
Ergod. Th. & Dynam. Sys., (2023), 43, 3026–3107 © The Author(s), 2022. Published by Cambridge
University Press.
doi:10.1017/etds.2022.63

3026

Flows, growth rates, and the veering
polynomial

MICHAEL P. LANDRY †, YAIR N. MINSKY ‡ and SAMUEL J. TAYLOR §

†Department of Mathematics and Statistics,
Washington University in Saint Louis, St. Louis, MO 63130, USA

(e-mail: mlandry@wustl.edu)
‡Department of Mathematics, Yale University, New Haven, CT 06520, USA

(e-mail: yair.minsky@yale.edu)
§Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

(e-mail: samuel.taylor@temple.edu)

(Received 29 December 2021 and accepted in revised form 5 August 2022)

Abstract. For a pseudo-Anosov flow ϕ without perfect fits on a closed 3-manifold,
Agol–Guéritaud produce a veering triangulation τ on the manifold M obtained by deleting
the singular orbits of ϕ. We show that τ can be realized in M so that its 2-skeleton is
positively transverse to ϕ, and that the combinatorially defined flow graph � embedded
in M uniformly codes the orbits of ϕ in a precise sense. Together with these facts, we
use a modified version of the veering polynomial, previously introduced by the authors,
to compute the growth rates of the closed orbits of ϕ after cutting M along certain
transverse surfaces, thereby generalizing the work of McMullen in the fibered setting.
These results are new even in the case where the transverse surface represents a class
in the boundary of a fibered cone of M. Our work can be used to study the flow ϕ

on the original closed manifold. Applications include counting growth rates of closed
orbits after cutting along closed transverse surfaces, defining a continuous, convex entropy
function on the ‘positive’ cone in H 1 of the cut-open manifold, and answering a question
of Leininger about the closure of the set of all stretch factors arising as monodromies
within a single fibered cone of a 3-manifold. This last application connects to the study of
endperiodic automorphisms of infinite-type surfaces and the growth rates of their periodic
points.
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1. Introduction
In this paper, we address the following family of questions which relate dynamics to
topology for a pseudo-Anosov flow ϕ in a 3-manifold. Given a properly embedded
surface S which is positively transverse to ϕ, one can attempt to count orbits with respect
to the intersection number with S. That is, one can consider the growth rate:

grϕ(S) = lim
L→∞ #{γ : γ · S ≤ L}1/L,

where γ varies over closed orbits of ϕ. If S is a cross section of ϕ (that is, S intersects
every flow line), then ϕ is the suspension flow of a fibration with fiber S, and grϕ(S) is
the Teichmüller dilatation of the monodromy map (its logarithm is the entropy). If S is not
a cross section, then this growth rate is ∞, but we can interrogate the finer structure of
ϕ by considering ϕ|S, the flow restricted to the complement of S. Growth rates of closed
orbits in ϕ|S can be counted with respect to their intersection with transverse surfaces in
the complement of S, or more generally with respect to cohomology classes positive on
the closed orbits of ϕ|S.

Our main tool for studying these questions is the veering triangulation of
Agol–Guéritaud, which is a canonical ideal triangulation associated to a pseudo-Anosov
flow without perfect fits (see §4 for details on this condition and the Agol–Guéritaud
construction). In a previous work [LMT20], we associated to such a triangulation an
invariant called the veering polynomial and a transverse graph called the flow graph. In
this paper, we will show that the triangulation parameterizes transverse surfaces, the flow
graph gives an explicit coding for the flow, and the polynomial computes the growth rates.

In the case of a fibered manifold with pseudo-Anosov monodromy, the veering
polynomial recovers McMullen’s Teichmüller polynomial, and the growth rates correspond
to Teichmüller dilatations in the fibered cone of Thurston’s norm on homology. However,
even in this case, we obtain some new information on the behavior of these dilatations—see
Theorem E.

What arises from this, we hope, is evidence that the veering triangulation is an effective
combinatorial tool for studying pseudo-Anosov flows, providing as it does an explicit
coding which is sensitive simultaneously to the dynamics of the flow and the topology
of the 3-manifold.
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1.1. Growth rates. To summarize our results, we introduce the terminology in more
detail. Let M be a closed oriented 3-manifold and let ϕ be a pseudo-Anosov flow on
M without perfect fits (see §4). We assume throughout that ϕ has at least one singular
orbit; that is, ϕ is not Anosov. Let M denote M minus the singular orbits of ϕ. Let τ be
the veering triangulation of M dual to ϕ furnished by the Agol–Guéritaud construction
(Theorem 4.7).

The 2-skeleton τ (2) has the structure of an oriented branched surface and we can
consider surfaces S carried by it. For such a surface, letM|S denote M cut along S, and let
ϕ|S denote the restricted flow in M|S, which is a semiflow in the sense of Fenley–Mosher
[FM01]. Assume for simplicity that S, and hence M|S, is connected.

Let Oϕ denote the closed orbits of ϕ and Oϕ |S those closed orbits that avoid S. We say
that a cohomology class ξ ∈ H 1(M|S) is positive if it is positive on orbits in Oϕ |S as well
as on certain peripheral ‘prong curves’ corresponding to the removed singular orbits (see
§7 for details).

The veering polynomial Vτ previously defined in [LMT20] is an element of the
group ring Z[H1(M; Z)/torsion]. We will define an adapted polynomial Vϕ|S in
Z[H1(M|S; Z)/torsion], morally obtained by deleting certain terms from Vτ (see §7.4
for the precise definition). A positive class ξ ∈ H 1(M|S) gives rise to a specialization
V
ξ
ϕ|S(u) in the sense of McMullen (see §2.3), which is a single variable polynomial-like

expression. Our main theorem about growth rates is the following.

THEOREM A. (Growth rates of closed orbits) Let S be a connected surface carried by τ (2).
Then for any positive class ξ ∈ H 1(M|S), the growth rate

grϕ|S(ξ) = lim
L→∞ #{γ ∈ Oϕ |S : ξ(γ ) ≤ L}1/L (1.1)

exists and is equal to the reciprocal of the smallest positive root of the specialization
V
ξ
ϕ|S(u) of the veering polynomial at ξ .

Moreover, grϕ|S(ξ) > 1 if and only if there are infinitely many closed primitive orbits of
ϕ that miss S.

See Theorem 7.2 for the general statement, in particular allowing disconnected S.

Remark 1.1. Using Corollary 9.8 and code written by Parlak, Schleimer, and Segerman
[PSS22], Ross Griebenow has found explicit examples of surfaces S carried by τ (2)

missing infinitely many closed primitive orbits of ϕ [Gri22]. Hence, grϕ|S(ξ) > 1 for such
examples by Theorem A.

In fact, in the forthcoming paper [LMT22], we give a construction which shows that
such examples are plentiful. Starting with a general type of endperiodic map on an
infinite-type surface, we produce a surface S in a fibered manifold M with a pseudo-Anosov
suspension flow ϕ. The infinite-type surface determines a class ξ ∈ H 1(M|S), and the
growth rate grϕ|S(ξ) is the ‘stretch factor’ of the original endperiodic map. See Remark 9.9
for some details on the connection between growth rates and stretch factors. It is then easy
to produce endperiodic maps so that the associated stretch factors are greater than 1.
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Let C+ be the cone in H 1(M|S) consisting of positive classes. The associated entropy
function is

entϕ|S : C+ → [0,∞)
ξ �→ log(grϕ|S(ξ)),

where grϕ|S is given by equation (1.1). The following result, which is a combination of
Theorem 9.1 and Theorem 9.3, establishes the essential properties of the entropy function
on the cone of positive classes. In §9.1, we define what it means for the restricted semiflow
to be essentially transitive and refer the reader there for details.

THEOREM B. (Entropy) The entropy function entϕ|S : C+ −→ [0,∞) is continuous,
convex, and homogeneous of degree −1.

Moreover, if the semiflow ϕ|S is essentially transitive, then entϕ|S is real analytic, strictly
convex, and blows up at the boundary of C+.

Throughout this discussion, we have focused on the manifold M. However, much of this
theory extends to study transverse surfaces in the original closed manifold M . See, for
example, Theorem 8.1 which is an analogue of Theorem A for transverse surfaces in M .

1.2. Transversality and coding. Theorems A and B rely on the following results which
connect the flow to the combinatorial structure of τ and its flow graph.

THEOREM C. (Transversality) The veering triangulation τ dual to ϕ can be realized in M
so that the cooriented branched surface τ (2) is positively transverse to the flow lines of ϕ.

While this transversality is automatic in the setting of a suspension flow, the general case
requires a surprisingly delicate argument. For a more detailed statement, see Theorem 5.1.

One important takeaway from Theorem C is that surfaces that are carried by τ (2), which
are often in plentiful supply, are automatically transverse to the flow ϕ. For example, by
Theorem 2.2, any class in H 1(M) that is non-negative on closed positive transversals of
τ (2) is represented by a surface carried by τ (2) and such classes form the entire cone over
a face of the Thurston norm ball.

In [LMT20], we used the combinatorial structure of τ to define a directed graph �,
called the flow graph of τ , and an embedding ι : �→ M which maps edges of � to arcs
that are positively transverse to τ (2). The next result (which is a summary of facts stated
in Theorem 6.1 and Proposition 6.12) justifies the name flow graph by establishing that �
codes the orbits of ϕ.

THEOREM D. (Coding ϕ with �) The map ι : �→ M establishes a correspondence
between directed lines in � and flow lines in M , which is surjective and uniformly
bounded-to-one.

Restricting this correspondence to closed directed cycles, we get a one-to-one corre-
spondence with the exception of finitely many orbits and their positive multiples.

In fact, we can say far more about the correspondence between closed directed cycles of�
and closed orbits of ϕ. See Theorem 6.1 for the detailed statement. The upshot is that the
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explicit coding of the flow ϕ by the flow graph � allows us to address Theorems A and B
using tools from the study of growth rates of directed cycles of graphs, as in McMullen’s
work on the clique polynomial [McM15].

1.3. Fibered faces and stretch factors. Let us recall some of the theory developed for
fibered manifolds by Thurston [Thu86], Fried [Fri79, Fri82b], and McMullen [McM00],
which motivates most of our results.

Thurston defined a norm on the vector spaceH 1(M; R) of a 3-manifold whose unit ball
B is a polyhedron, and which organizes the fibrations of M over the circle in the following
sense: Any integral class α ∈ H 1(M; Z) which is Poincaré dual to the fiber of a fibration
must appear in the cone R+F on an open top-dimensional face F of B, and, moreover, all
other integral points of this cone correspond to fibers as well (hence F is called a fibered
face, and α a fibered class).

Further, the suspension flows associated to the various fibers in the cone R+F agree, up
to isotopy and reparameterization, and so we identify them with a single circular flow ϕ.
Here a flow is circular if it admits a cross section and so is, up to reparameterization, a
suspension flow.

The orbit growth rate grϕ(α) defined above, can also be interpreted as the stretch factor,
or Teichmüller dilatation, of the return map of the flow to a fiber associated to α. Its
logarithm, the entropy of the return map, extends to a function hϕ : R+int(F)→ (0,∞)
that is continuous, convex, and blows up at the boundary of R+F [Fri82a, Theorem E].
McMullen extends Fried’s result by showing that hϕ is additionally real analytic and
strictly convex [McM00, Corollary 5.4]. To do so, he introduced a new polynomial
invariant, called the Teichmüller polynomial, which both packages growth rates of the
flow and detects the fibered cone R+F in a precise sense. Since McMullen’s work, the
Teichmüller polynomial has become a central tool in the study of these stretch factors;
see e.g. [Hir10, KKT13, LM13, Sun15].

The veering polynomial is a direct generalization of the Teichmüller polynomial, with
Theorem A extending McMullen’s theorem on growth rates and Theorem B extending the
theorem on the properties of hϕ .

Now suppose ξ is a fibered class, while S is a surface transverse to ϕ which is not a
fiber. Then ξ pulls back to a positive class in H 1(M|S) in the sense of Theorem A, and
grϕ|S(ξ) can be interpreted as both the growth rate with respect to ξ of closed orbits of ϕ
that miss S (Corollary 9.8) as well as the stretch factor of an endperiodic homeomorphism
of the infinite type surface obtained by ‘spinning’ the fiber representatives of ξ around S
(Remark 9.9). In fact, these quantities all arise as accumulation points of the set of stretch
factors of pseudo-Anosov return maps to fibers in R+F.

To be more precise, let 	F ⊂ [1,∞) be the set of stretch factors of monodromies
associated to fibers in R+F and let 	F be its closure. Denote by	′F its derived set (that is,
set of limit points) and set 	n+1

F = (	nF)′. The following theorem answers a question of
Chris Leininger (see Question 1).

THEOREM E. (Stretch factors and fibered cones) The stretch factor set 	F is compact,
well-ordered under ≥, and 	nF = {1} for some 1 ≤ n ≤ dim(H 1(M; R).
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A more detailed statement can be found in Theorem 9.10, including the relation between
limit points of 	F and growth rates of the form grϕ|S(ξ).

1.4. Connections to previous and ongoing wor. Although Agol and Guéritaud’s con-
struction of a veering triangulation from a pseudo-Anosov flow without perfect fits is
unpublished, there are many established connections between veering triangulations and
the topology, geometry, and dynamics of their underlying manifolds. These include links
to pseudo-Anosov stretch factors [Ago11], angle structures [FG13, HRST11], hyperbolic
geometry [FTW20, Gué16, HIS16], and the curve complex [MT17, Str18].

More relevant to this paper is the work of Landry [Lan18, Lan19, Lan22], which
studies the surfaces carried by the underlying 2-skeleton of the veering triangulation. This
connects to our previous work [LMT20] introducing the veering polynomial, relating
it to the Teichmüller polynomial, and laying the combinatorial groundwork for what
is done here (although we emphasize that this paper can be read independently of the
previous). Also, Parlak has recently introduced and implemented algorithms to compute
the veering polynomial and its relatives [Par21a], and demonstrated a connection with
the Alexander polynomial [Par21b], thereby generalizing the work of McMullen on the
Teichmüller polynomial [McM00].

Finally, the Agol–Guéritaud construction is expected to be reversible in the sense
that a veering triangulation should determine a pseudo-Anosov flow and the process
of going from one to the other should be inverse operations. Proving this statement is
an ongoing program of Schleimer–Segerman, the first part of which is [SS19] where
from a veering triangulation, a combinatorial ‘flow space’ is reconstructed. There is also
forthcoming work of Agol–Tsang [AT21], which produces a pseudo-Anosov flow from a
veering triangulation, but without the claim that it is canonical or that it recovers the orig-
inal flow if the veering triangulation was produced by the Agol–Guéritaud construction.

1.5. Outline of paper. In §2, we review essential properties of veering triangulations as
well as some basic structure we introduced in [LMT20]. This is followed by §3 which lays
out one of our primary combinatorial tools, which we call dynamic planes.

Background on pseudo-Anosovs flows and the construction of Agol–Guéritaud, which
builds the dual veering triangulation, is presented in §4. In §5, we prove Theorem C
that the veering triangulation can be realized positively transverse to ϕ, and §6 uses this
transversality to prove Theorem D that the flow graph codes the orbits of ϕ. Theorem A
is then a consequence of these results along with connection between dynamic planes and
the flow space of ϕ, as established in §7.

In §8, we prove a version of Theorem A that covers the case of closed surfaces transverse
to the flow ϕ on the closed manifold M . In this section, the veering triangulation only
appears as a tool in the proof. Finally, in §9, we give several applications of our main
theorems. These include Theorems B and E.

2. The flow graph, the veering polynomial, and carried surfaces
Here we record some required background and summarize results from our previous work
[LMT20]. Background on pseudo-Anosov flows will be deferred until §4.
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FIGURE 1. The edge e has one fan of length 1 and one fan of length 3.

FIGURE 2. A model veering tetrahedron and its cusps with their coorientations (in colour online).

2.1. Veering triangulations. A veering triangulation of a 3-manifold M is a taut ideal
triangulation together with a coherent assignment of veers to its edges. We begin by
explaining each of these terms.

A taut ideal tetrahedron is an ideal tetrahedron (that is, a tetrahedron without vertices)
along with a coorientation on each face so that it has two inward pointing faces, called its
bottom faces, and two outward pointing faces, called its top faces. Each of its edges is then
assigned either angle π or 0 depending on whether the coorientations on the adjacent faces
agree or disagree, respectively.

Following Lackenby [Lac00], an ideal triangulation of M is taut if each of its faces has
been cooriented so that each ideal tetrahedron is taut and the angle sum around each edge
is 2π . The local structure around each edge e is as follows: e includes as a π -edge into two
tetrahedra. For the other tetrahedra meeting e, e includes as an 0-edge and these tetrahedra
are divided into the two sides, called fans of e, each of which is linearly ordered by the
coorientation on faces. The length of each fan is one less than the degree of e on that side.
See Figure 1.

A veering triangulation τ of M is a taut ideal triangulation of M in which each edge
has a consistent veer. This means that each edge is labeled to be either right or left veering
such that each tetrahedron of τ admits an orientation-preserving isomorphism to the model
veering tetrahedron pictured in Figure 2, in which the veers of the 0-edges are specified:
right veering edges have positive slope and left veering edges have negative slope.
The π -edges can veer either way, as long as adjacent tetrahedra satisfy the same rule.
If the π -edges of a tetrahedron have opposite veer, the tetrahedron is said to be hinge;
otherwise it is non-hinge.
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FIGURE 3. The stable branched surface Bs within a single tetrahedron. Its intersection with the flow graph,
where edges are directed upward, is shown in green (note: the number of incoming edges at a vertex may vary)

(in colour online).

2.2. The dual graph, flow graph, and stable branched surface. The stable branched
surfaceBs in M associated to the veering triangulation τ , introduced in [SS19] as the upper
branched surface in dual position and in [LMT20, §4], plays a central role throughout this
paper. We refer the reader to [FO84, Oer84] for general facts about branched surfaces.

Topologically, the stable branched surface Bs is the dual complex of τ in M, and as
such, it is a deformation retract of M. Note that Bs is two-dimensional since τ has no
vertices. For each tetrahedron t, we define a smooth structure on Bst = Bs ∩ t as follows:
if the top edge of t is left veering, then we smooth according to the left-hand side of Figure
3 and otherwise we smooth according the the right-hand side. It is proven in [LMT20,
Lemma 4.3] that this produces a well-defined global smooth structure making Bs into a
branched surface.

The stable branched surface contains two directed graphs related to τ that are also of
central importance. The first, is the dual graph � of τ which is defined to be the 1-skeleton
of Bs whose edges are directed by the coorientation on the faces of τ . Alternatively, � is
the graph with a vertex interior to each tetrahedron and a directed edge crossing each
cooriented face from the vertex in the tetrahedron below the face to the vertex in the
tetrahedron above the face. See Figure 3. The directed cycles of � are called dual cycles
or �-cycles. Here and throughout, a directed cycle of a directed graph is an oriented loop
determined by a cyclic concatenation of directed edges.

As the 1-skeleton of the branched surface Bs , each turn in the graph � is either
branching, that is, realized by a smooth arc in Bs , or else what we call anti-branching
(or AB). In greater detail, a turn of � is an ordered pair (e1, e2) of directed �-edges so
that the terminal vertex v of e1 equals the initial vertex of e2. The turn is branching if the
arc e1 ∪ e2 is smooth as an arc in the singular locus of Bs and is anti-branching (or AB)
otherwise. A directed path, ray, or cycle in � that makes only branching turns is called a
branch path, ray, or cycle, respectively. Similarly, a directed path, ray, or cycle in � that
makes only AB turns is called an AB path, ray, or cycle. We note that since for each vertex
of � each incoming edge is part of exactly one branching turn and one AB turn, there are
only finitely many branch and AB cycles in �.

Branching and anti-branching turns of � can be characterized solely in terms of the
veering combinatorics [LMT20, Lemma 4.5] and from this we can deduce a few important
properties of the sectors of Bs .
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FIGURE 4. A sector of Bs and its intersection with � (green) and τ (2) (gray). The triple points of Bs , which are
the vertices of � and �, are in black. All edges are directed upward; the top is the northmost vertex, the bottom

is the southmost, and the corners are westmost/eastmost (in colour online).

Each sector σ of Bs is a topological disk pierced by a single τ -edge, as in Figure 4.
The �-edges bounding σ are oriented so that exactly one vertex is a source, which we
call the bottom of σ , and one is a sink, which we call the top of σ . The top and bottom
divide the boundary of σ into two oriented �-paths called sides. Each side has at least two
�-edges because the τ -edge piercing σ has a non-empty fan on each side. According to the
following lemma, which appears as [LMT20, Lemma 4.6], if you remove the last edge in
any side of any sector of Bs , the resulting path is a branch segment, and the entire side is
never a branch segment. See Figure 4, where the AB turns appear as corners of the sector.
We call these vertices the corner vertices of the sector.

LEMMA 2.1. (Sectors and turns) Let σ be a sector of Bs and let p be a side of σ considered
as a directed path in � from the bottom to the top of σ . The last turn of p is anti-branching,
and all other turns are branching.

The second directed graph embedded in Bs is the flow graph � of τ , which was
introduced in [LMT20, §4.3]. The vertices of � are in correspondence with τ -edges,
and for each tetrahedron t of τ , there are �-edges from the bottom τ -edge of each
tetrahedron to its top τ -edge and the two side τ -edges whose veer is opposite that of the top
τ -edge.

This defines � as an abstract directed graph, but it also comes equipped with an
embedding ι : �→ Bs , which was called dual position in [LMT20]. Each τ -edge e is
at the bottom of a unique tetrahedron te and ι maps the vertex of � corresponding to e
to the vertex of � contained in te. Each directed edge of � is then mapped into a single
sector of Bs so that it is positively transverse to τ (2). See Figure 3. According to [LMT20,
Lemma 4.7], for each sector σ of Bs , there is a directed edge of ι(�) ∩ σ coming into
the top vertex of σ from each vertex of σ other than its two corner vertices. See Figure 4.
This characterizes the flow graph in dual position according to its intersection with each
sector of Bs .

