝝅∗

2,p.
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Figure 7. The plot of 𝐹̄𝑁2,p∗ (𝑛)/𝐹̄𝑁2,p (𝑛) for p = (0.2, 0.3) and p∗ = (0.2, 0.25).

Proof. The probability mass function of 𝑁𝝅
2,p is given by

P(𝑁𝝅
2,p = 𝑛) =

𝑚∑
𝑖=1

𝜋𝑖 𝑝𝑖 (1 − 𝑝𝑖)
𝑛−1, 𝑛 = 1, 2, . . . .

It is a mixture of geometric distributions. Now, the required results of 𝑎, 𝑏 and 𝑐 follow, respectively,
from Theorems 1.A.6, 1.B.14 and 1.C.17 in Shaked and Shanthikumar [20]. �

The result of the next theorem follows from Theorem 2.8 and Theorems 1.A.4, 1.B.7 and 1.C.11 in
Shaked and Shanthikumar [20].

Theorem 2.9. In Model 2, let 𝑇𝝅
2,p be the system lifetime with 𝝅 = (𝜋1, . . . , 𝜋𝑚). Then under the

condition 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑚,

(a) 𝝅 ≤st 𝝅
∗ implies 𝑇𝝅

2,p ≤st 𝑇
𝝅∗

2,p when the inter-arrival times of consecutive shocks are independent.
(b) 𝝅 ≤hr 𝝅

∗ implies 𝑇𝝅
2,p ≤hr 𝑇

𝝅∗

2,p when the inter-arrival times of consecutive shocks are independent
with IFR property.

(c) 𝝅 ≤lr 𝝅
∗ implies 𝑇𝝅

2,p ≤lr 𝑇
𝝅∗

2,p when the inter-arrival times of consecutive shocks are independent
with log-concave density.

3. Age replacement policy

The age replacement policy is a commonly utilized strategy for preventing the costly breakdown of a
system or a component during an operation. In an age replacement policy, the system is replaced at the
time of failure or at a pre-specified time 𝜏 if it is operational at time 𝜏. Let 𝑇 denote the system lifetime
with distribution function 𝐹 and let 𝑐1 and 𝑐2 represent the replacement costs of each failed and non-
failed item, respectively. We assume that 𝑐2 < 𝑐1 since a failure carries an additional penalty. For the
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Figure 8. The plot of the expected cost rate for Models 1 and 2 with 𝝅 = (0.2, 0.5, 0.3) and p =
(0.5, 0.75, 0.15).

replacement time 𝜏, the expected cost rate is defined as

𝐶 (𝜏) =
Expected cost of one cycle
Expected time of one cycle

=
𝑐1𝐹 (𝜏) + 𝑐2𝐹̄ (𝜏)

E(min{𝑇, 𝜏})
(3.1)

(cf. Nakagawa [16]).
The optimal replacement time denoted by 𝜏∗ is a time that the expected cost rate has the lowest value,

that is,
𝐶 (𝜏∗) = min

𝜏>0
𝐶 (𝜏).

The expected cost rate of age replacement policy for Model 𝑖, 𝑖 = 1, 2, is given by

𝐶𝑖 (𝜏) =
𝑐1 − (𝑐1 − 𝑐2)𝐹̄𝑖 (𝜏)

E(min{𝑇𝑖,p, 𝜏})

where 𝐹𝑖 is the distribution function of 𝑇𝑖,p. Since min{𝑡, 𝜏} is an increasing function of 𝑡, 𝑇1,p ≤st 𝑇2,p
implies that E(min{𝑇1,p, 𝜏}) ≤ E(min{𝑇2,p, 𝜏}), for 𝜏 > 0. Combining this observation with the fact
that 𝐹̄1(𝜏) ≤ 𝐹̄2(𝜏) (Theorem 2.2), we conclude that

𝐶2 (𝜏) ≤ 𝐶1 (𝜏), ∀𝜏 > 0.

That is, for any pre-specified age replacement time 𝜏, the expected cost rate for Model 1 is larger than
that of Model 2. Now, let 𝜏∗1 and 𝜏∗2 be the optimal age replacement times under Models 1 and 2,
respectively. Then,

𝐶2 (𝜏
∗
2 ) ≤ 𝐶2 (𝜏

∗
1 ) ≤ 𝐶1(𝜏

∗
1 ).

Suppose that a system is subject to a sequence of shocks that come from three sources with probability
𝜋1 = 0.2, 𝜋2 = 0.5 and 𝜋3 = 0.3. Assume that the times between two consecutive shocks have Erlang
distribution with shape parameter 2 and rate parameter 0.8. It is also assume that 𝑝1 = 0.5, 𝑝2 = 0.75
and 𝑝3 = 0.15, and 𝑐1 = 1000 and 𝑐2 = 100. In Figure 8, we plot 𝐶1 (𝜏) and 𝐶2 (𝜏) (see [2,3] to
compute the expected cost rate function). The figure justifies that 𝐶2 (𝜏) ≤ 𝐶1 (𝜏) for all 𝜏 > 0. The
hazard rate function of 𝑇1, denoted by 𝑟𝑇1 (𝑡), is increasing and 𝑟𝑇1 (∞) > 𝑐1/[𝐸 (𝑇1)(𝑐1 − 𝑐2)] = 0.231.
Using these observations, it follows from Theorem 3.2 of Nakagawa [16], the optimal replacement time
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is finite and unique which is equal to 𝜏∗1 = 1.938 with 𝐶1(𝜏
∗
1 ) = 190.83. On the other hand, the hazard

rate function of 𝑇2 is not increasing and the optimal replacement time of Model 2 is 𝜏∗2 = ∞ with
𝐶2 (𝜏

∗
2 ) = 𝑐1/E(𝑇2) = 130.4348, since 𝐶2 (𝜏) is decreasing for 𝜏 > 2.950.
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