The directed cycles of �, along with their images under ι, are called flow cycles or
�-cycles. When convenient, we sometimes identify � with its image under ι.

https://doi.org/10.1017/etds.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.63


Growth rates and the veering polynomial 3035

2.3. The veering polynomial. Fix a finitely generated, free abelian group G and
denote its group ring with integer coefficients by Z[G]. Let P ∈ Z[G] and write
P =∑

g∈G ag · g. The support of P is

supp(P ) = {g ∈ G : ag �= 0}.
For P ∈ Z[G] with P =∑

g∈G ag · g and α ∈ Hom(G, R), the specialization of P at
α is the single variable expression Pα in Z[ur : r ∈ R] given by

Pα(u) =
∑
g∈G

ag · uα(g).

These generalities will be used in the specific setting of veering polynomials. For this,
let M be a 3-manifold with veering triangulation τ , and set G = H1(M; Z)/torsion. In
[LMT20, §2], we defined a polynomial invariant Vτ ∈ Z[G], called the veering polynomial
of τ . Here, we recall an alternative characterization of Vτ in terms of the Perron polynomial
of the flow graph �. We refer the reader to [LMT20, §4] for additional details.

For a directed graph D, let A denote the matrix with entries

Aab =
∑

∂e=b−a
e, (2.1)

where the sum is over all edges e from the vertex a to the vertex b. We call A the adjacency
matrix for D. The Perron polynomial of D is defined to be PD = det(I − A). By definition,
this is an element of Z[C1(D)], where C1(D) is the group of simplicial 1-chains in D.

Following McMullen [McM15], we define the cycle complex C(D) of D to be the graph
whose vertices are directed simple cycles of D and whose edges correspond to disjoint
cycles. We recall that PD equals the clique polynomial of C(D), which in particular shows
that PD is an element of the subring Z[H1(D)] (see [McM15, Theorem 1.4 and §3]). Here,
the clique polynomial associated to C(D) is

PD = 1+
∑
C

(−1)|C|C ∈ Z[H1(D)], (2.2)

where the sum is over non-empty cliques C of the graph C(D), that is, over simple
multicycles of D, and |C| is the number of vertices of C, that is, the number of components
of the multicycle. Note that the support of P is the set supp(PD) = {C} ⊂ H1(D) of
directed simple multicycles appearing in equation (2.2).

Now let ι : �→ M be the flow graph with its embedding into M. This induces a ring
homomorphism ι∗ : Z[H1(�)]→ Z[G] and we set

Vτ = ι∗(P�),
where P� is the Perron polynomial of�. According to [LMT20, Theorem 4.8], this agrees
with the original definition of the veering polynomial.

2.4. Surfaces carried by τ and cones in (co)homology. As noted by Lackenby [Lac00],
tautness of τ naturally gives its 2-skeleton τ (2) the structure of a transversely oriented
branched surface in M. The smooth structure on τ (2) can be obtained by, within each
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tetrahedron, smoothing along the π -edges and pinching along the 0-edges, thus giving
τ (2) a well-defined tangent plane field at each of its points.

As a transversely oriented branched surface, τ (2) can carry surfaces similarly to the
way a train track on a surface can carry curves. We let cone2(τ ) be the closed cone in
H2(M , ∂M) positively generated by classes that are represented by the surfaces that τ
carries. We call cone2(τ ) the cone of carried classes.

In a bit more detail, the branched surface τ (2) has a branched surface fibered neigh-
borhood N = N(τ (2)) foliated by intervals such that collapsing N along its I-fibers
recovers τ (2). The transverse orientation on the faces of τ orients the fibers of N, and a
properly embedded oriented surface S in M is carried by τ (2) if it is contained in N where
it is positively transverse to its I-fibers. We also say that S is carried by τ .

A carried surface S embedded in N transverse to the fibers defines a non-negative
integral weight on each face of τ given by the number of times the I-fibers over that face
intersect S. These weights satisfy the matching (or switch) conditions stating that the sum
of weights on one side of an edge match the sum of weights on the other side. Conversely,
a collection of non-negative integral weights satisfying the matching conditions gives rise
to a surface embedded in N transverse to the fibers in the usual way. More generally, any
collection of non-negative weights on faces of τ satisfying the matching conditions defines
a non-negative relative cycle giving an element of H2(M , ∂M; R) and we say that a class
is carried by τ (2) if it can be realized by such a non-negative cycle. Hence, cone2(τ ) is
precisely the subset of H2(M , ∂M) consisting of carried classes.

The following theorem is a summary of results in [LMT20, Theorems 5.1 and 5.12].
For its statement, we let cone1(�) ⊂ H1(M; R) denote the cone positively spanned by the
direct cycles of the dual graph �. We call cone1(�) the cone of homology directions of
τ and note that it is equal to the cone positively generated by all closed curves which are
positively transverse to τ (2) at each point of intersection. We write cone∨1 (�) for its dual
cone in H 1(M; R), which consists of classes that are non-negative on all dual cycles.

THEOREM 2.2. (Cones and Thurston norm) For any veering triangulation τ of M, the
following hold.
(1) The cone of homology directions cone1(�) is positively generated by ι(supp(P�)),

the image of the support of P�.
(2) After identifying H 1(M; R) = H2(M , ∂M; R), cone2(τ ) = cone∨1 (�).
(3) There is a cone R+Fτ over a (possibly empty) face Fτ of the Thurston norm ball in

H2(M , ∂M) such that cone2(τ ) = R+Fτ .

So, for example, a class α ∈ H2(M , ∂M) is carried by τ if and only if 〈α, ι(c)〉 ≥ 0 for
each simple directed cycle c of �.

3. Dynamic planes and flow cycles
In this section, we introduce and develop the essential features of dynamic planes of the
veering triangulation τ . A dynamic plane is a combinatorial version of a leaf of the weak
stable foliation of a pseudo-Anosov flow but with additional structure coming from its
interaction with the dual and flow graphs of τ . The main results are Proposition 3.15, which
says that all but finitely many dual cycles (and their multiples) are homotopic to flow cycles,
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FIGURE 5. The maw vector field (in colour online).

and Lemma 3.17, which combinatorially characterizes when dual cycles are homotopic
within the quotient of a dynamic plane. Both these technical facts will be essential in §6
where we describe precisely how the flow graph codes the orbits of the dual flow.

3.1. Descending sets and dynamic planes. For any branched surface B, let N(B) denote
a regular neighborhood of B foliated in the standard way by intervals. Let

coll : N(B)� B

be the map which collapses all the intervals.
If B is a branched surface with generic branching, then we denote its branch locus, that

is, its collection of non-manifold points, by brloc(B). The maw vector field is a vector
field tangent to B defined on brloc(B) that always points from the 2-sheeted side to the
1-sheeted side. Note that the maw vector field is defined even at triple points; see Figure 5.

A descending path in B is an oriented immersed curve in B whose tangent vector at each
point of intersection with brloc(B) is equal to the maw vector field at that point.

We next consider the stable branched surface Bs . Note that, up to homotopy, any closed
descending path in Bs is negatively transverse to τ (2) (see Figure 4), and is therefore
homotopically non-trivial in M [SS20, Theorem 3.2]. Let B̃s , �̃, and �̃ be the preimages
of Bs , �, and �, respectively, in the universal cover M̃ of M.

Let σ be a sector of the branched surface B̃s . The descending set of σ , denoted �(σ),
is defined to be the union of all sectors σ ′ of B̃s such that there exists a descending path
from σ to σ ′. Before describing �(σ) in detail, recall that by a path, ray, or line in � or �,
we always mean a directed path, ray, or line. If � is a branch line in �̃ through a vertex v,
then the negative subray of � at v is the portion of the branch line � that lies below v.

LEMMA 3.1. (Structure of �(σ)) Let σ be a B̃s-sector.
(a) The descending set �(σ) is diffeomorphic to a closed quarter plane bounded by the

negative subrays of the two branch lines passing through the top vertex v of σ .
(b) If w is a �̃-vertex contained in �(σ), then any �̃-ray starting at w intersects ∂�(σ).
(c) If w is a �̃-vertex contained in int(�(σ)), there is a unique outgoing �̃-edge incident

to w contained in�(σ). The unique �̃-ray starting at w lying in�(σ) terminates on
∂�(σ).
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Before the proof, let us establish a few facts that we will need. By [SS19, Theorem 8.1],
the branched surface Bs fully carries a unique two-dimensional lamination Ls without
parallel leaves such that L is essential and each leaf of Ls is either a plane, an π1-injective
annulus, or a π1-injective Möbius band. Denote by L̃s the lamination lifted to the universal
cover M̃ whose leaves are planes. Note that since L̃s is carried by B̃s , each leaf inherits a
tessellation corresponding to the sectors of B̃s it traverses.

It is clear from the branching structure of Bs (cf. [SS19, Remark 8.27]) that if � is a
leaf carried by B̃s such that coll(�) contains σ , and if there is a descending path from σ to
another sector σ ′, then σ ′ is also contained in coll(�). Consequently, we have that coll(�)
contains the descending set of every sector traversed by �.

We also observe that each leaf of L̃s traverses a sector of B̃s at most once. For if � is
a leaf traversing a sector σ twice, a short segment contained in a regular neighborhood of
σ connecting two points of � identified under coll may be homotoped to lie entirely in �.
Since the branched surface Bs is laminar (as observed in [SS19]) and hence essential, this
contradicts [GO89, Theorem 1.d] (see also [GO89, Lemma 2.7]). We conclude that for
any leaf � of L̃s , coll(�) is a plane embedded in B̃s.

Proof of Lemma 3.1. We begin by using the above discussion to prove part (a). Let � be
any leaf of L̃s that traverses σ . Then P = coll(�) is a plane tessellated by sectors of B̃s that
contains the descending set �(σ). From the local picture of P around vertices of �̃ shown
in Figure 7, we see that for each vertex w of P, P contains the negative subrays of both
branch lines through w. So if v is the vertex at the top of σ , then the branch lines through
v are proper lines contained in P and determine a quarter plane Q as in the statement of
part (a). Hence, it suffices to show that Q = �(σ).

Clearly, �(σ) ⊂ Q, since no descending paths starting at σ can cross the branch lines
through v.

For the reverse containment, let Sn denote the set of B̃s-sectors reachable from σ

by a descending path traversing at most n sectors. Then σ = S1 ⊂ S2 ⊂ S3 ⊂ · · · is an
exhaustion of �(σ).

CLAIM 3.2. If w is a vertex in the boundary of Sn, then either w is in the interior of Sn+1

or it lies on one of the two branch lines through v and hence on the boundary of Q.

Proof of claim. The proof is by induction with the case of S1 = σ being by inspection (see
Figure 6).

Now suppose that w is in the boundary of both Sn and Sn+1. By the inductive hypothesis,
we may assume that w is a vertex of a sector σ ′ ⊂ Sn \ Sn−1. In particular, w is not the top
vertex of σ ′. If w is not joined by a �̃-edge to the top of σ ′, then again it is clear from the
picture (Figure 6) that w is in the interior of Sn+1, which contradicts our assumption.

Otherwise, w is joined by an edge e to the top vertexw′ of σ ′ and we say that w is one of
the two side vertices of σ ′. Note that e is in the boundary of Sn, since otherwise we would
again have that w is in the interior of Sn+1.

It suffices to show that e is an edge of a branch line through the vertex v. Note that w′ is
a vertex of some sector σ ′′ in Sn−1 since any descending path from σ to σ ′ passes through
one of the two top edges of σ ′. Since w is not in the interior of Sn+1, we must have that σ ′
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FIGURE 6. The descending set of a sector σ , and part of its intersection with �̃ (in colour online).

FIGURE 7. Local pictures of vertices in Q and incident �̃-edges (red) and �̃-edges (green) in the proof of
Lemma 3.1. All edges are directed upward. Note that there are always incoming �̃-edges (the number may vary)

and a unique outgoing �̃-edge (in colour online).

is attached to σ ′′ along the edge e′, where e′ is the �̃-edge at the top of σ ′ that is not e. By
the induction hypothesis, eitherw′ is in the interior of Sn orw′ is contained in a branch line
through v. However, if w′ is in the interior of Sn, then e is also in the interior of Sn, which
is a contradiction. Hence, we must have that w′ lies along a branch line though v. Since e′
is in the interior of Sn, this branch line continues along e, establishing that it contains w.
This completes the proof of Claim 3.2.

We conclude that �(σ) is a subcomplex of the quarter plane Q (with its locally finite
tessellation by sectors) and that ∂�(σ) = ∂Q. It follows easily thatQ = �(σ) as required.

For part (b), again let Sn denote the set of B̃s-sectors reachable from σ by a descending
path traversing at most n sectors. If w is a vertex of Sn, then any �̃-path in �(σ) remains
within Sn. Since Sn has finitely many vertices and �̃-rays are simple, each �̃-ray starting
at w eventually meets ∂�(σ). This proves part (b).

Considering a picture makes the first claim of part (c) clear; see Figure 7.
The same argument as that for part (b) shows that the �̃-ray starting from any point in

�(σ) must meet ∂�(σ). This completes the proof of Lemma 3.1.

Next we describe and analyze a canonical set associated to a �̃-ray. For a vertex v or
directed edge e of �̃, we set σ(v) and σ(e) to be the sector into which the maw vector field
points at v or along the interior of e, respectively. So if v is the terminal vertex of the edge
e and σ is the unique sector of B̃s whose top vertex is v, then σ(v) = σ(e) = σ .
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FIGURE 8. If there is a path in �̃ from u to v (shown in black), then there is a descending path in B̃s from σ(v) to
σ(u) (shown in blue) (in colour online).

LEMMA 3.3. Suppose there exists a directed path in �̃ from u to v. Then �(σ(u)) ⊂
�(σ(v)).

Proof. The lemma follows by induction on the length of the path from u to v. The inductive
step is immediate from the observation that if e is an edge of �̃ with initial vertex u
and terminal vertex v, then there is a descending path from σ(v) = σ(e) to σ(u). Hence,
�(σ(u)) ⊂ �(σ(v)).
Remark 3.4. The descending path that the proof of Lemma 3.3 produces can be obtained
by pushing the dual path from u to v slightly in the direction of the maw vector field and
reversing orientation, as shown in Figure 8.

Let γ be a �̃-ray, and set

D(γ ) =
⋃
v∈γ

�(σ(v)),

where the unions are taken over all �̃-vertices v traversed by γ . By Lemma 3.3, it follows
that D(γ ) is a nested union of quarter planes. If γ is not eventually a branch ray of �̃,
then D(γ ) is evidently diffeomorphic to R2 and we say that D(γ ) is the dynamic plane
associated to γ . By construction, D(γ ) is properly embedded in B̃s . If γ is eventually a
branch ray, thenD(γ ) is diffeomorphic to a half plane and we say thatD(γ ) is the dynamic
half plane associated to γ .

We remark that any dynamic plane D is tessellated by sectors of B̃s and hence it makes
sense to speak of �̃-paths or �̃-paths in D. Moreover, �̃ ∪ �̃ determine a triangulation
of D.
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FIGURE 9. An AB strip (left) and an infinite AB strip (right), with �̃-edges in red and �̃-edges in green. Edges
are directed upward (in colour online).

Remark 3.5. Since σ(v) = σ(e) for an edge e of �̃ with terminal vertex v, we also have

D(γ ) =
⋃
e∈γ

�(σ(e)),

where the union is over edges traversed by γ .

PROPOSITION 3.6. (Basics of dynamic planes) Let D be a dynamic plane.
(a) For any edge e of D, �(σ(e)) ⊂ D.
(b) If γ is any �̃-ray contained in D that is not eventually a branch ray, thenD = D(γ ).
(c) The stabilizer of D is either infinite cyclic or trivial.

Proof. First note that since D is a plane properly embedded in B̃s , if D contains e, then
D contains σ(e). This follows since σ(e) is the sector on the 1-sheeted side of e. Next,
suppose thatD = D(ψ) for some �̃-rayψ that is not eventually a branch ray. If σ ⊂ D(ψ),
then directly from the definitions we have that �(σ) ⊂ D(ψ). Taken together, these two
facts prove part (a).

For part (b), note that part (a) implies thatD(γ ) ⊂ D (see Remark 3.5). Since these are
each planes properly embedded in B̃s , equality also holds.

For part (c), we appeal to the discussion preceding the proof of Lemma 3.1. Since the
dynamic plane D is carried byBs , it determines a unique leaf �̃ of L̃s such thatD = coll(�̃).
Hence, the stabilizer of D is equal to the stabilizer of �̃ and the claim follows from the fact
that the image of �̃ in M is either a plane, annulus, or Möbius band.

Recall that if γ is a �̃-path or ray contained in D which makes only AB turns, we say
γ is an AB path or AB ray. Then each two consecutive �̃-edges of γ determine a triangle
in the triangulation of D by edges of �̃ and �̃, and the third edge of this triangle is a
�̃-edge. The union of all these triangles is a subset S of D diffeomorphic to [0, 1]× [0, 1]
or [0, 1]× [0,∞) called an AB strip or infinite AB strip, respectively. See Figure 9.

The following lemma essentially says that �̃-rays in a dynamic plane either converge or
are separated by AB strips.

LEMMA 3.7. (Dynamics of dynamic planes) Let D be a dynamic plane. If α and β are
�̃-rays contained in D, then either α and β eventually coincide or both eventually lie on
the boundaries of infinite AB strips.
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FIGURE 10. AB strips are precisely the obstruction to contraction under ‘flowing’ forward in a dynamic plane
(in colour online).

FIGURE 11. The flow rays from q1 and r1 immediately collide (left) unless r1 is a corner vertex of the sector s
above q1 (right) (in colour online).

Proof. Suppose that D = D(γ ), where γ is a �̃-ray which is not eventually a branch
ray, and let p1, p2, . . . be the sequence of vertices where γ makes AB turns. Define
�i = �(σ(pi)), so that �1 ⊂ �2 ⊂ �3 ⊂ · · · is the exhaustion of D(γ ) by descending
sets. Let a and b be vertices of α and β, respectively. By truncating and reindexing the
exhaustion {�i}, we can assume that a and b lie in�1. Hence by Lemma 3.1(b), there exist
vertices a1 of α and b1 of β lying on the boundary of�1, and a1 and b1 are a finite distance
apart in the combinatorial metric on ∂�1.

Let q1, r1 ∈ ∂�1 be vertices that are connected by an edge from q1 to r1 with �̃-rays
intersecting ∂�2 in q2 and r2 respectively. We claim that q2 �= r2 if and only if the
corresponding ray segments cobound an AB-strip (see Figure 10). Indeed, if s is the sector
in D above the �̃-edge connecting q1 and r1, then the �̃-rays from q1 and r1 immediately
converge unless r1 is a corner vertex of s as in Figure 11. Applying this analysis repeatedly
proves the claim. In other words, ‘flowing’ forwards in D weakly contracts distance in ∂�i ,
with equality if and only if the flow segments are separated by a union of AB strips. This
implies that either the rays from a1 and b1 eventually coincide, or they both eventually
meet AB rays.

We next require a basic lemma about the structure of B̃s . Recall that each B̃s-sector has
two sides, a top vertex and bottom vertex, and two corner vertices. Each side of a sector is
composed of two branch segments, one which begins at the bottom vertex and terminates at
a corner vertex, and one which consists of precisely one �̃-edge which begins at the corner
vertex and terminates at the top vertex. Each of these vertices corresponds to a triple point
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FIGURE 12. Each triple point in Bs comes with a veer (in colour online).

FIGURE 13. Some situations allowed by Lemma 3.8, where x and y denote opposite veers. Note that the veers of
top vertices are not governed by the lemma (in colour online).

of B̃s , and has a right or left veer as shown in Figure 12. This veer agrees with the veer of
the edge atop the unique tetrahedron containing the triple point (compare with Figure 3).

In this language, we have the following lemma, which is a reformulation of [LMT20,
Fact 1]. For an illustration of the behavior described in the lemma, see Figure 13.

LEMMA 3.8. Let A be a Bs-sector. The bottom vertex and two corner vertices have
identical veer. All other vertices in ∂A, except possibly the top vertex, have the opposite
veer.

Recall from above that an infinite AB strip is a subset of a dynamic plane homeomorphic
to [0, 1]× [0,∞), determined by an AB ray. The subsets of an infinite AB strip
corresponding to {0, 1} × [0,∞) are �̃-rays. Similarly, we define a bi-infinite AB strip
to be a subset of a dynamic plane homeomorphic to [0, 1]× R determined by an AB line.
The boundary components of a bi-infinite AB strip are �̃-lines.

LEMMA 3.9. Let D be a dynamic plane. The following are equivalent:
(i) D contains an infinite AB strip;

(ii) D contains a bi-infinite AB strip;
(iii) D contains the lift of an AB-cycle.

Proof. For the equivalence of conditions (i) and (ii), note that every vertex in D has a
unique backward AB ray (Figure 7), so every infinite AB strip is part of a bi-infinite AB
strip. Since every AB line covers an AB-cycle, the other implications are clear.
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FIGURE 14. A picture of the set S in the proof of Proposition 3.10. The �̃-edges are shown in green. By
Lemma 3.8, each vertex in the interior of S has the same veer. The highlighted branching segment passes through

five consecutive non-hinge tetrahedra, corresponding to the vertices colored black (in colour online).

Recall that each τ̃ -edge e has two fans, consisting of the tetrahedra for which e is a
0-edge lying on a particular side of e. The length of a fan in τ̃ is the number of tetrahedra
it contains. We can also define fans and their lengths for edges of τ by lifting to τ̃ .

We denote the length of the longest fan in τ by δτ .

PROPOSITION 3.10. (The AB region) Suppose that D contains a bi-infinite AB strip. Then:
(1) the number of bi-infinite AB strips in D is less than δτ ; and
(2) the union DAB of all bi-infinite AB strips in D is diffeomorphic to [0, 1]× R.

The union DAB of all bi-infinite AB strips in D, as in Proposition 3.10, will be called
the AB region of D.

Proof. By Lemma 3.7, if D contains n or more infinite AB strips, then there is a subset
S of D that is obtained by gluing n infinite AB strips along their [0,∞) boundaries. See
Figure 14. By Lemma 3.8, all the vertices in the interior of S have identical veer, so if v
is a vertex in the interior of S, then v lives in a tetrahedron whose top and bottom edges
have the same veer. In other words, every vertex in the interior of S lies in a non-hinge
tetrahedron. Any branch line traversing S therefore must pass through n− 1 consecutive
non-hinge tetrahedra.

We now need a combinatorial fact about veering triangulations.

CLAIM 3.11. If a branch line γ passes through consecutive non-hinge tetrahedra
T1, . . . , Tk , then the Ti all lie in the fan of a single edge e.

Proof. Suppose without loss of generality that the top and bottom edges of T1 are right
veering. The branching line γ passes through two faces of T1 which meet along a left
veering edge E of T1 by [LMT20, Lemma 4.5]. We call these faces f1 and f2, where f1 is
a bottom face for T1 and f2 is a top face for T1. If f3 is the next face passed through by γ ,
[LMT20, Lemma 4.5] again implies that f2 and f3 meet along a left veering edge of T2.
Since e is the only left veering edge of f2, we conclude that f1, f2, f3 are all incident to e,
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and that T1 and T2 lie in the same fan of e. Continuing in this way shows that each Ti is in
this fan. This completes the proof of Claim 3.11.

Returning to the proof of Proposition 3.10: since any fan of length > 1 containing
non-hinge tetrahedra contains two distinct hinge tetrahedra and any non-hinge tetrahedron
is part of such a fan (see e.g. [FG13, Observation 2.6]), Claim 3.11 implies that there exists
a fan of τ with size at least n+ 1. Hence, the number of bi-infinite AB strips in D is less
than the length δτ of the longest fan in τ , proving item (i).

Now suppose that D contains exactly n bi-infinite AB strips, and let g be the generator
of the stabilizer of D. Let s and s′ be two adjacent such strips in the sense that there are no
strips between them. It is clear that g permutes the set of bi-infinite AB strips in D; let g′
be a power of g preserving s and s′. By Lemma 3.7, two of the boundary �̃-lines of s and
s′ eventually coincide. Since s ∪ s′ is g-invariant, these boundary �̃-lines must be equal.
Applying this argument n− 1 times establishes item (ii).

Remark 3.12. If a dynamic plane D contains at least two bi-infinite AB strips, then it
corresponds to a region of the triangulation that Agol and Tsang call a wall in their
work-in-progress [AT21]. A key property, which they point out, is that these regions
prevent� from being strongly connected. From our perspective, this can be seen by noting
that when there are at least two AB strips in D, there will be at least one component of
�̃ ∩D which is a properly embedded line. Such a line descends to a �-cycle in M that is
a circular source in the sense that it has no other incoming �-edges.

We say that two �̃-rays are asymptotic if they eventually agree. It is clear that
asymptoticity is an equivalence relation on �̃-rays. We define the width of a dynamic
plane D, denoted w(D), to be the number of asymptotic classes of �-rays contained in D.
Lemma 3.7 and Proposition 3.10 imply the following.

COROLLARY 3.13. (Width of dynamic planes) Let D be a dynamic plane. The widthw(D)
of D satisfies

w(D) = 1+ (# of bi-infinite AB strips in D)

≤ δτ .

The following lemma characterizes when the quotient of a dynamic plane is an annulus
in terms of the veering combinatorics.

LEMMA 3.14. Let γ be a �-cycle which is not a branch curve. Let γ̃ be a lift to M̃ , and
let g ∈ π1(M) generate the stabilizer of γ̃ . Then L = D(γ̃ )/〈g〉 is an annulus if and only
if γ has an even number of AB-turns.

Proof. In [LMT20, Lemma 5.6], it is shown that γ has an even number of AB-turns
if and only if the pullback of the tangent bundle over Bs is orientable. However, the
immersion γ → Bs factors through the immersion L→ Bs , and so γ has an even number
of AB-turns if and only if L is orientable. From this, the lemma easily follows.

The following proposition is a key technical result of this section.
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PROPOSITION 3.15. (� sees most �-cycles) Let γ be a �-cycle. Then γ is either
homotopic to a �-cycle or to an AB-cycle of odd length.

In particular, the dual cycles that are not homotopic to flow cycles form a finite set of
homotopy classes, up to positive multiples.

Proof. In the proof of [LMT20, Proposition 5.7], it is explained that every branch curve
is homotopic to a �-cycle. Hence, we can assume that γ is not a branch curve. It follows
that any lift of γ to M̃ determines a dynamic plane.

Let γ̃ be a lift of γ to M̃ and letD = D(γ̃ ). Let g be the deck transformation of M̃ that
generates the stabilizer of γ̃ and translates γ̃ in the positive direction. Then gD = D, so γ
lifts to the core of L = D/〈g〉, which is either an open annulus or open Möbius band. We
abuse notation slightly by referring to the images of �̃ and �̃ in L as � and �.

If the width w(D) is equal to 1 and ρ̃ is any �̃-ray contained in D, then ρ̃ and g · ρ̃
eventually coincide. This follows from Lemma 3.7 and the fact that if w(D) = 1, then
D has no infinite AB strips (Lemma 3.9). It follows that ρ̃ is eventually g-periodic, and
projects to a �-cycle ρ homotopic to the core of L. Hence, γ is homotopic to ρ, proving
the claim in this case.

If w(D) > 1, then D has a non-empty AB region DAB. Let LAB denote the image of
this AB region in L. Note that since DAB is g-invariant, LAB is an annulus or Möbius
band if and only if L is an annulus or Möbius band, respectively. We finish the proof by
considering three cases.
• If LAB is an annulus, then there are w(D) parallel �-cycles in LAB homotopic to the

core of L, so γ is homotopic to a �-cycle.
• If LAB is a Möbius band and w(D) is odd, then there is a single �̃-line bisecting the

AB region of D which projects to a �-cycle in L and which is homotopic to the core
of L, so γ is homotopic to a �-cycle.

• Finally, if LAB is a Möbius band and w(D) is even, then there is a bi-infinite AB
strip bisecting the AB region of D whose core AB cycle projects to a �-cycle in L
homotopic to the core of L. By Lemma 3.14, this AB cycle has odd length, so γ is
homotopic to an odd AB cycle.

3.2. Homotopy in dynamic planes. We conclude this section with an additional fact,
Lemma 3.17, about dynamic planes that will be necessary in §6. In its proof, we will use
the following lemma.

LEMMA 3.16. If γ1 and γ2 are distinct directed paths in �̃ with common endpoints, then
each γi contains an anti-branching turn.

Proof. Let u and v be the initial and terminal vertices of γ1 and γ2, respectively. By
shortening the paths, we may assume u and v are the only common vertices of γ1 and γ2.
Let D be a dynamic plane containing γ1 and γ2, and let A be the disk component of
D \ (γ1 ∪ γ2). Considering the local structure of the branch locus of B̃s , we see that the
maw vector field must point into A along the terminal edges of γ1 and γ2, and out of A
along the initial edges of γ1 and γ2. Since the maw vector field switches between pointing
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inward and outward at exactly the anti-branching turns, we conclude that each γi contains
an odd, and in particular non-zero, number of anti-branching turns.

As a consequence, a path in �̃ that deviates from a branch line can never return to that
branch line.

Let D be a dynamic plane stabilized by some g ∈ π1(M). As before, let L denote the
quotient D/〈g〉. Consider a �-cycle γ contained in L. If there is a sector σ of L such that
γ runs along a side of σ from its bottom vertex to its top vertex, then we may perform a
homotopy of γ , supported on σ , that pushes γ from one side of σ to the other side of σ . We
refer to this homotopy as sweeping across the sector σ . See Figure 27, where it is shown
that sweeping across a sector is a homotopy through curves that are transverse to τ (2).

LEMMA 3.17. Let D be a dynamic plane stabilized by g ∈ π1(M) \ {1}. Let γ̃1 and γ̃2

be g-invariant �̃-lines contained in D and assume that neither is a branch line. Then
γ1 = γ̃1/〈g〉 is homotopic to γ2 = γ̃2/〈g〉 in L = D/〈g〉 by a homotopy that sweeps across
sectors.

Proof. The embedded dual cycles γ1, γ2 in L either intersect or not. If they intersect
and are distinct, there is at least one connected component U of L− (γ1 ∪ γ2) with
closure homeomorphic to a disk. Let p1 and p2 be the two segments of γ1 and γ2 which
cobound U. By Lemma 3.16, each of p1 and p2 contains an anti-branching turn.

Let (d1, d2) be the first anti-branching turn of, say, p1. Since U is tiled by sectors, it
must be the case that p1 traverses an entire side of σ(d2). When we sweep γ1 across σ(d2),
we shrink the region U by 1 sector. It follows that after sweeping across finitely many
sectors, we can homotope γ1 to γ2.

Next, suppose that γ1 and γ2 do not intersect. Note that this is not possible if L is a
Möbius band and so we may assume that L is an annulus. Then there is a unique component
of L− (γ1 ∪ γ2) with compact closure, which we also call U; note that U is an annulus
with boundary components γ1 and γ2.

Let (e1, e2) be an AB turn of γ2 such that σ(e2) ⊂ U , that is, the maw vector field points
into U along e2. Such a turn exists since γ2 has a non-zero even number of anti-branching
turns by Lemma 3.14. Let � be the branch line through e1. We claim that � intersects γ1 in
addition to γ2. To see this, first note that the negative subray of � from e2 (which is entirely
contained in L) is not entirely contained in U, since U is tiled by finitely many sectors.
Further, this negative subray cannot return to γ2 by Lemma 3.16.

Therefore, the negative subray of � from e1 must intersect γ1, as in Figure 15. Let p be
the first vertex of intersection between this negative ray and γ1. Let (f1, f2) be the first
anti-branching turn of γ1 after p, and let σ = σ(f2). If �′ is the branching line through f1,
then the bottom of σ can lie no lower on �′ than p. Hence, γ1 traverses the entire left side
of σ and can be homotoped across σ , shrinking the size of U by one sector. After applying
this argument finitely many times, we are finished.

4. Pseudo-Anosov flows and veering triangulations
In this and subsequent sections, we will be primarily interested in a pseudo-Anosov
flow ϕ without perfect fits on a closed 3-manifold M , as well as the manifold M
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FIGURE 15. Notation from the proof of Lemma 3.17 (in colour online).

obtained by removing from M the singular orbits of ϕ. In this setting, the construction
of Agol–Guéritaud (Theorem 4.7) produces a veering triangulation τ on a manifold N
that is homeomorphic to M. Here we review some necessary background and terminology,
with the essential properties of ϕ summarized in Lemma 4.2. In §5, we will show τ can be
realized as a triangulation of M such that flow lines of ϕ are positively transverse to τ (2).

First, let ϕ be a pseudo-Anosov flow on the closed 3-manifold M . We refer the reader
to [FM01, §4] for the precise definition, and informally summarize the features of ϕ as
follows:
• ϕ has finitely many (and at least one) singular periodic orbits where the return map

on a transverse disk is locally modeled on a pseudo-Anosov surface homeomorphism
near an (n ≥ 3)-pronged singularity;

• the orbits of the flow are C1 and ϕ is smooth away from its singular orbits;
• there is a pair of mutually transverse two-dimensional singular foliations, called the

stable and unstable foliations, whose leaves intersect in exactly the orbits of ϕ, such
that orbits in a leaf of the stable foliations are exponentially contracted under ϕ and
the orbits in a leaf of the unstable foliation are exponentially expanded.

A non-singular closed orbit γ of ϕ is orientable or untwisted if the stable leaf containing
it is homeomorphic in the path topology to an annulus. Otherwise, the orbit is called
non-orientable or twisted and the stable leaf is a Möbius band.

Let Q denote the flow space of ϕ for M , that is, the space obtained by lifting
to the universal cover M̃ and collapsing flow lines of the lifted flow. According to
Fenley–Mosher [FM01, Proposition 4.1], Q is homeomorphic to the plane and the lifts
of the stable/unstable foliations of ϕ project to a pair of transverse singular foliations
Fs/u on Q. The points of Q that are the images of (lifted) singular orbits of ϕ
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are called the singularities of Q. Note that there is a natural action π1(M)� Q by
orientation-preserving homeomorphisms, where the orientation on Q is induced by the
fixed orientation on M and the orientation on flow lines.

Similarly, we let
◦P denote the flow space of M, defined by the same procedure,

which can also be obtained by taking the universal cover of Q minus its singularities.
From this, we see that

◦P is also homeomorphic to the plane. Moreover, this perspective
allows us to define the completed flow space P of M as the corresponding branched
cover P→ Q infinitely branched over the singularities of Q. We also call the branch
points of this map the singularities of P. Since singularities of Q are discrete, so are
the singularities of P. Throughout, we extend terminology for Q to P by lifting. For
example, we continue to denote the lifted singular foliations on P by Fs/u. There is
also an orientation-preserving action π1(M)� P by homeomorphisms that makes the
branched cover P→ Q equivariant with respect to the homomorphism π1(M)→ π1(M).
The projections to the flow space M̃ → ◦P and M̃ → Q are oriented line bundles over the
plane.

A rectangle R in the flow space Q or P is a topological closed disk with no singularities
in its interior with boundary consisting of four segments of leaves of Fs and Fu. The
boundary of R necessarily consists of two stable leaf segments, which we call the vertical
boundary of R and denote ∂vR, and two unstable leaf segments, which we call the
horizontal boundary and denote ∂hR. (Note that by convention, we draw F s vertically
and Fu horizontally.) A maximal rectangle is a rectangle that contains a singularity in the
interior of each of its sides, and so it is maximal with respect to inclusion.

As an informal definition, we say that a leaf λu of Fu and a leaf λs of Fu form a perfect
fit if they are disjoint but ‘meet at infinity.’ We say that ϕ has no perfect fits if its flow space
Q has no perfect fits. We omit the precise definition of a perfect fit (see [Fen12, Definition
2.2]) because, given the fact that singular leaves are dense in Q (see Lemma 4.2), no perfect
fits is equivalent to the condition that every sequence of nested rectangles is contained in
a maximal rectangle. The reader can take this as the definition of no perfect fits. It is also
proven by Fenley [Fen99a, Theorem 4.8] that when ϕ has no perfect fits, each g ∈ π1(M)

fixes at most one point of Q (again see Lemma 4.2). Existence of maximal rectangles and
uniqueness of fixed points are the essential properties of ϕ that we will use throughout this
paper.

Convention 4.1. (No perfect fits) Henceforth, we will assume that the pseudo-Anosov flow
ϕ has no perfect fits.

Continuing with terminology, we define an edge rectangle Q to be a rectangle in
either Q or P with singularities at two of its (necessarily opposite) corners. (These were
called spanning rectangles in [MT17]). Each edge rectangle Q has a veer defined as
follows: if the singularities of Q are at its SW and NE corners, then Q is right veering.
Otherwise, Q is left veering. Here, the position of the singular vertices is determined
by an orientation-preserving embedding of Q into R2 for which the restricted foliation
F s ∩Q maps to vertical lines and Fu ∩Q maps to horizontal lines. The veer of Q is well
defined and an invariant of the π1-actions on Q and P since these actions are orientation
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FIGURE 16. From left to right we see an edge rectangle, a face rectangle, and a maximal rectangle.

FIGURE 17. Some ways R2 can lie above R1.

preserving. A face rectangle is a rectangle with a singularity at one of its corners and
singularities in the interiors in each of its sides not containing the singular corner. Note
that each face rectangle contains exactly three edge rectangles and is contained in exactly
two maximal rectangles. Moreover, each maximal rectangle contains the face and edge
rectangles determined by the pairs and triples of its singularities. See Figure 16.

We next define a partial order on rectangles in Q or P. We call rectangles R1 and R2

ordered if their interiors intersect but do not contain any of each other’s corners. Assuming
R1 and R2 are ordered, if the interior of R2 meets ∂hR1, then we say that R2 is taller
than R1. If the interior of R1 meets ∂vR2, then R1 is wider than R2. Finally, for ordered
rectangles, we say that R2 lies above R1 if R1 is not taller than R2, and R1 lies below R2 if
R2 is not wider than R1. Put differently, R2 lies above R1 if they are ordered and R2 ∩ ∂R1

contains a segment in each component of the horizontal boundary of R1. We say that R2

lies strictly above R1 if R2 is taller than R1 and R1 is wider than R2.
We note that if R1 and R2 are distinct maximal rectangles, then R2 lies above R1 if and

only if R2 is taller than R1 if and only if R1 is wider than R2. See Figure 17.
Properties of the flow ϕ translate to properties of the actions π1(M)� Q and

π1(M)� P. We record these in the following lemma that summarizes results from several
papers of Fenley–Mosher, Fenley, and Mosher.

LEMMA 4.2. (Properties of the flow space) With M , ϕ, M , Q, P as above, the following
hold.
(1) The foliations Fs/u are transverse singular foliations of Q with discrete singularities,

no saddle connections, and dense singular leaves.
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(2) The stabilizer of any leaf of Fs/u is either trivial or infinite cyclic, and each g �= 1 in
a leaf stabilizer fixes exactly one point in that leaf.

(3) The orbit of any periodic point (that is, point with non-trivial stabilizer) in Q is
discrete and periodic points are dense. Moreover, since ϕ has no perfect fits, each
g �= 1 fixes at most one point in Q.

(4) Suppose that g fixes a point p of Q, chosen so that g translates the g-periodic flow
line projecting to p in its positive direction.
• If p is non-singular, then for any edge rectangle or maximal rectangle R

containing p, g(R) lies strictly above R.
• If p is singular and R is a maximal rectangle containing p in its boundary, then

either g(R) and R have disjoint interiors or g(R) lies strictly above R.
Moreover, the corresponding statements for the completed flow space P also hold.

Proof. The properties listed in item (1) have already been discussed except for the claim
that singular leaves are dense in Q. For this, we first recall that since M admits a
pseudo-Anosov flow without perfect fits, that is, not conjugate to the suspension of an
Anosov diffeomorphism, it is atoroidal [Fen03, Main theorem] (see also the remarks
following [Fen12, Theorem D]). Then, since M is atoroidal, the flow ϕ is transitive by
[Mos92a, Proposition 2.7]. Finally, [Mos92a, Proposition 1.1] and the sentence following
it imply that every leaf of the stable and unstable foliations on M is dense. Hence, the
singular leaves of Fs/u are dense in Q.

Next, the contracting/expanding dynamics within each leaf of the stable/unstable
foliations implies that each non-singular leaf with non-trivial π1 is either an annulus or
Möbius band containing a unique closed orbit (see [Mos92a, §1]). From this, item (2)
easily follows.

The first statement of item (3) follows from the fact that the orbit of a point in Q with
non-trivial stabilizer corresponds to a closed orbit of ϕ in M and that the lifts of such
an orbit to the universal cover M̃ form a discrete collection of flow lines. The second
statement follows from [Fen99a, Theorem 4.8]. There, Fenley shows that if g �= 1 fixes
distinct points p1 and p2, then these points are connected by a so-called chain of lozenges.
The existence of a lozenge in Q, which is essentially a rectangle with two ideal corners,
implies that Q has a perfect fit.

Finally, item (4) follows from considering first return maps to transverse sections of the
flow and using the expanding/contracting dynamics.

A more uniform version of item (4) will be useful later. Note first that it is easy
to obtain a collection of sections of the bundle M̃ → Q over the maximal rectangles,
which is equivariant by π1(M), since the group action is free on maximal rectangles (any
non-trivial element fixing a maximal rectangle fixes each of its singularities, contradicting
Lemma 4.2(3)).

LEMMA 4.3. WithM , ϕ, Q as above, fix a π1(M)-equivariant family of sections sR : R→
M̃ over the maximal rectangles in the flow space. Given ε > 0, there is a constant L such
that if J is an oriented segment in a non-singular flow line in M̃ of length at least L, so
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that its forward endpoint lies in the section over a rectangle R+ and its backward endpoint
lies in the section over a rectangle R− at distance at least ε from the boundary of R−,
then R+ lies above R−. In fact, both horizontal boundary components of R− pass through
the interior of R+ and both vertical boundary components of R+ pass through the interior
of R−.

Proof. Let p be the backward endpoint of J in sR−(R−). Let U be the maximal connected
set within R− containing p such that the flow from sR−(R−) to sR+(R+) is defined on
sR−(U). Then U must be a subrectangle, and the pseudo-Anosov properties of the flow,
particularly its expansion on the unstable (horizontal) foliation, implies that the width of
sR−(U) is bounded exponentially in −L. Thus, for L large enough (depending on ε), the
width is small enough that both vertical (stable) sides of ∂U are in the interior of R−.
Each horizontal side of ∂U must therefore lie in the boundary of R−, because otherwise it
would be an entire horizontal side of R+, which would imply the interior of R− contains a
singular point.

We conclude that R+ must cross R− from top to bottom, which proves the claim.

We next observe a few basic consequences. The first essentially says that an infinite
sequence of maximal rectangles which is increasing with respect to our partial order ‘lies
above’ limits to a leaf of the vertical foliation F s .

FACT 4.4. (Limits of rectangles) Suppose that (Ri)i∈Z is a sequence of distinct maximal
rectangles such that Ri+1 lies above Ri for each i.

Then
⋂
i≥0 Ri is a segment of the vertical foliation F s in R0 joining the components

of ∂hR0, and
⋂
i≤0 Ri is a segment of the horizontal foliation Fu in R0 joining the

components of ∂vR0.

Proof. Note that if Q =⋂
i≥0 Ri is a rectangle with non-empty interior, then we could

extend it vertically along leaves of F s to a rectangle Q′ with singularities in its horizontal
boundary. This follows from the density of singular leaves in Lemma 4.2. However, then
each Ri necessarily lies belowQ′ and so the singularities in the boundary of the Ri would
have to accumulate in Q. This contradicts the discreteness of singularities, again as in
Lemma 4.2.

The next lemma will be used to show that the veering triangulation discussed in the next
section has finitely many simplices.

LEMMA 4.5. There are finitely many maximal, face, and edge rectangles in Q (or P) up
to the π1-action.

Before giving the proof, we make a few more observations. Let s ∈ P be a singularity.
There are countably many singular leaves terminating at s; let �1 and �2 be two such
singular leaves. There is a unique component C of P− (�1 ∪ �2)whose frontier completely
contains �1 ∪ �2. If C contains no singular leaves terminating at s (that is, �1 and �2 are
‘neighbors’ at s), then the union � of C with �1 and �2 is called an orthant. The point s
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FIGURE 18. Part of a staircase with corner singularity s (in colour online).

is called the corner singularity of �. Note that if �1 and �2 bound an orthant, then one is
stable and the other is unstable.

Following Guéritaud, we say that a set S of edge rectangles is a staircase if there is
an orthant � ⊂ P with corner singularity s ∈ P such that S consists of exactly the edge
rectangles contained in � with one corner at s. See Figure 18. Each orthant determines a
unique staircase. Note that all the edge rectangles in a single staircase have common veer.
The staircase S has cyclic stabilizer 〈g〉 ≤ π1(M), coinciding with the stabilizer of �, and
our convention will be to choose the generator g so that gQ lies above Q for all edge
rectangles Q in S. Note, again by discreteness of singularities, there are only finitely many
edge rectangles in S that lie above Q and below gQ. This allows us to choose an indexing
. . . , Q−1, Q0, Q1, . . . of the elements of S so that Qi lies above Qj if and only if i ≥ j .

Proof of Lemma 4.5. We show that the π1-action is cofinite on the edge rectangles in Q.
This immediately implies the same result for P and the case of face rectangles and maximal
rectangles easily follows.

Since each edge rectangle lies in the staircase associated to each of its singular corners
and there are only finitely many orthants up to the π1 action, it suffices to show that for
each staircase S, its cyclic stabilizer 〈g〉 acts cofinitely on the edge rectangles of S. This
however is clear using the above ordering . . . , Q−1, Q0, Q1, . . . and the fact that g acts
on this sequence by increasing the index. This completes the proof.

Since we are interested in the punctured manifold M obtained by removing singular
closed orbits from the closed manifold M , we introduce some terminology to help remove
the need to make special arguments when dealing with the singular orbits. Each singular
orbit of M has some number of stable/unstable prong curves which are obtained by
intersecting the stable/unstable leaves through the singular orbit with the boundary of a
small neighborhood of the orbit. We consider the resulting prong curves as peripheral
curves in M.
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FIGURE 19. From a maximal rectangle to an ideal tetrahedron. The coorientation convention is indicated by
drawing the tetrahedron in the flow space as shown and coorienting its faces to point out of the page. The ideal

edges are curvy so as to emphasize that there is no canonical way to draw them.

We will use the unstable prong curves to replace the missing singular orbits in our
discussion below. For the flow ϕ on M, we denote by Oϕ the periodic orbits of the flow
and by O+ϕ the periodic orbits plus all positive multiples of the finitely many unstable
prong curves.

Remark 4.6. (The blown up flow on the compact model for M) One can also think of prong
curves in the following way. In [Fri82b, §5], Fried explains in detail how one can replace
any orbit of a flow by its sphere of normal directions, and obtain a natural flow on the
resulting manifold with boundary. If we apply this blowup operation to the singular orbits
of ϕ on M , we obtain a new flow ϕ∗ on a manifold M∗ with toral boundary. The flow ϕ∗
is tangent to ∂M∗ and, when restricted to the interior of M∗, conjugate to ϕ on M.

On each torus boundary component ofM∗, ϕ∗ has a finite even number of closed orbits,
half of which are attracting and half of which are repelling. The attracting orbits correspond
to unstable prong curves and the repelling orbits correspond to stable prong curves. While
this is an attractive picture, we will continue to work with the flow ϕ on the non-compact
manifold M.

4.1. The Agol–Guéritaud construction. Let ϕ be a pseudo-Anosov flow on M with
no perfect fits. Here we briefly describe the Agol–Guéritaud construction of a veering
triangulation on a manifold homeomorphic to M. We will not dwell on the details here
since in the next section, we establish the stronger fact that the veering triangulation can
be realized on M so that it is positively transverse to flow lines.

Associate to each maximal rectangle R in the completed flow space P a taut ideal
tetrahedron tR . We identify the ideal vertices of tR with the singularities of R so that the
edge rectangles contained in R correspond to edges of tR and faces rectangles correspond
to faces of tR . The two angle π edges of tR are the ones that correspond to edge rectangles
spanning the singularities in ∂hR and ∂vR, respectively. Moreover, the coorientations on
the faces of tR are determined by declaring that the two bottom faces of tR are the ones
which contain the π edge spanning the singularities in ∂vR. This convention is indicated
in Figure 19 by drawing the edge joining the singularities in ∂hR above the edge joining
the singularities in ∂vR.
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If faces f1 of tR1 and f2 of tR2 determine the same face rectangle in P (that is, the
rectangles spanned by their vertices are equal), then we glue together the corresponding
faces. Since each face rectangle is contained in exactly two maximal rectangles, the
resulting space Ñ is a manifold away from its 1-skeleton. By examining the ways that
an edge rectangle can be extended to a maximal rectangle, one similarly verifies that Ñ is
a manifold. It is also the case that Ñ is contractible.

Since the action of π1(M) on P preserves maximal, face, and edge rectangles, it
induces a simplicial action on Ñ which is cofinite on simplicies (Lemma 4.5). Because
distinct singularity stabilizers have trivial intersection (and π1(M) is torsion free), each
ideal simplex of Ñ has a trivial stabilizer and the action π1(M)� Ñ is discontinuous.
Moreover, because the peripheral subgroups of π1(M) precisely correspond to the
stabilizers of singularities in P, it follows that each of these subgroups acts peripherally
on Ñ . Hence, by a theorem of Waldhausen [Wal68, Corollary 6.5], the manifolds M and
N = Ñ/π1(M) are homeomorphic by a homeomorphism that is the identity on π1(M).

Let τ be the induced ideal triangulation of N. It is now straightforward to see that τ
is naturally a veering triangulation. The coorientations on the faces of τ come from the
convention discussed above and the taut structure on each tetrahedron comes from lifting
to Ñ and ‘projecting’ the tetrahedron to its corresponding maximal rectangle. Note that
we are not claiming that there is a single coherent projection from Ñ to

◦P, although we
will establish this in the next section. An edge is declared to be right veering if its lift to
Ñ determines an edge rectangle in P whose singularities are at its SW and NE corners.
Otherwise, it is left veering.

We summarize this as follows.

THEOREM 4.7. (Agol–Guéritaud) Suppose that ϕ is a pseudo-Anosov flow on M without
perfect fits. Then the above construction produces a veering triangulation τ on a manifold
N that is homeomorphic to M = M \ {singular orbits}.

If the veering triangulation τ comes from the above construction, we say that τ is
associated or dual to the flow ϕ.

5. Transversality to the flow
Theorem 4.7 constructs the veering triangulation from the structure of the flow space of a
pseudo-Anosov flow, but it does not make any claims about how the triangulation and flow
coexist in the same manifold. In this section, we show that one can make the two positively
transverse in the following sense.

THEOREM 5.1. Let ϕ be a pseudo-Anosov flow onM without perfect fits. Then the veering
triangulation τ can be realized in M so that τ (2) is a smooth cooriented branched surface
which is positively transverse to the flow lines of ϕ.

Starting with (N , τ) as constructed in the previous section, we will build a homeomor-
phismN → M which takes τ to the smooth transverse position of Theorem 5.1. The proof
has four main steps, which we will summarize.

https://doi.org/10.1017/etds.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.63


3056 M. P. Landry et al

5.1. Fibration on Ñ . We first produce an equivariant fibration p : Ñ → ◦P, which is
an orientation-preserving embedding on each face of τ̃ (2). The goal is to complete this
diagram with an equivariant homeomorphism:

Ñ M̃

◦P

← →←

→p
←→

q

where q : M̃ → ◦P is the map to the flow space of the flow.
The key step is Proposition 5.2, which gives an embedding of each edge of τ̃ in its

associated rectangle in
◦P, so that the three edges of every face have disjoint interiors. In

the suspension-flow case, this is simple because the flow space admits an invariant affine
structure in which every rectangle is Euclidean, and we may simply use straight lines in
Figure 19 (indeed, this is how the original veering picture is obtained). In the general
setting, there is no obvious way to do this—equivariance produces some tricky constraints
which are reflected in the argument we give in §5.5. Most of the effort of the proof goes
into this step. The map p is then produced in Proposition 5.11.

5.2. Compactification and a fiberwise map. We next build a preliminary map that takes
p-fibers in Ñ to q-fibers in M̃ . However, to have uniform control of it, we compactify
N and M and extend the map. We compactify N to a manifold N with toral boundary and
construct a map h : N → M that takes p-fibers to flow orbits, and boundary tori to singular
orbits. Thus, we obtain the diagram

P

N̂ M̂

N M

← →ĥ

←→
← →p

←→

←

→q

← →h

(5.1)

where N̂ and M̂ are completions of Ñ and M̃ obtained by lifting the compactifications.
The restriction of ĥ to each fiber may not be an embedding, but we show in Lemma 5.12

that it is proper and degree 1 to its image fiber.

5.3. Straightening the fibers. An averaging step, convolving with a fiberwise bump
function, produces a map which is an embedding on the fibers and hence a global
homeomorphism. This is carried out in Proposition 5.14, and gives us a topological version
of our main result, Proposition 5.15.

5.4. Smoothing. Finally, we address the issue of making the branched surface smooth,
and furthermore making sure that the images of edges in the flow space are smooth and
transverse to both foliations. The first of these is explained in Proposition 5.16, and the
second in Proposition 5.17.

We next turn to carrying out the details.
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5.5. Step 1: drawing diagonals and building a fibration. For any points p, q ∈ P lying
in a maximal rectangle R, but not in a single leaf of Fs or Fu, we denote by R(p, q) ⊂ R
the unique rectangle with opposite vertices at p and q. So if p, q are singularities of R,
then Q = R(p, q) is their edge rectangle. Recall that each edge rectangle corresponds to
an edge of τ̃ by construction, and the veer of an edge rectangle is the veer of its associated
edge.

A veering diagonal is a topological arc in an edge rectangle Q = R(p, q) which
connects p to q and is topologically transverse to the stable and unstable foliations, meaning
that the path intersects each leaf in R(p, q) at most, and so exactly, once.

Our first step is to prove the following.

PROPOSITION 5.2. There exists an equivariant family of veering diagonals so that the
three veering diagonals of every face rectangle have disjoint interiors.

5.5.1. Drawing diagonals given anchors. We say that the pair (A, α) is an anchor system
if α is a bijection from the set of edge rectangles in P onto a subset A ⊂ P with the
following properties:
• containment—for each edge rectangle Q, α(Q) lies in the interior of Q;
• equivariance—g · α(Q) = α(g ·Q) for each edge rectangle Q and each g ∈ π1(M);

and
• staircase monotonicity—for edge rectangles Q1 and Q2 that share a singular corner s,

if Q1 is wider than Q2, then R(s, α(Q1)) is wider and no taller than R(s, α(Q2)).
When working with a given anchor system, we will refer to α(Q) as the anchor for Q and
call A the set of anchors. Note that in the description of staircase monotonicity, Q2 must
be taller than Q1. However, we do not require the same of R(s, α(Q2)) and R(s, α(Q1)),
meaning α(Q1) and α(Q2) are allowed to live in the same horizontal leaf.

Let (A, α) be an anchor system. Let F ⊂ P be a face rectangle and let p denote the
unique singularity lying at a corner of F. Let x be the singularity lying on a horizontal
edge of ∂F and let y be the last singularity, which necessarily lies on a vertical edge of F.
Let ax = α(R(p, x)) and ay = α(R(p, y)). If R = R(ax , x) and Q = R(ay , y) intersect
non-trivially, we say F is busy. If F is busy, let R′ be the maximal subrectangle of R with
the property that the stable and unstable leaves through each point in R′ do not intersect
the interior of Q (see the right side of Figure 20). This subrectangle exists by staircase
monotonicity. A point in R′ which corresponds to a periodic orbit is called an F-buoy.
Because the points corresponding to periodic orbits are dense in P (Lemma 4.2), any busy
face rectangle F has an F-buoy.

LEMMA 5.3. If there exists an anchor system for P, then there exists an equivariant family
of veering diagonals so that the three veering diagonals of every face rectangle have
disjoint interiors.

That is, if an anchor system exists, then Proposition 5.2 holds.

Proof. Let (A, α) be the given anchor system, which determines busy face rectangles.
For each π1(M)-orbit of busy face rectangle F, choose an F-buoy bF and let BF be the
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FIGURE 20. The right veering case in the definition of busy, with anchors shown in green. The face rectangle on
the left is not busy, and the face rectangle on the right is busy. Note that it is possible that the two anchors lie in

the same horizontal line (in colour online).

FIGURE 21. Drawing half-diagonals (orange) satisfying properties (1)–(3) in the proof of Proposition 5.2. The
green points are anchors and the pink points are buoys (in colour online).

π1(M)-orbit of bF . There are finitely many orbits of face rectangles, so there are finitely
many sets BF . Let B =⋃

BF be their union, which we call the set of buoys. Note that B
is π1(M)-invariant and discrete, since orbits of periodic points are discrete by Lemma 4.2.

Let S = {. . . , Q−1, Q0, Q1, . . .} be a staircase with corner singularity p. If g generates
the stabilizer of S, choose a 〈g〉-equivariant family of continuous paths from p to the
anchors of elements of S with the following three properties:
(1) for eachQi , the path from p to α(Qi) is homotopic rel endpoints in R(p, α(Qi)) \ B

to the first-horizontal-then-vertical path from p to α(Qi);
(2) the paths are disjoint except at p; and
(3) the paths are topologically transverse to the stable and unstable foliations, meaning

that no path intersects a leaf more than once.
See Figure 21. We can choose such a family by staircase monotonicity and the discreteness
of B. We call each of these paths a half-diagonal.
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Having chosen such a family of half-diagonals for each π1(M)-orbit of staircase in P,
we can specify a veering diagonal for each edge rectangle R(p, q) as the union of the two
half-diagonals from p and q to the anchor for R(p, q). Let D denote the union of all these
veering diagonals.

Let F be a face rectangle with corner singularity p, and let e, f ⊂ F be the two
diagonals in D of the same veer. The two half-diagonals incident to p are disjoint by
property (2) above. The two half-diagonals not incident to p are also disjoint since F is
either not busy, in which case disjointness is clear; or busy, in which case property (1)
above guarantees disjointness. Therefore, e ∩ f = {p}, and it is clear that e and f are the
only pair of diagonals of F whose interiors could intersect. This completes the proof.

5.5.2. Choosing anchors. Lemma 5.3 reduces the problem of drawing diagonals to
finding an anchor system, which we shall do now.

Let Q = Q0 ⊂ P be an edge rectangle. Let κ(Q) be the unique bi-infinite sequence of
edge rectangles:

κ(Q) = (. . . , Q−2, Q−1, Q0, Q1, Q2 . . .)

such that for all i, there exists a maximal rectangle Ri such thatQi andQi+1 are the widest
and tallest edge rectangles of Ri , respectively.

We call κ(Q) the core sequence of Q. If each edge rectangle in κ(Q) has the same veer,
we say that Q is homogeneous.

By the density of singular stable and unstable leaves in P, the intersection of all
rectangles of κ(Q) contains only one point (see Fact 4.4). We denote this point c(Q) and
call it the core point of Q. It is clear that all rectangles in κ(Q) have the same core point.

Remark 5.4. The core sequence κ(Q) can also be regarded as a line in the lift �̃ of the
flow graph � to M̃ . In §6, we define a function F̃ which maps �̃-lines to points in P. In
the language of that section, the core point c(Q) is the image of κ(Q) under F̃.

The core function c mapping each edge rectangle to its core point satisfies the contain-
ment and equivariance properties. In addition, it nearly satisfies staircase monotonicity.
Ultimately, our construction of a set of anchors will be a slight modification of this core
point mapping, where the modification will be necessary wherever two rectangles in the
same staircase share a core point. The following lemma precisely describes the failure of
core points to be monotonic in staircases.

LEMMA 5.5. (Weak monotonicity for core points) Let Q1 and Q2 be edge rectangles that
share a singular corner s where Q2 lies strictly above Q1, and suppose that Q1 and Q2

are adjacent in this staircase. If ci denote the core point of Qi , then c1 = c2 if and only if
Q1 and Q2 are both homogeneous, and otherwise R(s, c2) lies strictly above R(s, c1).

Recall from §4 that Q2 lies strictly above Q1 if Q2 is taller and Q1 is wider. The same
applies to the R(s, ci).

Proof. Assume without loss of generality that Q1 and Q2 are right veering. In this proof,
we will assume for readability that the orthant determined by the staircase at s containing
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Q1 and Q2 is identified in an orientation-preserving way with the first quadrant in R2; in
particular, there are well-defined local notions of north, south, east, and west.

Let qi be the singular points such that Qi = R(s, qi), and let Ri be the maximal
rectangle for which Qi is the bottom edge rectangle. Note that since Q1 and Q2 are
adjacent in the staircase at s, R1 contains s, q1, q2 in its boundary. Let s2 be the fourth
singular point in ∂R1. Finally, let �v/hi be the vertical/horizontal leaf through ci . That is,
�
v/h
i is the leaf of Fs/u through ci .

We first show that if either of R1 or R2 is hinge, then �v2 lies west of �v1. If R1 is hinge,
then �v1 must lie strictly to the right of �v2 because �v2 must pass through the interior of Q2

and �v1 must pass through the interior of R(q2, s2), and when R1 is hinge, these rectangles
have disjoint interiors. If R1 is non-hinge, then R2 contains s, s2, and q2 in its boundary.
Let q3 be the fourth singular point in ∂R2. The leaves �v2 and �v1 must pass through the
interiors of R(q3, s2) and R(s2, q2). If R2 is hinge, then these rectangles have disjoint
interiors so �v2 lies west of �v1 in this case.

Moving backward in the core sequences, let S1 and S2 be the maximal rectangles for
which Q1 and Q2 are the top edge rectangles. A symmetric argument to the one in the
previous paragraph shows that if either S1 or S2 is hinge, then �h2 must lie north of �h1.

Now suppose that R1 and R2 are both non-hinge. In this case, R(s2, q3) and R(s2, q2)

are the next edge rectangles in the core sequences of Q2 and Q1 respectively, they are
adjacent in a staircase at s2, and they have core points c1 and c2 respectively. Iterating
the reasoning from above shows that if the subsequence κ+(Qi) of κ(Qi) starting at Qi

contains a left veering edge for i = 1 or i = 2, then �v2 will lie west of �v1. Symmetrically,
if the subsequence κ−(Qi) of κ(Qi) ending at Qi contains a left veering edge for either
i = 1 or i = 2, then �h2 will lie north of �h1.

Since the core sequence is periodic modulo an element of π1(M), κ+(Qi) contains a left
veering rectangle if and only if κ−(Qi) does. This shows that c1 lies strictly northwest of c2

and hence R(s, c1) lies strictly above R(s, c2) unless both Q1 and Q2 are homogeneous.
It remains to show that if bothQ1 andQ2 are homogeneous, then c1 = c2. IfQ1 andQ2

are both homogeneous, then let s2 and q3 be as above. Further, let s3, s4 . . . and q4, q5, . . .
be the singular points so that the forward core subsequences starting at Q1 and Q2 are

κ+(Q1) = (Q1 = R(s, q1), R(s2, q2), R(s3, q3), . . .)

and

κ+(Q2) = (Q2 = R(s, q2), R(s2, q3), R(s3, q4), . . .).

See Figure 22. The sequence starting with Q1 converges to �v1 and the sequence starting
withQ2 converges to �v2. SinceR(si , qi+1) lies strictly above (and is in particular contained
east-west in) R(si , qi) for all i, we see that �v1 = �v2. A symmetric argument moving
backward in the core sequences shows that �h1 = �h2, so we see that c1 = c2 as claimed.

Lemma 5.5 says that core points fail to be monotonic in staircases precisely when a
staircase has consecutive homogeneous edge rectangles. If n ≥ 2 and Q1, . . . , Qn are
consecutive homogeneous edge rectangles in a staircase (that is, c(Q1) = · · · = c(Qn)),
we say that Q1, . . . , Qn are pinched.
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FIGURE 22. A diagram of the labeling in the end of the proof of Lemma 5.5. We have drawn dotted diagonals in
the figure as a visual aid, but we emphasize that Lemma 5.5 logically precedes the drawing of any diagonals.

Each core point c has a unique non-trivial element g generating its stabilizer and
translating upward (that is, mapping an edge rectangle containing c to one that lies strictly
above it). Let P = Pc be the set of all the edge rectangles in P that have core point c. We
call P the preimage of c. Note that each edge rectangle belongs to a unique preimage and
that each preimage is g-invariant. We have the following basic fact about preimages, which
says that if a single core sequence associated to a core point c is homogeneous, then every
core sequence associated to c is homogeneous.

LEMMA 5.6. Let c ∈ P be a core point. Then c is associated to a homogeneous edge
rectangle if and only if the preimage of c contains edge rectangles of only one veer.

Proof. For the if statement, if the preimage of c contains only edges of one veer, then it is
immediate that every edge rectangle with core point c is homogeneous.

Now suppose that QR and QL are respectively right and left veering edge rectangles
that share the core point c. Because they have opposite veer, one must lie strictly above
the other. Suppose without loss of generality that QR lies above QL. One can see from a
picture that if Q′ is the next edge rectangle in the core sequence for QL, then Q′ is either
right veering or lies strictly beneath QR . It follows that the core sequence κ(QL) for QL

must contain a right veering term. A symmetric argument moving backward in the core
sequence shows that κ(QR) contains a left veering term. This proves the contrapositive of
the only if statement.

If the preimage P of a core point c contains pinched edge rectangles, we say both that c
is pinched and that P is pinched. To review the terminology: a homogeneous edge rectangle
is pinched if it has a neighbor in a staircase which is also homogeneous. A core point is
pinched if it is the core point of a pinched edge rectangle. A preimage is pinched if it is the
preimage of a pinched core point, or equivalently if it contains a pinched edge rectangle.
By Lemma 5.5, if the core points of a staircase are not strictly monotonic, then the corner
singularity of that staircase meets a rectangle in a pinched preimage.

CLAIM 5.7. There exists a family of rectangles B = {b(Q) ⊂ P | Q is an edge rectangle}
satisfying the following properties.
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FIGURE 23. Choosing preliminary rectangles around the core points of a staircase with corner singularity p, such
that the monotonicity condition (b) in Claim 5.7 is satisfied (in colour online).

(a) For every edge rectangle Q, b(Q) ⊂ int(Q) and contains the core point of Q.
(b) IfQ1 andQ2 are edge rectangles with distinct core points in the same staircase with

corner singularity p, and Q2 lies strictly above Q1, then R(p, x2) lies strictly above
R(p, x1) for any xi ∈ b(Qi).

(c) The family B is π1(M)-equivariant, meaning b(g ·Q) = g · b(Q) for all b(Q) ∈ B
and g ∈ π1(M).

Proof. Let S = {Qi} be the staircase incident to a singular point p. Since the core points
of Qi are monotonic, we can choose a rectangle for each core point which satisfies
the monotonicity condition (b) for S from the claim. See Figure 23. We can do this
in a 〈g〉-equivariant way, where g is the primitive element of π1(M) stabilizing S. We
call these rectangles preliminary rectangles. We can use these preliminary rectangles to
define preliminary rectangles for every core point in every π1-translate of S by requiring
equivariance. We repeat this construction on every π1-orbit of staircases. The result is that
for every edge rectangle, we have two preliminary rectangles, and the collection of all
preliminary rectangles is π1(M)-invariant. For each edge rectangle Q, we can take b(Q)
to be the intersection of the two preliminary rectangles for Q.

We choose, and fix for the remainder of this section, a family B = {b(Q)} satisfying the
conditions of Claim 5.7. We will call the elements of B core boxes.

We will now construct a pair (A, α) and show that it is an anchor system. First, if Q is
an edge rectangle that is not pinched (the preimage of its core point is not pinched), then
set α(Q) = c(Q). If a preimage is pinched, we will coherently choose α-values for each
edge rectangle in the preimage, guided by our collection B of core boxes. Suppose that Q
is a pinched edge rectangle, let P be the preimage of c = c(Q), and let P be the union of
all edge rectangles of P. By Lemma 5.6, every rectangle of P has the same veer. Without
loss of generality, we will treat the case when each rectangle is right veering.

CLAIM 5.8. Let a > 1 and Q0 ∈ P . There exists an embedding �a : P → R2 such that
�a(c) = 0 and �a conjugates the action of g on P to

(x, y) �→ ±
(
x

a
, ay

)
, (5.2)
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where the minus sign occurs if and only if c corresponds to a twisted orbit, and such that:
• if c is untwisted, the singularities of Q0 map to ±(1, 1); and
• if c is twisted, then one singular corner of Q0 maps to (1, 1) and the other maps to a

point (x, y), for some x, y such that −a ≤ x, y ≤ −1/a.

Proof. Let �v , �h be the vertical and horizontal leaves (that is, leaves of Fs/u) through c.
By definition, the vertical/horizontal leaves through each point of P meet �h/v , giving a
coordinate system on P once we have chosen identifications of both �v , �h with R.

If c is untwisted, then the dynamics of the action of π1(M) on P allow us to choose
homeomorphisms of each half leaf �v± (respectively �h±) at c with R≥0, which conjugate
the action of g with multiplication by a (respectively 1/a), so that the associated function
P → R2 maps the corners of Q0 to (±1, ±1).

In the twisted case, we first send the half leaf �v+ to R via a map f v so that the
point of intersection between �+v and the vertical boundary of Q0 goes to 1 and so
that the action of g2 is conjugated to multiplication by a2. Then we define the map on
�v− by p �→ −a f v(g−1p). The symmetric procedure for the horizontal leaf produces the
required coordinates.

In both the twisted and untwisted cases, we call Q0 the normalizing rectangle for the
coordinates given by �a . We fix a particular normalizing rectangle Q0.

For any a > 1, and every edge rectangle Q in P, we can draw a straight line γQ in the
�a-coordinates on P connecting the singularities of Q. Identifying P with its image under
�a , we define αa(Q) to be the point of intersection between γQ and the x-axis (that is, the
horizontal leaf through c). For all Q in P, we have αa(g ·Q) = g · αa(Q) since g preserves
straight lines in �a-coordinates.

CLAIM 5.9. There exists a > 1 such that for each edge rectangle Q in P, the point αa(Q)
lies in the core box b(Q).

Proof. By Lemma 4.5, the action of π1(M) on the set of all edge rectangles is cofinite. If
two elements of P are related by an element of π1(M), then this element must lie in the
stabilizer of c, which is equal to 〈g〉. It follows that the action of 〈g〉 on P is cofinite.

Let Q be an edge rectangle of P. We claim that as a→ 1+, αa(Q)→ c. To see this,
first note that since c is g-invariant, it suffices to prove the claim for any g-translate of Q.
Because the action of 〈g〉 on P is cofinite, each Q has a translate lying between Q0 and
gkQ0 for some k, not depending on Q, and so we replace Q with this translate. Then using
the description of the action of g in �a-coordinates from equation (5.2), we observe that
�a(g

kQ0) (and �a(Q0)) converge to the square with corners at (±1, ±1) as a→∞. In
the case where c is twisted, this uses the fact (Claim 5.8) that when a is close to 1, the
singular corner of the normalizing rectangle Q0 in the negative quadrant is approaching
(−1, −1). Since Q is above Q0 and below gkQ0, we also must have the same for �a(Q)
and we conclude that αa(Q)→ c as a→ 1+.

Next, let Q1, . . . Qn be elements of P that together represent each g-orbit. We see
that there exists an a > 1 such that αa(Qi) ∈ b(Qi) for i = 1, . . . , n since c lies in the
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interior of each core box. Since the collection of core boxes is equivariant, this implies that
αa(Q) ∈ b(Q) for all Q in the preimage P.

Now fix such an a > 1, and define α(Q) = αa(Q) for all Q in the preimage P.
We can perform this procedure for an orbit representative of each pinched preimage, and

extend to all pinched preimages by π1(M)-equivariance. Since each edge rectangle Q is
either unpinched or is contained in a unique pinched preimage, this equivariantly assigns
a point α(Q) to each edge rectangle Q. Set A = {α(Q)}, where Q varies over all edge
rectangles.

LEMMA 5.10. The pair (α, A) is an anchor system.

Proof. It only remains to prove monotonicity in staircases, that is, for edge rectangles Q1

andQ2 that share a singular corner s, ifQ1 is wider thanQ2 and ai = α(Qi), thenR(s, a1)

is wider and no taller than R(s, a2). We assume without loss of generality that Q1 and Q2

are right veering, and for convenience we identify the orthant of s determined by the Qi

with the first quadrant of R2.
By Lemma 5.5, monotonicity can only fail if Q1 and Q2 share a core point c. In this

case, Q1 and Q2 lie in the same pinched preimage P, and we can consider these edge
rectangles in the coordinates �a where their α-values were chosen. In this case, since Q1

is wider than Q2, and γQ1 and γQ2 are line segments with disjoint interiors, we see a1 lies
east of a2. This immediately implies that R(s, a1) is wider than R(s, a2) and the proof is
complete.

Lemmas 5.3 and 5.10 together complete the proof of Proposition 5.2.
With Proposition 5.2 in hand, we can produce the fibration p.

PROPOSITION 5.11. There exists a π1-equivariant fibration p : Ñ → ◦P whose restriction
to each face of τ̃ is an orientation-preserving embedding into its associated rectangle.

The fibers of p are then oriented lines and the quotient by π1 yields an oriented
one-dimensional foliation positively transverse to τ (2).

Proof. Fix an equivariant family of veering diagonals, as determined by Proposition 5.2.
For each edge of e of τ̃ , map e homeomorphically to the veering diagonal associated to its
edge rectangle. We choose these maps to be equivariant with respect to the π1(M) action.

If f is a face of τ̃ , then the edges in ∂f are mapped to veering diagonals with disjoint
interiors. Hence, we can equivariantly extend our map so that its restriction to each face
is an orientation-preserving embedding. Finally, we extend our map equivariantly over
each tetrahedron of τ̃ , as in Figure 19. In particular, the fibers of the projection in each
tetrahedron are compact intervals that degenerate to points at the angle-0 edges. Using the
local picture around faces and edges of τ̃ , we see that the resulting map p : Ñ → ◦P is a
fibration.

5.6. Step 2: the fiberwise map. We begin by compactifying N to N and extending
the foliation to the boundary components. This will allow us to realize this extension of
diagram (5.1):
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P

N̂ M̂

qN qM

N M

← →ĥ

←→

← →p

←→

←

→q

← →qh

←→ ←→

← →h

(5.3)

Here, qM is a renamed M̃ , the universal cover of M , while M̂ is the completion of the
universal cover M̃ , with the metric induced from the inclusion M ↪→ M and any fixed
metric on M . Note that M̂ → qM is an infinite branched covering, to which the flow ϕ

lifts, and that the components of the completion locus are the preimages of singular orbits
(we refer to these as the singular orbits of M̂). Hence, the map to the flow space M̃ → ◦P
extends equivariantly to a map M̂ → P.

On the left side of the diagram, we compactify N to N by adding torus boundary
components (done carefully below so as to extend the foliation by p-fibers). We then
let N̂ → N be the universal cover, with the intermediate cover qN → N obtained as that
associated to ker(π1(N)→ π1(M)).

The compactification of N is carried out equivariantly on each tetrahedron κ of Ñ . Each
ideal vertex of κ has a neighborhood of the form �× (0, 1), where � is a cross-sectional
triangle, and moreover the foliation by p-fibers can be taken to be the same on each slice
�× {t}. To see this, note that p maps such a neighborhood to a region in

◦P bounded
between two veering diagonals, which can be written as an arc cross (0, 1). The p-preimage
of each arc is a cross-sectional triangle foliated by arcs.

We can therefore compactify κ by adding a triangle �× {0} for each ideal vertex, so
that a neighborhood of � is of the form �× [0, 1), and the map p extends to the added
faces. We call the resulting polytope κ and refer to the added faces as cusp triangles.
Doing this equivariantly, these compactifed tetrahedra glue together along hexagonal faces
so that the quotient is a compactification N of N which is homeomorphic to N minus an
open neighborhood of each cusp. We denote by N̂ the universal cover of N cellulated by
the polytopes κ as above.

By construction, the foliation by p-fibers in Ñ equivariantly extends to a foliation of
N̂ by lines and we refer to the leaves of this foliation as p-leaves. We assign to each
compactified tetrahedron κ a fixed continuously varying metric along its p-leaf segments
which induces a continuously varying leafwise metric in N .

5.6.1. Defining an initial map. We next construct a preliminary π1-equivariant map ĥ :
N̂ → M̂ whose restriction h̃ : Ñ → M̃ commutes with the projections to the flow space

◦P.
In fact, ĥ : N̂ → M̂ will commute with the natural projections to P, as we will soon see.

The p-leaves in Ñ , together with their orientations and metric as given above, can be
identified with R up to translation, and the same holds for the leaves of the flow in M̃ .
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LEMMA 5.12. There exists a π1-equivariant map ĥ : N̂ → M̂ whose restriction
h̃ : Ñ → M̃ commutes with the projections to the flow space

◦P so that for each
p-leaf � in N̂ , the restriction ĥ|�, viewed as a map of oriented lines, is a degree
1 (a, b)-quasi-isometry, where a and b are independent of the leaf.

Proof. We construct ĥ successively on the skeleta of the completed 2-skeleton of τ̃ . For
each τ -edge e of Ñ , the projection p(e) in

◦P is a diagonal whose closure in P is an arc p(e)
with endpoints at singularities. The restriction of the line bundle M̂ → P to p(e) is a trivial
bundle, so we can choose a lift of p(e) (that is, a section of the bundle) whose endpoints
are on singular orbits of M̂ . Thus, we have defined ĥ on a closed edge of N̂ whose interior
is an edge of Ñ . We do this for an edge in each π1-orbit and extend equivariantly. For any
edge c of a cusp triangle �, we note that ĥ(∂c) are two points in a single singular orbit of
M̂ and so we extend ĥ over c by mapping it to the segment of the singular orbit joining its
endpoints. This defines ĥ on N̂ (1) in a π1-equivariant way.

The extension over τ -faces of N̂ is similar. For a face F of τ̃ (2), its compactification F in
N̂ is a hexagonal face of N̂ . The embedding F → p(F) extends to a map F → p(F) that
collapses the edges of F contained in cusp triangles to the corresponding singular points
of P. Pulling back the line bundle M̂ → P to F under this map allows us to extend the
section already defined on F

(1)
to F . We use this section of the pullback bundle to extend ĥ

over F . Note that the restriction to F commutes with the projections to P by construction.
Again, we extend over a face in each π1-orbit and extend equivariantly. This defines ĥ on
the closures of the τ -faces in N̂ .

Finally, we extend the map ĥ continuously to the p-leaf segments. That is, for any leaf
segment α in a compactified tetrahedron κ , its endpoints ∂α are in the compactified part of
the 2-skeleton where ĥ has already been defined and commutes with the projections to P.
In particular, both endpoints of α map to the same leaf of the flow in M̂ , so that we may
extend ĥ to a constant-speed map from α to that leaf. This completes the construction of
ĥ : N̂ → M̂ with the required properties.

Equivariance means that ĥ descends to a continuous map h : N → M , which maps each
boundary torus of N to a singular orbit of M . We then lift h to qh : qN → qM , completing
diagram (5.3). Properness of the deck group π1(M) acting on qM and compactness of N
together imply that qh is proper. (Note by comparison that ĥ is not proper—the preimage of
a singular leaf in M̂ is a plane in N̂ , whereas the preimage of a singular leaf in qM is an
annulus in ∂ qN ; this is why we need qh).

We can now complete the proof of Lemma 5.12 by proving that ĥ has the required
properties.

Coarse Lipschitz. This follows immediately from compactness of N and continuity of ĥ.

Uniform properness. Consider the lifted map qh : qN → qM . Every leaf in qM is properly
embedded—indeed, as we know, the universal cover is a product whose vertical factors
are the leaves. The same is true in qN : here, by construction, each leaf meets an infinite
non-repeating sequence of cells of the triangulation, and since these are discrete in qN , the
leaf must be properly embedded. Now, since as above qh is a proper map, its restriction to
any leaf must be proper.
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Moreover, the map is uniformly proper on leaves. For any point z in qM , let K be a
compact neighborhood. The preimage of K is a compact setK ′, so for all leaves m passing
through K, the preimage of m ∩K is contained in K ′. This implies that the diameter in a
leaf of the preimage of a segment in K is uniformly bounded. After covering a fundamental
domain by finitely many such neighborhoods, we deduce that for any leaf segment in qM

with diameter less than (say) 1, there is a uniform bound on the diameter of its preimage
by qh. This implies uniform properness over all leaves.

Degree 1. We now check that qh|� has degree 1 for for every leaf. That is, we must check
that the ‘upward’ direction along leaves of qN maps to the ‘upward’ direction along orbits
of qM , at large scale.

The coorientations on the faces of the tetrahedra in Ñ (from §4.1) and the p-fibers were
chosen so that when a leaf passes from a tetrahedron t to t ′ in the forward direction, t ′ lies
above t, and this means that the rectangle of t ′ is above that of t in the sense of §4.

Fact 5.13. Suppose that t and t ′ are adjacent tetrahedra of Ñ such that t lies below t ′ in
the sense that there is an oriented p-leaf passing from t to t ′. Then the maximal rectangle
associated to t lies below the maximal rectangle associated to t ′.

This fact follows from considering the (finitely many) diagrams of a pair of adjacent
tetrahedra. Now consider the sequence of tetrahedra that a forward ray of � visits.
Discreteness of the rectangles of

◦P implies that these rectangles must have widths going
to 0 and heights going to∞, in the sense of Fact 4.4.

However, consider a leaf of the flow in M̃ . Fix an equivariant collection of sections of
M̃ → ◦P over maximal rectangles as in Lemma 4.3. The sequence of rectangles met by a
forward flow ray must, by Lemma 4.3, be eventually ordered with later ones lying above
earlier ones.

Thus, upward motion in the leaves of both Ñ and M̃ corresponds to the same behavior
of rectangles. Now to connect the two via ĥ, note that for each face F of τ̃ , the restriction of
ĥ to F can be pushed along the flow in M̃ until it meets the selected section of the rectangle
associated to F. The distance along the flow required for this is uniformly bounded, since
there are only finitely many orbits of faces. It follows, using properness of the map on
leaves, that if an upward ray in Ñ meets a sequence of faces F1, . . . , then its h̃ image
meets all but finitely many of the associated rectangle sections. Thus, upward rays map to
upward rays. The same idea applies to downward rays.

Quasi-isometry. To finish, we need a lower bound on distances in the image. Identifying
both � and ĥ(�) with R in a length- and orientation-preserving way, it suffices to prove the
following. There exists A > 0 independent of � such that for any x, y ∈ �,

y > x + A �⇒ ĥ|�(y) > ĥ|�(x)+ 1. (5.4)

Uniform properness implies that there exists A > 0, independent of � and x, such that
y > x + A implies the distance between ĥ|�(y) and ĥ|�(x) is greater than 1. Degree 1
implies that, in fact, ĥ|�(y) lies above ĥ|�(x) in the orientation of the image leaf. This
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implies equation (5.4). This (together with coarse-Lipschitz above) suffices to prove that
ĥ|� is a quasi-isometry. This completes the proof of Lemma 5.12.

5.7. Step 3: straightening by convolution. We are now ready to obtain the homeomor-
phism.

PROPOSITION 5.14. There is a π1-equivariant orientation-preserving homeomorphism
f̃ : Ñ → M̃ which commutes with the fibrations p : Ñ → ◦P and q : M̃ → ◦P.

Once we have this, we will denote by f : N → M the homeomorphism obtained by
passing to the quotients. It follows easily that f (τ (2)) is ‘topologically transverse’ to the
flow ϕ—see Proposition 5.15. Although this is all that we will need in practice, we will
show in Step 4 that this can be promoted to a smooth branched surface transverse to the
flow.

Proof. The idea now is to convolve h̃|� (for each leaf �) with a bump function to get the
desired map.

Let A be the constant in property (5.4) in the proof of Lemma 5.12. Let ρ be a smooth
bump function on R satisfying: ρ ≥ 0,

∫
ρ = 1, ρ is supported on {|x| ≤ A+ 1} and

constant on [−A, A], ρ is even (ρ(−x) = ρ(x)), and increasing on [−A− 1, −A].
Now if k : R→ R is a continuous map, we form ρ � k(t) = ∫

k(y)ρ(t − y) dy, which
has the following properties.
(1) ρ � k is differentiable.
(2) ρ� commutes with translations. That is, if T (x) = x + a, then ρ � (f ◦ T ) =

(ρ � f ) ◦ T , and ρ � (T ◦ f ) = T ◦ (ρ � f ).
(3) ρ� is continuous with respect to the compact-open topology on C(R, R).
(4) If k satisfies property (5.4), then (ρ � k)′ > ε > 0, where ε depends only on ρ.
(5) If k is (K , δ)-coarse Lipschitz, then (ρ � k)′ < c, where c depends on ρ, K , and δ.
(6) If k is (K , δ)-coarse Lipschitz, then |ρ � k − k| < c, where c depends on ρ, K , and δ.
Properties (1), (2), and (3) are standard. Properties (4) and (5) follow from the fact that
given the properties of ρ,

(ρ � k)′(t) =
∫ A+1

A

(k(t + u)− k(t − u))|ρ′(u)| du,

which is easily verified. Property (6) is also a consequence of the averaging properties of
convolution.

Translation-invariance implies that this convolution operation is well defined on the
maps h̃|�, because our identification of the leaves with R is well defined up to translation.
We let ρ � h̃ denote this operation carried out simultaneously on all the leaves in Ñ .
Continuity property (3), and the continuity of h̃ and the leafwise metrics that we chose
in Ñ , imply that the result is a continuous map.

By Lemma 5.12, each leafwise h̃|� is coarse Lipschitz (with uniform constants) and
satisfies equation (5.4). Thus, ρ � h̃ has positive derivative on each leaf, so it is a
homeomorphism on leaves, and it is a bounded distance from h̃ along the leaves (and,
in particular, the two maps are homotopic). On the leaf space, the map is the identity, so it
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is globally a homeomorphism from Ñ to M̃ which commutes with the projections to the
leaf space.

Finally, ρ � h̃ is equivariant: since the group acts by orientation-preserving
isometries on the leaves both in Ñ and M̃ , this follows from equivariance of h̃ and
translation-invariance of ρ�. This completes the proof.

We can now state an immediate application of Proposition 5.14, which is the topological
version of our main result, Theorem 5.1.

PROPOSITION 5.15. There is a homeomorphism f : N → M , inducing the identity on
π1(M), such that the image of τ (2) is a cooriented branched surface that is topologically
positively transverse to flow lines of ϕ.

Here, by ‘topologically positively transverse,’ we mean that the image of τ (2) has a
branched surface fibered neighborhood whose oriented fibers are segments of flow lines.

5.8. Step 4: smoothing. The next proposition completes the proof of Theorem 5.1.

PROPOSITION 5.16. The homeomorphism f : N → M from Proposition 5.15 can be
chosen so that f (τ (2)) is a smooth branched surface which is positively transverse to flow
lines of ϕ.

Proof. We will indicate how the previous construction can be adjusted so as to yield a
smooth result. The first step is to give the line bundle Ñ → ◦P a smooth structure with
respect to which sections carried by the branched surface are smooth.

Since the flow is smooth off its singular orbits, the flow space
◦P inherits a smooth

structure from M. After a small equivariant perturbation, we may assume that the diagonals
are smooth and that triangles are still embedded. (The diagonals may no longer be
transverse to the stable/unstable foliations, but they are still contained in their respective
edge rectangles—we will improve this in Proposition 5.17).

Next we need to specify the fiberwise metrics on the p-leaves so that they vary smoothly
with respect to the base. Each p-leaf is composed of segments from the foliation of the
tetrahedra. We can metrize these segments in each tetrahedron (equivariantly) so that their
lengths vary smoothly and converge to 0 at the 0-angle edges of the tetrahedron, and have
derivatives 0 there (we can make higher derivatives match across the edge for greater
smoothness).

This allows us to give local trivializations of the bundle p : Ñ → ◦P. Over a small disk,
consider a section that lies in the branched surface and use the metric on leaves to define a
trivialization where that section is at constant height. The way we chose the fiber segment
lengths implies that different choices of sections give trivializations for which transition
maps are smooth. Thus we have a smooth structure on the bundle for which sections lying
in the branched surface are smooth.

When we define the map ĥ, we first choose sections over the veering edges. These can
be chosen smoothly on the interiors of the edges. We then extend to the faces of τ̃ (2)

smoothly, and in such a way that the sections are tangent to each other at the edges. The
extension of ĥ to the p-leaf segments in each tetrahedron can be done at constant speed, so
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that since the maps on the endpoints are smooth by the previous paragraph, we find that
in a local trivialization of p, the map varies smoothly with respect to the coordinates in

◦P.
Note that we do not obtain smoothness of ĥ on the completion points of N̂ , but we only
need continuity there.

The map, which may still not be injective or smooth in the fiber direction, is now
averaged in the convolution step. The final map is smooth in the fiberwise direction because
the bump function ρ is smooth, and it is smooth in the

◦P direction because the fiberwise
metrics and the map h̃ are smooth with respect to the

◦P direction. Thus, our final map is a
diffeomorphism and the image of the branched surface is transverse to the flow.

5.9. Transversality in the flow space. In the interest of recovering as much of the picture
as possible in the suspension flow case, we would also like the smooth veering edges in
each edge rectangle in

◦P to be transverse to both stable and unstable foliations. We note
that this is not needed for the flow-transversality of Proposition 5.16.

PROPOSITION 5.17. The fibration p : Ñ → ◦P can be chosen so that the images of the
veering edges are smooth and transversal to both the stable and unstable foliations.

We note that this is easy if the stable and unstable foliations are at least C2, because
then the rectangles can be smoothly identified with Euclidean rectangles foliated by
axis-parallel lines. Our foliations may not have this regularity, although for dynamical
reasons, they do have smooth leaves and line fields which are uniquely integrable. These
facts are well known for Anosov flows [Ano63] and the proofs also apply more generally
to pseudo-Anosov flows (see [FM01]). This turns out to be enough.

The proposition will follow directly from Corollary 5.19.
In this section, by smooth, we mean at least C2. A smooth quadrilateral is a smooth

disk-with-corners that has four corners and two transverse foliations, so that each foliation
is tangent to two opposite boundary edges. We do not assume that the foliations themselves
are smooth.

Such a quadrilateral has a diffeomorphism to the unit square, taking the two foliations
to foliations that include the horizontal and vertical boundary edges, respectively. From
now on, we identify Q with [0, 1]2, we call the foliations Fh and Fv , and we say that a
diagonal of Q is a path from (0, 0) to (1, 1).

LEMMA 5.18. Let Q be a smooth quadrilateral. If the line fields of Fh and Fv are uniquely
integrable, then there exists a smooth diagonal which is transverse to both Fh and Fv .
Moreover, one can prescribe the tangent direction of the diagonal at each of its endpoints.

We remark that the lemma is false without the unique integrability assumption, so that
there really is something to do here.

As a corollary, we have the following.

COROLLARY 5.19. Let Q be a smooth quadrilateral for which the line fields of Fh and Fv
are uniquely integrable, and α a continuous diagonal which is topologically transverse to
both of the foliations. Then α can be C0 approximated by a smooth diagonal transverse to
both foliations.
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Here, ‘topologically transverse’ means that the diagonal meets every foliation leaf
exactly once.

Proof of Corollary 5.19. Subdivide α into small segments. Because it is topologi-
cally transverse, the endpoints of every segment are opposite corners for a foliated
sub-quadrilateral, so that adjacent quadrilaterals meet exactly at their common corner. We
may choose tangent lines at every corner which point into the two adjacent quadrilaterals,
and then use Lemma 5.18 to find a smooth diagonal for each quadrilateral matching
the given tangent direction at the corners. These piece together to a C1 diagonal which
is transverse to both foliations and closely approximates α in C0. A further (standard)
smoothing step upgrades this to a smooth diagonal.

Proof of Lemma 5.18. We will need this calculus lemma, whose proof we omit.

LEMMA 5.20. Let αn : [0, 1]→ Rd be C1 curves. Suppose that αn→ α pointwise, and
α′n converges to a continuous vector field u along α. Suppose moreover that all the
functions t �→ α′n(t) have a common modulus of continuity. Then α is differentiable and
α′ = u.

Now we apply this to our setting. Let u, v be C0 vector fields on Q that are tangent
to Fh and Fv , respectively. Extend u, v continuously to a small neighborhood of Q, and
form the open tangent cone field C, where C(x) = {au(x)+ bv(x) : a, b > 0}. Given any
fixed a, b > 0, the vector field au+ bv lies in C, and varying over convex combinations
a + b = 1, we obtain a family of vector fields with a common modulus of continuity.

Let ρa(x) be a family of bump functions varying smoothly with a ∈ (0, 1), with mass
1 and support of size ε(a), such that ε→ 0 smoothly as a→ 0 or a→ 1. If the function
ε is chosen small enough, then, convolving au+ bv with ρa , we get a family of smooth
vector fields ξa on Q in the cone field C, all with a common modulus of continuity, such
that ξa → u as a→ 1 and ξa → v as a→ 0.

Now for each a ∈ (0, 1), smoothness implies ξa is uniquely integrable so let αa be an
integral curve starting at the lower-left corner of Q. Thus, αa satisfies α′a(t) = ξa(αa(t)) ∈
C(αa(t)) for any t for which the curve is defined. In fact (since ξa is smooth), this is defined
until it leaves Q, and this must be on the right or top edge since C points into Q at points
of the left and bottom edges.

Now we can take the limit as a→ 0. Because αa have bounded derivatives,
Arzelà–Ascoli gives us some sequence an→ 0 for which the curves converge to some
limit curve α0. We know that the vector fields α′a(t) along the curves satisfy a common
modulus of continuity because ξa do, and the αa have bounded speed. Thus, Lemma 5.20
applies to tell us that α0 is differentiable and its derivative is just the limit of ξa (restricted
to α0) which is the vector field v. That is, α0 is an integral curve of v starting at the lower
left corner, and hence the left-boundary leaf of the foliation Fv by unique integrability.
This means α0 terminates on the upper left corner.

Similarly a limit as a→ 1 gives α1 which terminates on the lower right corner.
Continuity gives us a value of a for which αa terminates on the upper-right corner.
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Once we have the desired path αa , we need to perturb it so that it has the desired tangent
directions at the corners. This is more simple: the vector fields u and v are continuous at
the corners. So in a small enough neighborhood of (say) the corner (0, 0), they are much
closer to the coordinate vector fields than they are to the direction of αa . Now, thinking
of αa as the graph of a function, add a smooth function with small support near 0 and the
appropriate derivative at 0.

6. The flow graph and orbits of the flow
Let ϕ be a pseudo-Anosov flow without perfect fits on M and let τ be the veering
triangulation of M = M \ {singular orbits} dual to ϕ. In this section, we detail how the
flow graph � uniformly codes orbits of the flow ϕ.

Recall that O+ϕ ⊂ M is the union of closed orbits Oϕ of the flow along with all positive
multiples of unstable prong curves in M. We also denote by Z� the set of directed cycles
of �. In §6.3, we produce a map

F : Z�→ O+ϕ ,

with the property that the directed cycle c is homotopic to F(c) in M. We remark that when
F(c) is non-singular (i.e. a closed orbit in M; not a prong curve), it is the unique closed
orbit of ϕ homotopic to the flow cycle c.

The main theorem of this section (proven in §6.3) is a summary of the essential features
of the map F. For its statement, we need one additional definition. Let γ1 and γ2 be two
directed closed curves in M which are positively transverse to τ (2). We say that γ1 and γ2

are transversely homotopic if they are homotopic through closed curves that are positively
transverse to τ (2).

We also remind the reader that δτ denotes the length of the longest fan in τ .

THEOREM 6.1. (Closed orbits and the flow graph) The map F : Z�→ O+ϕ has the
following properties.
(1) The image γ = F(c), which is either a non-singular closed orbit of ϕ or an unstable

prong curve, is transversely homotopic to c in M.
(2) For each unstable prong curve γ , 1 ≤ #F−1(γ ) ≤ 2.
(3) For each non-singular closed orbit γ of ϕ, either #F−1(γ ) ≤ 1 or γ is homotopic to

an AB-cycle, in which case, #F−1(γ ) ≤ δτ .
(4) For each non-singular closed orbit γ of ϕ, either γ is in the image of F or γ is

homotopic to an odd AB-cycle.

In short, the flow graph � encodes all but finitely many primitive orbits of the flow in a
one-to-one fashion. We remark that simple cycles of � can map to non-primitive orbits of
ϕ; this happens, for example, in the presence of twisted orbits.

6.1. The flow space and the flow graph. We begin by explaining how the structure of �
is recorded by the maximal rectangles of the completed flow space P.

By the construction of τ , each τ -edge e of the lifted triangulation τ̃ on M̃ corresponds
to a unique edge rectangle in P. Similarly, faces of τ̃ correspond to face rectangles and
tetrahedra correspond to maximal rectangles. In fact, we can use Proposition 5.2 to fix
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FIGURE 24. Vertically extending an edge rectangle (left, green) to a maximal rectangle (right, blue) (in
colour online).

a π1(M)-equivariant map M̃ → P that embeds each τ -edge in its edge rectangle so that
the restriction to each face of τ̃ is also an embedding. We fix such a map once and for
all, and, abusing terminology, we will also refer to the image of e in P as a τ -edge. For
example, a τ -edge e is contained in a maximal rectangle R if and only if its edge rectangle
Q is contained in R. The singularities at the corners of Q are necessarily contained in the
interiors of the sides of R.

If Q is the edge rectangle for a τ -edge e, then we denote by either Re or RQ the maximal
rectangle obtained by extending Q vertically along leaves of F s as far as possible, so
that e joins its vertical sides. See Figure 24. In terms of the veering triangulation τ̃ of
M̃ , Re is the maximal rectangle corresponding to the tetrahedron having e as its bottom
edge.

We also fix the inclusion ι : �→ M in dual position. In this section, it will be
convenient to identify � with its image under ι. Recall that in this position, the vertices of
� agree with the vertices of the dual graph � and hence with the triple points of the stable
branched surface Bs .

By [LMT20, Lemma 4.4], ι : �→ M is π1-surjective and so the flow graph � has
connected preimage in the universal cover of M, which we denote by �̃. Identifying each
τ -edge e with the maximal rectangleRe leads to the following alternative description of �̃:
the vertices of �̃ are maximal rectangles and for each maximal rectangle R, there are
directed edges from R = Rb to the three rectangles Rt , Rs1 , Rs2 , where t is the τ -edge
joining the horizontal sides of R, and s1 and s2 are τ -edges of R such that the rectangles
Rt , Rs1 , Rs2 have non-overlapping interiors (see Figure 25). This is to say that in the
rectangle R, the set t ∪ s1 ∪ s2 passes the ‘vertical line test.’ We will freely use this
correspondence between �̃-vertices and maximal rectangles.

We similarly consider the preimage �̃ of the dual graph � in the universal cover of M.
Each vertex of �̃ is contained in the interior of a unique tetrahedron of M̃ and hence also
corresponds to a unique maximal rectangle. Understanding paths in �̃ with this perspective
is fairly straightforward.

LEMMA 6.2. Let R1 and R2 be maximal rectangles in P and suppose that R2 lies above
R1. Let v1 and v2 be the �̃-vertices corresponding to R1 and R2. Then there exists a
directed �̃-path from v1 to v2.
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FIGURE 25. The outward �̃-edges of the τ -edge e in terms of maximal rectangles. The dotted lines indicate that
those portions of the boundaries of rectangles do not meet (in colour online).

Proof. Let T1 and T2 be the τ̃ -tetrahedra corresponding to R1 and R2, respectively. Since
R2 lies above R1, the projections of T1 and T2 to P must overlap. Hence, there is a ϕ̃-orbit
passing through both T1 and T2. Further observe that whenever an orbit passes from a
tetrahedron Ta to an adjacent tetrahedron Tb, the maximal rectangle Ra associated to Ta
lies below the maximal rectangle Rb associated to Tb (see Fact 5.13). Hence, the given
orbit must pass first through the tetrahedron T1 and then through the tetrahedron T2.

By truncating this orbit and adding small segments in T1 and T2, we obtain a path from
v1 to v2 which is positively transverse to τ̃ (2). After perturbing rel endpoints to make it
disjoint from τ̃ (1), the sequence of τ̃ -faces traversed by this path corresponds to a directed
�̃-path from v1 to v2.

To understand directed paths in �̃, it is convenient to work with the dynamic planes of
§3, as we now explain.

A singular leaf of either the stable or unstable foliation of P is a leaf homeomorphic to
[0,∞) with its endpoint on a singularity of P. A point p of P is a regular point if it does
not lie in a singular leaf of either foliation. We remark that all fixed points of P under the
π1(M)-action are either regular or singular, since singularities are the only fixed points in
their stable/unstable leaves.

Now let p ∈ P be a regular point. A p-rectangle or maximal p-rectangle is a rectangle
or maximal rectangle, respectively, which contains p in its interior. A p-ray is a directed
infinite ray in �̃ traversing only maximal p-rectangles.

LEMMA 6.3. Let R be a maximal p-rectangle for a regular point p ∈ P. There is a unique
p-ray starting at R.

Proof. By definition, there are directed edges from R = Rb to Rs1 , Rs2 , Rt , where
Rs1 , Rs2 , Rt cover R and have disjoint interiors. Since p is a regular point, it is interior
to exactly one of Rs1 , Rs2 , Rt . In other words, every maximal p-rectangle has a unique
outgoing �̃-edge connecting it to another maximal p-rectangle.
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In the next proposition, we associate to each (singular) leaf � of F s a unique dynamic
(half-) plane D�. As in §3.1, we denote by σ(v) the unique sector of B̃s whose top vertex
is v. If R is the maximal rectangle of P corresponding to the vertex v of �̃, we extend this
notation to σ(R) = σ(v). The reader can check that if e is an edge of τ̃ , then σ(Re) is the
unique sector of B̃s dual to e.

PROPOSITION 6.4. (Dynamic planes for stable leaves) Let � be a (singular) leaf of the
vertical foliation F s . The union

D� =
⋃

�∩int(R) �=∅
σ(R)

of all sectors of B̃s associated to maximal rectangles R that meet � in their interior is a
dynamic (half-) plane.

Moreover, D� has the property that for any dual ray (or flow ray) γ̃ whose vertices
correspond to maximal rectangles that meet � in their interior, we have D� = D(γ̃ ).

For the proof, we first define the dynamic (half-) plane associated to any increasing
sequence of rectangles. Let A = (A1, A2, A3, . . .) be any sequence of distinct maximal
rectangles with the property that Ai+1 lies above Ai for all i. We remark that A could be a
path in �̃, in �̃, or in neither, though only the �̃ and �̃ cases are relevant for us.

By Lemma 6.2, there is a �̃-path from Ai to Ai+1 for all i. The union of these �̃-paths
gives a (possibly non-unique) �̃-ray γA. It follows that A determines a dynamic (half-)
plane DA, which can be defined by

DA = D(γA) =
⋃
i

�(σ(Ai)),

where�(σ) is the descending set of σ , as is in §3.1. Note that the�(σ(Ai)) form a nested
union of descending sets by Lemma 3.3 and so DA is independent of the choice of γA.
Also, DA is a dynamic half-plane if and only if γA is eventually a branch ray. In terms
of rectangles, this is equivalent to the condition that there is a single singularity s such
that either the top or bottom components of all ∂hAi eventually contain s. To see this, first
note that by Lemma 6.2, it suffices to assume that A is a sequence of consecutive maximal
rectangles in the sense that Ai and Ai+1 intersect along a face rectangle Fi . Then from
the picture in the flow space, one sees that there exists a singularity s eventually contained
in all ∂hAi if and only if it is eventually the case that the edge rectangle of intersection
between Fi and Fi+1 always has the opposite veer as the top edge rectangle of Ai+1. This
exactly characterizes branch rays; see for example [LMT20, Lemma 4.5].

Proof of Proposition 6.4. First fix an arbitrary maximal rectangle A0 such that σ(A0) is
a sector of D�, and a sequence A = (A0, A1, A2, A3, . . .) of distinct maximal rectangles
meeting � in their interiors with the property that Ai+1 lies above Ai for all i. Note that �
is a singular leaf with singularity p if and only if Ai contains p in its horizontal boundary
for i sufficiently large. We will show that D� = DA.

Next let B0 be any maximal rectangle with σ(B0) a sector of D� and, as above, let
B = (B0, B1, B2, B3, . . .) be another such sequence of maximal rectangles, determining
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a dynamic plane DB in the same way. We claim that DA = DB . Indeed, let Ai be a term
of A. By the discreteness of singularities in P, there exists some j such thatBj lies aboveAi
(see Fact 4.4). By Lemma 6.2, there is a dual path fromAi toBj , so by Lemma 3.3, we have
�(σ(Ai)) ⊂ �(σ(Bj )). Since this holds for any rectangle in A, we see thatDA ⊂ DB . The
proof of the reverse inclusion is the same, so we have the equality DA = DB .

Since B0 was an arbitrary maximal rectangle with σ(B0) ⊂ D�, we conclude that
D� ⊂ DA. Moreover, since any rectangle R with σ(R) ⊂ DA lies below some Ai , we also
have that the interior of R meets �. Hence, DA ⊂ D�. This proves that D� is a dynamic
(half-) plane. The moreover claim is now clear from the construction of DA and the
equality DA = D�.

For any point p ∈ P that is not a singularity, we further defineDp = D�, where � is the
unique leaf of F s through p. The planes D� and Dp are called the dynamic planes for �
and p, respectively.

Remark 6.5. (Singular leaves and dynamic planes) If � is leaf of F s , then � is singular if
and only if D� is a dynamic half-plane. Moreover, in this case, any increasing sequence
of rectangles (Ai) whose terms all intersect � in their interior has the property that the
singular point p along � is eventually contained in the horizontal boundary of Ai for
sufficiently large i.

In this situation, we can pick one of two sides of � and extend along maximal
rectangles which are contained in that side and which contain p in their vertical boundary
(see Figure 26). The argument from the proof of Proposition 6.4 shows that doing so
produces a unique dynamic plane containing D�. Since � has two sides, this procedure
produces two dynamic planes that contain D�. (In fact, these are the only two dynamic
planes containing D�, but we will not need this.) Moreover, each of these dynamic planes
is stabilized by the (necessarily non-trivial) stabilizers of D�.

Proposition 6.4 implies that for each regular point p ∈ P, any two p-rays lie in the
dynamic plane for p. Combining with Corollary 3.13 gives us the following lemma.

LEMMA 6.6. Let p ∈ P be a regular point with dynamic plane D. The number of
asymptotic classes of p-rays is equal to the width of D, and hence is at most δτ .

With these results relating dynamic planes to the flow space in hand, we can now
characterize when closed paths in M are transversely homotopic. This will be essential
for the results in §7.

PROPOSITION 6.7. (Transverse homotopies) Let γ1 and γ2 be two homotopic closed curves
which are positively transverse to τ (2). Then either they are transverse homotopic or they
are homotopic to branch curves.

Proof. We first perturb γ1 and γ2 to avoid τ (1). Then each γi determines a unique �-cycle
to which it is transversely homotopic. Hence, it suffices to prove the claim when γ1 and γ2

are �-cycles. Assume that neither is homotopic to a branch curve.
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FIGURE 26. A singular leaf � with singularity p and an increasing sequence of maximal rectangles that intersect
� with the property that p is eventually contained in the vertical boundary of all terms. The resulting dynamic

plane contains the dynamic half-plane D� (in colour online).

Lifting a homotopy from γ1 to γ2, we obtain �-lines γ̃1 and γ̃2 that are stabilized by
〈g〉 ≤ π1(M). If we intersect the sequence of maximal rectangles associated to γ̃1 (or γ̃2),
we obtain a single p ∈ P by Fact 4.4. By construction, p is stabilized by g and so p is
regular. Otherwise, p would necessarily be a singularity of P and γ1 would be homotopic
to a branch curve in the corresponding cusp of M.

Therefore, p determines a dynamic planeDp that contains γ̃1 and γ̃2 by Proposition 6.4.
Applying Lemma 3.17, we see that γ1 and γ2 are homotopic by sweeping across sectors
of Bs . Since such homotopies are visibly through curves that are transverse to τ (2) (see
Figure 27), the proof is complete.

6.2. Lines of �̃ and the flow. We now focus on associating to each directed line of the
graph � an orbit of the flow ϕ. More precisely, we define a map

F̃ : {directed lines in �̃} → P

from directed lines in �̃ ⊂ M̃ to the completed flow space P. Each directed line γ̃ in
�̃ corresponds to a sequence of maximal rectangles which become taller in the positive
direction and wider in the negative direction. Then, as in Proposition 6.7, Fact 4.4 implies
that the intersection of the rectangles in this sequence is a single point F̃(γ̃ ) ∈ P. See
Figure 28. It is not hard to see that this map is π1(M)-equivariant and continuous with
respect to the usual topology on the space of lines.

To understand the image of F̃ in P, we again study the structure of dynamic planes.
Define a chain of sectors in a dynamic plane D to be a union of sectors attached as

in Figure 29. More precisely, a chain is a collection of sectors σ1, . . . , σn such that an
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FIGURE 27. Homotoping one side of a Bs -sector to another through curves positively transverse to τ (2)

(in colour online).

FIGURE 28. The map F̃ sends a �̃-line, which corresponds to a certain bi-infinite sequence of maximal rectangles,
to the unique point in P lying in all of the rectangles (in colour online).

entire bottom branch segment of σi is identified with a top branch segment of σi+1 for
i = 1, . . . , n− 1, and there is a single branch segment that contains a top branch segment
of each σi for i = 1, . . . , n, i.e. the union

⋃n
i=1 σi is bounded by four branch segments.

Two of these are the top branch segments of the chain and two are the bottom. Note that
every sector has two chains, possibly of length 1. When a chain has length at least 2, we
say a branch segment in its boundary is long if it contains an edge of each sector of the
chain and is short otherwise. See Figure 29 for an example.

We now show that lengths of chains are uniformly bounded by δ = δτ , which, as a
reminder, is the length of the longest fan of τ .
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FIGURE 29. A chain of length four. The highlighted branch segments are long, and the other two branch segments
in the boundary of the chain are short. The vertices indicated by black dots all have the same veer by Lemma 3.8.

Either of the two bottom branch segments could possibly have more vertices than shown (in colour online).

LEMMA 6.8. Any chain of sectors in a dynamic plane has length less than δ.

Proof. Suppose that C is a chain of length k ≥ 2. An application of Lemma 3.8 shows
that the bottom k − 1 sectors of C have top and bottom vertices of the same veer. This
means that the long top branch segment of C passes through k − 1 consecutive non-hinge
tetrahedra. Applying Claim 3.11 gives that these tetrahedra lie in the fan of a single edge.
As in the proof of Proposition 3.10, we note that this implies the existence of a fan of length
k − 1+ 2 = k + 1 (see [FG13, Observation 2.6]).

Recall that Lemma 3.7 says that flow rays converge in dynamic planes unless they are
separated by AB strips. The next lemma essentially says that this convergence is rapid,
and is key to proving Proposition 6.12, which says that F̃ is surjective and uniformly
finite-to-one away from singularities.

LEMMA 6.9. Let σ be a sector of a dynamic plane D, and let σ ′ be the sector directly
below σ so that the top vertex of σ ′ is the bottom vertex of σ . Then any flow ray of D
starting in the descending set �(σ ′) ⊂ D passes through a vertex in a chain of σ .

Proof. Since each flow ray of D starting in�(σ ′) eventually meets ∂�(σ ′) by Lemma 3.1,
we may suppose that the flow rays in question start at vertices along ∂�(σ ′). Moreover,
also by Lemma 3.1, ∂�(σ ′) consists of the negative subrays b1 and b2 of the branch lines
through the top vertex v′ of σ ′. We will prove the claim for flow rays of D starting at b = b1

since the proof for b2 is the same.
Let S be the union of all sectors in�(σ) \ int(�(σ ′) with bottom vertex lying in b. Note

that one of the chains of sectors of σ is contained in S and that every sector in S other than
σ has a segment of b as a complete branch segment in its boundary. See Figure 30.

Let C0, C1, . . . be the decomposition of S into a union of chains of sectors so that C0

is the chain of sectors of σ in S and the top (short) branch segment of Ci+1, whose initial
vertex is along b, is identified with a proper branch segment along the bottom of Ci . The
remainder of the proof will establish that any flow ray starting at a vertex along b passes
through vertices of S until it exits �(σ) at some vertex along C0, the chain for σ in S. The

https://doi.org/10.1017/etds.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.63


3080 M. P. Landry et al

FIGURE 30. The set S (green) as a union of chains of sectors (in colour online).

key technical step is the following claim which implies that the long top branch segment
in each chain Ci (for i ≥ 1) is contained in a side of a single sector of �(σ).

CLAIM 6.10. Suppose the short top branch segment of a chain C of sectors in the dynamic
plane D is identified with the lowermost edge in the side of some sector σa ⊂ D and that
σa ∪ C is not a chain. Then the long top branch segment of C is contained in the boundary
of a single sector σb of D.

We note that the use of ‘long’ indicates that C has length at least 2, but the
corresponding claim when C has length 1 is immediate since every edge in D is in the
boundary of exactly two sectors.

Proof of Claim 6.10. This follows almost immediately from Lemma 3.8 after labeling the
veers of each vertex.

In more detail, first note that the veer of the bottom-most vertex of C determines the
veer of every other vertex of σa ∪ C except the top vertex of σa . If � is the long top branch
segment of C, then every vertex of �, except the final vertex, has the same veer as that of the
bottom-most vertex of C. The final vertex of �, which lies on the bottom branch segment
of σa , must have the opposite veer (see the leftmost image in Figure 31, where the vertex
colors indicate opposite veers). Hence, if we let σb be the sector of D not in C that contains
the last edge in �, another application of Lemma 3.8 implies that � is completely contained
in a side of σb as in either the center or right image in Figure 31.

Now returning to the proof of the lemma, we observe that a flow ray ρ in D starting at
a vertex along b has as its next vertex the top vertex of a sector in S, and that this vertex
lies in the top branch segment of some chain Ci opposite b. We claim that ρ (after one
or two additional flow edges) meets the top branch segment of Ci−1 opposite b. Applying
this claim inductively, we obtained that ρ eventually meets the top branch segment of C0

opposite b. Since C0 is a chain of σ , this will complete the proof.
For this final claim, we use Claim 6.10 to see that the top branch segment of Ci opposite

b lies in the boundary of a single sector σb. Hence, the next vertex along ρ is the top
vertex of σb, which is either along the branch segment of Ci−1 opposite b, as in the center
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FIGURE 31. Pictures from the proof of Claim 6.10 and Lemma 6.9 (in colour online).

FIGURE 32. Picture to accompany Remark 6.11. If the top vertex of σ is not the bottom vertex of a sector in D,
then any �̃-ray in D starting in�(σ) must pass through a vertex in a chain of one of the two sectors immediately

above σ . In the picture, the chains of the two sectors immediately above σ are colored blue (in colour online).

of Figure 31, or along the interior of a branch segment at the bottom of Ci−1, as in the
right side of Figure 31. In the first case, we are immediately finished. In the second, the
next flow edge from the top vertex of σb is through the interior of the sector at the bottom
of Ci−1. Hence, the next vertex along ρ is in the branch segment of Ci−1 opposite b as
claimed.

Remark 6.11. The proof of the above lemma may be easily modified to show the following:
for a sector σ in a dynamic plane D, any flow ray in D starting in �(σ) passes through a
vertex in a chain of one of the sectors immediately above σ in D. In the case when the top
vertex v of σ is the bottom vertex of another sector σ ′ in D, the proof is exactly the same
but with the roles of σ and σ ′ reversed. If v is not the bottom vertex of any sector in D, then
the flow ray will pass through a vertex in a chain of either of the two sectors immediately
above σ . See Figure 32. This fact will be used in §9.

We now establish the following, which roughly states that � records orbits of the flow
in a manner which is uniformly finite-to-one.

PROPOSITION 6.12. The map F̃ is surjective. If p ∈ P does not lie on a singular stable
leaf, then |̃F−1

(p)| < 2δ, and if p is non-singular but lies on a singular stable leaf, then
|̃F−1

(p)| < 4δ.
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Proof. For the moment, suppose that p ∈ P does not lie in a singular stable leaf.
Let (Ri)i≤0 be a sequence of maximal p-rectangles that limit to a horizontal leaf through

p. After refining the sequence, we may assume that Ri+1 lies above Ri for each i ≤ −1.
For each Ri , let ρi = rayp(Ri) be the p-ray starting at Ri . By Proposition 6.4, each ρi is
contained in D = Dp, the dynamic plane associated to p. Hence, each maximal rectangle
Ri corresponds to a vertex vi in D, which is the initial vertex of ρi .

Next, let Q be any edge rectangle in P that contains p. As before, let R = RQ be the
maximal rectangle obtained by extending Q vertically and also let R′ be the maximal
rectangle obtained by extending Q horizontally. These correspond to sectors σ = σ(R)
and σ ′ = σ(R′) in D, where σ lies directly above σ ′. Indeed, σ is the sector of D whose
top vertex corresponds to R and similarly for σ ′.

By the choice of the sequence (Ri)i≤0, the rectangle Q (and hence R′) lies above Rj
for j � 0. By Lemma 6.2, there is a dual path from Rj to R′, so by Lemma 3.3, we have
�(σ(Rj )) ⊂ �(σ ′) ⊂ D. Hence, we see that ρj meets the descending set �(σ ′) for all
j sufficiently small. So by Lemma 6.9, ρj must pass through a sector in one of the two
chains for σ . Since the number of such sectors is uniformly bounded by Lemma 6.8, we
can pass to a subsequence so that for all j ≤ 0, all ρj pass through a fixed vertex vQ in the
chain for σ = σ(RQ) and thereafter agree. Let ρQ be the �̃-ray starting at vQ.

Iterating this construction for a sequence of edge rectangles Q−1, Q−2, Q−3, . . .
limiting to the horizontal leaf through p yields a nested sequence of rays ρQ−1 ⊂ ρQ−2 ⊂
ρQ−3 ⊂ . . ., the union of which is a �̃-line � in D such that each maximal rectangle along
� contains p. Hence, F̃(l) = p, as required.

For the bound on the preimage, note that any line in F−1(p) is contained in the dynamic
plane Dp for p by Proposition 6.4. Since the length of a chain of sectors is less than δ by
Lemma 6.8, the argument above implies that there are less than 2δ p-lines in Dp.

Next, suppose that p ∈ P lies on a singular stable leaf � but is non-singular. Since any
line in �̃ that determines a sequence of maximal rectangles containing p must eventually
have p appearing in the vertical boundary of each of its rectangles, we observe that any line
in the preimage F−1(p) is contained in one of the two dynamic planes containing D�
introduced in Remark 6.5. Applying the same argument as in the previous case, but in each
of these planes containing D�, produces at least two and less than 4δ �̃-lines mapping to
p under F̃.

Finally, suppose that p ∈ P is a singular point. Pick a singular stable leaf � through
p that is stabilized by some g �= 1. Then g stabilizes D� and we let D be one of the two
dynamic planes containingD�, as in Remark 6.5. Since D is also stabilized by g, D contains
a g-periodic line l in �̃ by the proof of Proposition 3.15. Since the sequence of maximal
rectangles associated to l is g-invariant, the intersection of these rectangles F̃(l) contains
the fixed point of g, which is the singularity p. This completes the proof.

6.3. Cycles of � and closed orbits of ϕ. We next define the map F from Theorem 6.1.
Let c be a directed cycle in �, let c̃ be a lift of c to �̃, and let g ∈ π1(M) be the deck
transformation that generates the stabilizer of c̃ and translates in the positive direction.
Then g · F̃(̃c) = F̃(g · c̃) = F̃(̃c), so p = F̃(̃c) ∈ P is fixed by the action of g. Hence, p
corresponds to either a g-invariant flow line γ̃ of M̃ or a singularity of P fixed by g. In
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the case where p is non-singular, the directed cycle c is homotopic in M to the closed orbit
γ = γ̃ /〈g〉 of ϕ and we set F(c) = γ .

When p = F̃(̃c) is a singularity, each rectangle in the g-periodic sequence of maximal
rectangles along c̃ contains the singularity p in its vertical boundary. Indeed, p must
eventually be in a vertical side of the associated rectangles (by the description of �̃ in
terms of maximal rectangles) and so by g-periodicity, p must be in a vertical side of every
maximal rectangle associated to c̃. Let �u be the unique leaf of the unstable foliation Fu
containing p that meets all the maximal rectangles along c̃. Then �u is invariant under g.
Let γ be the unique multiple of the unstable prong curve in M determined by �u to which
c is homotopic, and set F(c) = γ .

Recall that O+ϕ ⊂ M is the union of closed orbits Oϕ of the flow along with all positive
multiples of unstable prong curves in M. If we denote by Z� the set of directed cycles
of �, then the above discussion produces a map:

F : Z�→ O+ϕ ,

with the property that the directed cycle c is homotopic to F(c) in M. We remark that when
F(c) is non-singular (i.e. a closed orbit in M; not a prong curve), it is the unique closed
orbit of ϕ homotopic to the flow cycle c since the flow does not have distinct homotopic
orbits.

We need to further discuss the case when F̃(̃c) = p is a singularity, or equivalently
when F(c) = γ is an unstable prong curve. Let γ̃ be the corresponding lift of γ to M̃ ,
and let U be the component of M̃ − B̃s containing γ̃ . Let T be the boundary of a small
regular neighborhood of the singular orbit corresponding to γ , and let T̃ be the lift to M̃
of T that is contained in U. We describe some structure of U and ∂U that follows from the
discussion in [LMT20, §5].

The boundary tessellation by τ̃ of T̃ can be naturally identified with the tessellation
∂U ∩ τ̃ (2), because τ̃ (2) ∩ U is homeomorphic to the product of the tessellation of the
cusp with (0, 1) [LMT20, Lemma 5.2]. Thus it makes sense to speak of upward/downward
triangles and ladders on ∂U (see [LMT20, §2.1.2] for terminology) and the following
facts are contained in Lemmas 5.3–5.5 of [LMT20]. Each upward ladder of ∂U contains
a unique branch line in its interior. The complementary components of these branch lines
are called bands. Each band B contains a unique downward ladder L in its interior, and any
�̃-line contained in a given band must lie in L. The structure of �̃ ∩ B is such that there
is at least one and no more than two asymptotic classes of �̃-lines contained in L. Further,
if λu is the unstable leaf of ϕ̃ corresponding to γ̃ , with projection �u in P, then the idea
of the proof of [Lan19, Lemma 2.8] shows that λu intersects T̃ in the core of the ladder
on T̃ corresponding to L, and that L can be characterized as the intersection with B̃s of all
tetrahedra t such that the maximal rectangle corresponding to t intersects �u in its interior
and contains p in its boundary. It follows that c̃ lies in the core of L.

This discussion gives us the following lemma.

LEMMA 6.13. Let c be a �-cycle and γ a prong curve such that F(c) = γ . Then c lies in
the unique band of Bs corresponding to the downward ladder determined by γ . It follows
that c is transversely homotopic to γ and that there are at most two �-cycles mapping to c
under F.
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The next proposition establishes that all but finitely many primitive closed orbits of ϕ
are homotopic to directed cycles of �. Note that if the closed orbit γ is homotopic to the
flow cycle c, then we necessarily have F(c) = γ since no two closed orbits of the flow are
homotopic.

PROPOSITION 6.14. Let γ be a non-singular closed orbit of ϕ. Then γ is homotopic in M
to either a directed cycle of the flow graph � or an odd AB-cycle in �.

Proof. The closed orbit γ is homotopic to a (non-unique) �-cycle c. This follows
from the fact that all orbits of ϕ are positive transverse to τ (2) and by perturbing γ
slightly, if necessary, we can assume that it misses τ (1). The sequence of faces of τ
intersected by γ defines a dual cycle c homotopic to γ . The proposition now follows from
Proposition 3.15.

We are now ready to prove the main theorem of this section.

Proof of Theorem 6.1. For item (1), the definition of F ensures that γ = F(c) is homotopic
to c in M. It remains to prove that c and γ are transversely homotopic. When γ is a regular
orbit, this follows immediately from Proposition 6.7. For this, we use that the regular orbit
γ is not homotopic to a branch curve because branch curves inM are homotopic to singular
orbits and no distinct closed orbits in M are homotopic (Lemma 4.2).

If γ is instead an unstable prong curve, γ is homotopic to branch curves corresponding
to the same singular orbit and so Proposition 6.7 does not apply. Instead, we simply apply
Lemma 6.13.

Item (2) is also a direct application of Lemma 6.13.
Item (3) essentially follows from Lemma 6.6. For this, let c1, . . . , cn ∈ Zϕ with

F(ci) = γ . Let γ̃ be a fixed lift of γ , let g ∈ π1(M) generate the stabilizer of γ̃ , and let
p be the image of γ̃ in P. Since each ci is homotopic to γ , we can choose lifts c̃i that are
also invariant under g. Hence, p = F̃(̃ci). That is, each c̃i is a p-line in �̃. By Proposition
6.4, each c̃i is contained in the dynamic plane Dp, and by Lemma 6.6, the number of
asymptotic classes of the c̃i is equal to the width of D. However, if two g-invariant p-lines
are asymptotic, then they are equal. We conclude that n is equal to the width of Dp. By
Proposition 3.10, the width of Dp is equal to one, unless γ is homotopic to an AB-cycle.
Regardless, the width is no more than δ by Corollary 3.13.

Finally, item (4) follows from Proposition 6.14 and the fact that no distinct closed orbits
of ϕ are homotopic.

Next we mention a corollary that further connects the flow and triangulation. Recall
from §2.4 that cone1(�) ⊂ H1(M; R) denotes the cone of homology directions of τ , which
is the cone positively spanned by the classes of closed curves positively transverse to τ (2).
We proved in [LMT20, Theorem 5.1] that this agrees with the cone positively spanned
by �-cycles (cf. Proposition 3.15). In [Fri82b], Fried associates to any flow a cone of
homology directions in first homology which can be thought of as the positive span of
classes of nearly closed orbits. In the current context, the cone of homology directions of
our pseudo-Anosov flow ϕ is polyhedral and positively spanned by closed orbits of ϕ. Since
the flow is positively transverse to τ (2) away from the singular orbits, and each singular
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orbit has a multiple which is homotopic to a transversal by Theorem 6.1, it is clear that
cone1(�) contains Fried’s cone. Theorem 6.1 also easily implies the reverse containment,
giving us the following.

COROLLARY 6.15. (Homology directions) Suppose that the veering triangulation τ is
associated to the flow ϕ. Then the image of cone1(�) inH1(M; R) is equal to Fried’s cone
of homology directions for ϕ.

We conclude this subsection by showing that the veering triangulation also detects
which orbits of ϕ are twisted.

LEMMA 6.16. Let γ be a non-singular closed orbit of ϕ and let c be any directed cycle of
� homotopic to γ . Then γ is untwisted if and only if c has an even number of AB-turns.

Proof. As in the proof of Lemma 3.14, c has an even number of AB turns if and only if
the pullback of the tangent bundle over Bs is orientable [LMT20, Lemma 5.6]. Lifting to
the universal cover M̃ , this is equivalent to a fixed coorientation on B̃s being preserved
by the deck transformation g ∈ π1(M) with 〈g〉 = stab(̃c). (We recall that since M defor-
mation retracts to Bs , the branched surface B̃s is contractable. Hence, its tangent plane
bundle is trivial.) Such a coorientation on B̃s orients all edges of the lifted triangulation
τ̃ and these orientations are preserved by g. Note that by looking at the intersection of B̃s

with any face of τ̃ , we see that the widest edge of the face is oriented consistently with
respect to the other edges, i.e. the widest edge is the homological sum of the other two.

Now each vertex crossed by c̃ corresponds to a tetrahedron of τ̃ and hence to a maximal
rectangle in P. As in the construction of the map F̃, the intersection of all these maximal
rectangles is the fixed point p of g, which by construction is the projected image of
the g-periodic flow line γ̃ . Moreover, for any positive ray c̃+ of c̃, the intersection of
the associated maximal rectangles is a segment of the stable leaf � through p in P (see
Fact 4.4). The fact that the edges of τ are coherently oriented along the faces crossed
by c̃ translates to the fact that the τ -edges of the maximal rectangles in our collection
coherently cross � from one (say the left) side to the other. Since this ordering is preserved
by g, the stable leaf � has a g-invariant coorientation. Hence, the stable leaf through F̃(γ̃ )

also has a coorientation preserved by g and so the orbit γ is untwisted.
Reversing the logic, if � has a g-invariant coorientation, then we can used this to coher-

ently orient the τ -edges crossing � and this translates to a coherent orientation on the edges
of τ̃ that is compatible on faces in the above sense and which is g-invariant. Hence, the
orientation on any one of these edges coorients B̃s in a g-invariant fashion. This implies,
again as in Lemma 3.14, that c has an even number ofAB-turns. The proof is complete.

7. Growth rates of orbits and the veering polynomial
In this section, we show how a modified version of the veering polynomial can detect
growth rates of closed orbits of subsets of the flow, even in the non-layered setting. Our
main theorems are Theorem 7.1, which relates growth rates of the flow to those of the flow
graph, and Theorem 7.2, which relates the growth rates to the veering polynomial. These
are new even in the case of surfaces contained in the boundary of a fibered face and more
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on this special case is discussed in §9.2. In Proposition 7.7, we will use these to give a
topological criterion for these growth rates to be strictly greater than 1.

In §8, we extend these results to study growth rates for the closed manifold M after
cutting along a transverse surface.
Cutting along a surface. Let S ⊂ M be a properly embedded surface positively transverse
to the flow ϕ, and let M|S denote M cut along S, with its components indicated as M|S =⋃
i M|iS. We let ϕ|S denote the restricted semiflow onM|S and let ϕ|iS denote the further

restriction to the component Mi |S. Let O|S and O|iS denote the directed closed orbits of
ϕ|S and ϕ|iS, respectively. In particular, O|iS are the closed orbits of ϕ that are contained
in M|iS.

Let� be the flow graph of the veering triangulation τ and ι : �→ M be its embedding
in dual position. If S is carried by the veering triangulation τ , then it is positively transverse
to ι(�) as well as the flow (Theorem 5.1), and we denote by � \ S the flow graph cut
along ι−1(S). Then let �|S denote the recurrent subgraph of � \ S, that is, the union of
edges traversed by directed cycles of� \ S. As for ϕ, let�|iS denote the subgraph of�|S
contained in M|iS, and let Z�|S and Z�|iS denote the directed cycles of �|S and �|iS,
respectively.

Now let ξ ∈ H 1(M|iS) be a cohomology class which is positive on the closed orbits
O|Si ⊂ M|iS as well as on unstable prong curves that are contained in M|Si . We call any
such class positive with respect to ϕ|iS and note that such positive classes determine a
(possibly empty) open cone in H 1(M|iS).

We then consider for a positive class ξ , the exponential growth rates

grϕ|iS(ξ) = lim
L→∞ #{γ ∈ O|iS : ξ(γ ) ≤ L}1/L (7.1)

and

gr�|iS(ξ) = lim
L→∞ #{c ∈ Z�|iS : ξ(ι(c)) ≤ L}1/L. (7.2)

The first main theorem of this section is the following.

THEOREM 7.1. (Growth rates in M|iS) Let τ be a veering triangulation of M with dual
flow ϕ. Consider a surface S carried by τ (2) and fix a component M|iS of M|S.

For any positive class ξ ∈ H 1(M|iS), the growth rates of ϕ|iS and �|iS exist and

grϕ|iS(ξ) = gr�|iS(ξ).

In fact, grϕ|iS(ξ) > 1 so long as O|iS contains infinitely many primitive orbits. See
Proposition 7.7.

To compute these growth rates, we will define a veering polynomial Vϕ|iS ∈
Z[H1(M|iS)/torsion] (see §7.4) directly from the Perron polynomial P� of the flow
graph � and obtain this theorem.

THEOREM 7.2. (Growth rates and the polynomial) Let τ be a veering triangulation of M
with dual flow ϕ. Consider a surface S carried by τ (2) and fix a component M|iS of M|S.

For any positive ξ ∈ H 1(M|iS), the growth rate grϕ|iS(ξ) is equal to the reciprocal of

the smallest positive root of V ξϕ|iS , the veering polynomial of M|iS specialized at ξ .
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7.1. Cutting with cohomology. We first observe that �|S depends only on the Poincaré
dual of [S] in H 1(M).

LEMMA 7.3. The directed cycles of �|S are exactly the directed cycles of � that are zero
under ι∗η, where η ∈ H 1(M) is the Poincaré dual of S.

Proof. Let c be a directed cycle of �. If c is in �|S, it misses ι−1(S), so η(ι(c)) = 0.
Conversely, if η(ι(c)) = 0, then ι(c) must miss S since all intersections of ι(�) with τ (2)

are transverse and positive.

Motivated by this, for η ∈ cone2(τ ), define �|η to be the subgraph of � whose edges
are traversed by directed cycles that are ι∗η-null. Alternatively,�|η is the largest recurrent
subgraph of � on which the pullback of η is 0 (see e.g. [LMT20, Lemma 5.10]). We call
�|η the restricted flow graph for η. When η is dual to a carried surface S, Lemma 7.3
implies that �|η = �|S. Although this will not play a direct role here, we reconsider this
perspective in §9.2.

7.2. Parameterizing orbits of ϕ|iS. Recall that O+ denotes the union of closed orbits of
ϕ, O = Oϕ , together with all positive multiples of the finitely many unstable prong curves
of M, and we define O+|S accordingly. We have O+|S =⋃

i O+|iS, where O+|iS are the
closed orbits and unstable prong curves that are contained in M|iS.

LEMMA 7.4. (Decomposing orbits) The map F : Z�→ O+ from Theorem 6.1 restricts to
a map

F|iS : Z�|iS → O+|iS,

whose image is im(F)
⋂

O+|iS for each component M|iS of M|S.
Moreover, for each directed cycle c of �|iS, ι(c) is homotopic to F(c) within M|iS.

Proof. Fix a component M|iS and let c ∈ Z�|iS be a directed cycle of �|iS. Recall
from Theorem 6.1 that γ = F(c) is the closed orbit or unstable prong curve of ϕ that
is transversely homotopic to ι(c). That is, there is a homotopy from ι(c) to γ through
curves that are positively transverse to τ (2). Since S is carried by τ , the curves in this
homotopy are also positively transverse to, and hence disjoint from, S. Since ι(c) ⊂ M|iS
by definition of �|iS, we conclude that ι(c) is homotopic to γ within M|iS and so, in
particular, γ = F(c) ∈ O+|iS.

Similarly, if γ ∈ O+|iS is in the image of F, then any preimage c must be 0 under ι∗η
(where η is the Poincareé dual of S, as in Lemma 7.3), and hence c is in�|S. Just as above,
we may additionally conclude that c ∈ Z�|iS .

7.3. Comparing growth rates. We are now ready to prove Theorem 7.1. Let ξ ∈
H 1(M|iS) be positive with respect to ϕ|iS. By definition, ξ is positive on O+|iS, the
set of closed orbits and unstable prong curves that are contained in M|iS.

LEMMA 7.5. If ξ ∈ H 1(M|iS) is positive, then its pullback ι∗ξ toH 1(�|iS) is positive on
directed cycles.
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Proof. By Lemma 7.3, for each directed cycle c of �|iS, the image ι(c) is homotopic in
M|Si to a closed orbit or unstable prong curve in M|Si . The lemma follows.

We shall now prove that the growth rates, counting with respect to ξ , of closed orbits of
ϕ|iS and directed cycles of �|iS exist and are equal:

grϕ|iS(ξ) = gr�|iS(ξ).

We will use results from the theory of growth rates of cycles in directed graphs and refer
to McMullen’s paper [McM15].

Proof of Theorem 7.1. Since ι∗ξ is positive on directed cycles of �|iS (Lemma 7.5), it
follows that gr�|iS(ξ) exists (see e.g. [McM15, Lemma 3.1]).

We first show that

gr�|iS(ξ) ≤ lim inf
L→∞ #{γ ∈ O|iS : ξ(γ ) ≤ L}1/L.

For this, it suffices to assume that gr�|iS(ξ) > 1, otherwise there is nothing to show.
By Theorem 6.1, there is a constant m such that for any γ ∈ O+, #F−1(γ ) ≤ m. By
Lemma 7.4, F maps Z�|iS into O+|iS and for each directed cycle c of �|iS, F(c) is
homotopic to ι(c) within M|iS. From these facts, we have

#{F(c) ∈ O|iS : ξ(F(c)) ≤ L} ≤ #{c ∈ Z�|iS : ι∗ξ(c) ≤ L}
≤ m · #{F(c) ∈ O|iS : ξ(F(c)) ≤ L}.

Thus, we have equality of growth rates:

gr�|iS(ξ) = lim
L→∞ #{F(c) : ξ(F(c)) ≤ L}1/L,

which shows, in particular, that #{F(c) : ξ(F(c)) ≤ L} has exponential growth. However,
the multiples of unstable prong curves in O+|iS have at most linear growth so removing
them from our count does not affect the growth rate. Hence,

gr�|iS(ξ) = lim
L→∞ #{γ ∈ Im(F) ∩O|iS : ξ(γ ) ≤ L}1/L (7.3)

≤ lim inf
L→∞ #{γ ∈ O|iS : ξ(γ ) ≤ L}1/L.

For the other direction, again note that we can assume that

1 < lim sup
L→∞

#{γ ∈ O|iS : ξ(γ ) ≤ L}1/L,

otherwise we are done. Hence, #{γ ∈ O|iS : ξ(γ ) ≤ L} grows exponentially. By
Theorem 6.1, every primitive γ ∈ O|iS is in the image of F with at most finitely many
exceptions corresponding to closed orbits homotopic to odd AB-cycles. Hence, the image
of F|iS misses at most finitely many primitive orbits in Oi |S and their multiples. It then
follows easily that

lim sup
L→∞

#{γ ∈ O|iS : ξ(γ ) ≤ L}1/L ≤ gr�|iS(ξ),

and the proof is complete.
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7.4. Adapting the veering polynomial and counting orbits. The last object needed for
our discussion is an adapted version of the veering polynomial. For the directed graph
�|S =⋃

i �|iS, let P�|S and P�|iS denote the respective Perron polynomial. For each
component M|iS of M|S, define its veering polynomial to be

Vϕ|iS = ι∗(P�|iS) ∈ Z[H1(M|iS)/torsion],

where ι∗ : Z[H1(�|iS)]→ Z[H1(M|iS)/torsion] is the ring homomorphism induced by
inclusion.

It not hard to see that

P�|S =
∏
i

P�|iS

in Z[H1(�|S)] =⊗
i Z[H1(�|iS)] since�|S is the disjoint union of the�|iS. Indeed, in

this case, the adjacency matrix for �|S is a block diagonal matrix whose blocks are the
adjacency matrices for the �|iS.

Recall from §2.3 that any directed graph D has a cycle complex C(D) whose cliques are
the disjoint simple directed cycles of D. Moreover, the Perron polynomial PD of D is equal
to the clique polynomial of C(D).

PROPOSITION 7.6. Let η ∈ H 1(M) be the Poincaré dual to S. The inclusion �|S → �

induces an inclusion C(�|S)→ C(�) whose image is the full subcomplex spanned by
simple cycles that are zero under ι∗η.

Hence, P�|S can be obtained from P� by removing terms which evaluate non-trivially
under η.

Proof. Since�|S → � is inclusion, we have the inclusion of vertices C0(�|S)→ C0(�).
This amounts to saying that simple cycles of �|S map to simple cycles of �. The full
inclusion statement is then equivalent to saying that cycles c1 and c2 of �|S are disjoint if
and only if they are disjoint as cycles in �. This is equally clear.

Finally, as in §2.3, we know that the Perron polynomial P� is equal to

1+
∑
σ

−1|σ |σ ,

where the sum is over cliques of C(�). Hence, the only terms of P� that do not appear
in P�|S are those composed of multicurves that have positive evaluation under ι∗η. This
completes the proof.

We henceforth consider P�|S as being obtained from P� by removing the terms that
correspond to cycles which are non-trivial under ι∗η.

We can now prove Theorem 7.2 which relates growth rates of ϕ in M|iS to the veering
polynomial.

Proof of Theorem 7.2. Let ι : �|iS → M|iS be as above. Since ξ is positive, ι∗ξ is positive
on all directed cycles of �|iS (Lemma 7.5).

By [McM15, Theorem 3.2], gr�|iS(ξ) is equal to the reciprocal of the smallest root of
the Perron polynomial of P�|iS specialized at ι∗ξ . (Technically, this is applied to a metric
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on �|iS representing ι∗ξ ; see [McM15, Lemma 5.1] or [LMT20, Lemma 5.10].) Since

P
ι∗ξ
�|iS = V

ξ
ϕ|iS ,

the result follows from Theorem 7.1.

We conclude this section with a characterization of when the entropy is positive.

PROPOSITION 7.7. With notation as in Theorem 7.1, the growth rate grϕ|iS(ξ) is strictly
greater than 1 for every positive ξ ∈ H 1(M|iS) if and only if there are infinitely many
primitive closed orbits of ϕ contained in M|iS.

Proof. If grϕ|iS(ξ) > 1, then the claim that there are infinitely many primitive closed
orbits in M|iS is clear, since otherwise the growth of all orbits is linear.

Now suppose that there are infinitely many primitive closed orbits in M|iS. Then, as
in the proof of Theorem 7.1, there are infinitely many closed primitive cycles in �|iS.
Since the directed graph �|iS is finite, this mean that it has recurrent components that
are neither trivial nor cyclic. Hence, the growth rate of directed cycles with respect to any
positive cocycle is strictly greater than 1. As this quantity is the same as grϕ(ξ), the proof
is complete.

8. Transverse surfaces and growth rates for closed manifolds
In this section, we outline a way in which the results of the previous section extend to
closed 3-manifolds. Here, the veering triangulation is still the central tool but does not
appear in theorem statements.

Let M be a closed 3-manifold and let ϕ be a pseudo-Anosov flow on M without perfect
fits. Let S be a closed surface in M that is transverse to ϕ. For simplicity of notation, we
will assume that S is connected. We orient S so that each intersection with an orbit of
ϕ is positive and note that M|S is connected. Let O|S be the set of closed orbits of ϕ
that miss S and hence are contained in M|S. Below, we will define an invariant Vϕ|S ∈
Z[H1(M|S)]/torsion which we call the veering polynomial of M|S. We will call a class
ξ ∈ H 1(M|S) strongly positive if it is positive on O|S as well as a certain finite collection
of curves in ∂M|S that we define below (§8.2).

We will prove the following theorem.

THEOREM 8.1. Let ϕ be a pseudo-Anosov flow onM without perfect fits. Let S be a closed
connected surface in M that is transverse to ϕ.

For any strongly positive class ξ ∈ H 1(M|S), the growth rate

grϕ|S(ξ) = lim
L→∞ #{γ ∈ O|S : ξ(γ ) ≤ L}1/L

of closed orbits in M|S exists and equals the reciprocal of the smallest root of the
specialization V ξϕ|S of the veering polynomial.

Recall that M = M \ {singular orbits} admits a veering triangulation τ . Let ι : �→
M ⊂ M be the embedding of the flow graph in dual position so that its edges are positively
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transverse to τ (2). Fix S as in the statement of Theorem 8.1 and let η ∈ H 1(M) be its
Poincaré dual.

We begin by noting that if we also puncture S along the singular orbits of ϕ, we obtain
a surface

◦
S in M that is positively transverse to the remaining orbits. However, it is not

clear whether
◦
S is necessarily carried by the branched surface τ (2) and so the results of the

previous section do not automatically apply. Instead, we use the following claim, which is
all we will need.

CLAIM 8.2. (Homotoping the flow graph) Let S be a closed surface positively transverse
to ϕ. The flow graph ι : �→ M can be isotoped to a map ι0 : �→ M so that its edges
are positively transverse to S.

Proof. Since the surface S is positively transverse to ϕ, results in [Mos92b] imply that S is
taut and so its Thurston norm equals |χ(S)|. Applying the Poincaré–Hopf index formula to
the singular foliation F s ∩ S of S, we see that χ(S) = eτ (S), where eτ is the combinatorial
Euler class of [Lan22]. Then the main theorem of [Lan22] states that there exists an
isotopy that pushes a certain family of annuli of S into a neighborhood of the singular
orbits so that outside this neighborhood, S is carried by τ (2). This implies, in particular,
that we may isotope the flow graph� inM to be positively transverse to S, as required.

For the proof of Theorem 8.1, we wish to follow along the lines of the proofs for
Theorems 7.1 and 7.2, except that we no longer have the full strength of the veering
triangulation available (see §8.2). In what follows, we adapt the argument to only use the
fact that the flow graph � is positively transverse to the surface S.

As before, we define� \ S by cutting� along ι−1
0 (S) and we take its recurrent subgraph

�|S. By construction, the restriction ι0 : �|S → M|S is defined and �|S is exactly the
subgraph of � consisting of edges that are traversed by cycles which are 0 under ι∗0η ∈
H 1(�) (cf. Lemma 7.3).

8.1. Stable and unstable curves. The main complication in studying flows in the cut
manifoldM|S is that orbits of the restricted flow may be homotopic into S itself. We begin
by analyzing this possibility.

For any embedded surface S in M that is positively transverse to ϕ, we define the
singular foliations Fs/uS = Fs/u ∩ S on S. The following is an observation that follows
easily from work of Cooper–Long–Reid [CLR94] in the case of a circular flow and more
generally from Fenley [Fen99b].

LEMMA 8.3. Suppose that γ is a closed orbit of ϕ that is homotopic to a closed curve c
in S. Then c is homotopic in S to a closed leaf of either FsS or FuS .

Moreover, every closed leaf of FsS or FuS can be oriented so that it is homotopic to a
closed orbit of ϕ.

Note that the conclusion of the lemma places c into one of at most finitely many
homotopy classes of curves in S and implies that there are at most finitely many closed
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orbits of ϕ that are homotopic into S. Here we are using the fact that no distinct closed
orbits of ϕ are homotopic (see Lemma 4.2(3)).

We call the closed leaves of Fs/uS , with their orientation determined by Lemma 8.3, the
stable/unstable curves of S.

Proof. Consider lifts γ̃ , c̃ ⊂ S̃ to the universal cover M̃ chosen so that there is a deck
transformation g ∈ π1(S) preserving γ̃ , c̃ and S̃. Further assume that g translates γ̃ in its
positive direction. We note that S̃ is a properly embedded plane in M̃ that is positively
transverse to the lifted flow. Since S̃ separates M̃ , this implies that S̃ intersects each flow
lines at most once. Let F̃s/u(γ̃ ) be the stable/unstable leaves through γ̃ .

Now consider the projections to the flow space Q of M . To keep the notation as simple
as possible, the projection of x̃ in M̃ to Q will be denoted by x̂. Since γ is homotopic
into S, it has intersection pairing 0 with it, which means by positive transversality of S
to the flow that γ misses S and hence γ̂ is not contained in Ŝ. According to [Fen99b,
Proposition 4.3], the boundary of Ŝ in Q is a disjoint union of leaf lines, which are lines of
the foliations F̂s/u that are regular on their Ŝ-side, meaning that each compact subsegment
of the line is contained in the boundary of a maximal rectangle whose interior is contained
in Ŝ. (This is discussed in more detail in §9.1 where a generalization is also proven.)

Let � be the unique leaf of either the stable or unstable foliation in the boundary of Ŝ
that separates γ̂ from Ŝ. Since g stabilizes γ̂ and Ŝ, it also stabilizes �. Hence, g fixes a
point in � and, because fixed points are unique, we conclude that γ̂ ∈ � (Lemma 4.2). If �
is a leaf of the stable foliation, then the unstable leaf through γ̂ meets Ŝ. Otherwise, � is a
leaf of the unstable foliation and the stable leaf through γ̂ meets Ŝ. This means that one of
the stable or unstable leaves of F̃s/u through γ̃ intersects S̃ in a g-invariant line. This line
descends to a closed curve of Fs/uS homotopic to c in S, and this finishes the proof in this
direction.

Conversely, any closed leaf of Fs/uS is contained in a leaf of Fs/u that is either an
annulus, a Mobius band, or singular. In either case, the ‘core’ of this leaf is a closed orbit
of ϕ and the proof is complete.

8.2. Strongly positive classes in H 1(M|S). In our current setting, we would like to
have an analog of Lemma 7.4 stating that if c is a directed cycle in �|S and γ ∈ O|S
is the unique orbit of ϕ homotopic to ι0(c), then γ and ι0(c) are homotopic in M|S.
Unfortunately, this does not seem to necessarily hold without the additional assumption
that S ∩M is carried by τ (see the discussion preceding Claim 8.2). We have introduced
the stable/unstable curves of S, and Lemma 8.3, precisely to deal with this issue.

Now define O∂ |S to be the set of closed orbits O|S together with positive multiples of
the stable/unstable curves of S contained in ∂(M|S). We call a class ξ ∈ H 1(M|S) strongly
positive if it is positive on O∂ |S.

LEMMA 8.4. (Strong positivity) A class ξ ∈ H 1(M|S) is strongly positive if and only if ξ
is positive on any oriented curve of M|S that is homotopic in M to a closed orbit of ϕ.

Moreover, for any strongly positive ξ ∈ H 1(M|S), the pullback ι0∗ξ ∈ H 1(�|S) is
positive on directed cycles.
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Proof. Let us first show that the two properties are equivalent.
By Lemma 8.3, every oriented curve in O∂ |S is homotopic in M to a closed orbit of ϕ.

Hence, any class ξ positive on closed orbits is positive on O∂ |S.
Conversely, suppose that ξ is positive on O∂ |S and let c be an oriented curve in M|S

that is homotopic inM to a closed orbit γ . Then either this homotopy can be altered to live
in M|S, and so ξ is positive on c, or γ is homotopic (in M) to a stable/unstable curve in
the boundary of M|S (Lemma 8.3) which is homotopic in M|S to c. (To see this, note first
that γ cannot cut through S by positive transversality of S, and consider a homotopy from
c to γ that is transverse to S.) Hence, ξ is positive on c.

That these statements imply positivity on directed cycles of �|S follows from
Theorem 6.1 because for any directed cycle c of �|S, ι0(c) is an oriented curve in M|S
which is homotopic in M to a closed orbit of ϕ.

We now turn to the proof of Theorem 8.1.

Proof of Theorem 8.1. Let ι0 : �|S → M|S be as above. Since ξ is strongly positive, ι0∗ξ
is positive on all directed cycles of �|S by Lemma 8.4. The proof is the same as for
Theorem 7.2, once we establish that the growth rate grϕ|S(ξ) exists and equals

gr�|S(ξ) = lim
L→∞ #{c ∈ Z�|S : ξ(ι0(c)) ≤ L}1/L.

For this, a slightly more delicate argument is needed since Lemma 7.4 is not available in
the closed setting.

We begin by defining a map H from directed cycles of �|S to O∂ |S. To do so, we make
use of the map F : Z�→ O+ and use the basic fact that sinceM ⊂ M , F(c) is homotopic
to ι0(c) in M and each unstable prong curve in M is homotopic in M to the corresponding
singular orbit. Define a slight modification F′ : Z�→ O, where O is the set of all closed
orbits of ϕ in M , by setting F′(c) = F(c) if F(c) is a non-singular orbit. Otherwise, F(c)
is an unstable prong curve and we set F′(c) to be the corresponding singular orbit.

To define H, first suppose that c is a directed cycle in �|S and that ι0(c) is homotopic
to F′(c) in M|S. Then H(c) = F′(c) ∈ O∂ |S. Otherwise, as in the proof of Lemma 8.4,
ι0(c) is homotopic in M|S to some stable/unstable curve in ∂(M|S). We pick such a
stable/unstable curve and call it H(c). Note that in either case, H(c) is homotopic in M|S
to ι0(c).

Now the proof is completed exactly as in Theorem 7.1 by using the map H and recalling
that the stable/unstable curves in O|S have at most linear growth. To apply that argument,
it only remains to show that there is some constant m such that #H−1(γ ) ≤ m for each
γ ∈ O∂ |S. Indeed, if γ is a non-singular closed orbit H that is interior to M|S, then
#H−1(γ ) ≤ #F−1(γ ), which is bounded by Theorem 6.1. If γ is a singular orbit, then
there are deg(γ ) unstable prong curves homotopic to γ . Since each of these has at most 2
preimages under F, again by Theorem 6.1, we are also done in this case. Finally, suppose
that γ is a multiple of a stable/unstable curve of S. Note that if directed cycles c and d of
�|S have H(c) = H(d) = γ , then ι0(c) and i0(d) are also homotopic in M. If F(c) is a
closed orbit, then F(d) is the same closed orbit. Otherwise, F(c) and F(d) are homotopic
unstable prong curves. In either case, we again obtain a bound on #H−1(γ ) and the proof
is complete.
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9. Entropy functions and stretch factors
Here we consider some applications of Theorems 7.1 and 7.2. In §9.1, we define and
establish properties of the entropy function on the cone of positive cohomology classes,
and in §9.2, we collect applications to the classical setting of fibered manifolds and stretch
factors.

9.1. Entropy function on positive cones. Let us return to the setup of Theorem 7.1. To
simplify notation, let N = M|iS be a fixed component of M|S for a surface S carried
by τ . Similarly, let �|N = �|iS be the flow graph restricted to N and note that it may
have several components, each of which is strongly connected. As before, we consider N
with the restricted semiflow ϕ|N and denote by O+|N its set of closed orbits and positive
multiples of unstable prong curves.

Let C+ ⊂ H 1(N ; R) be the cone consisting of positive classes. According to Theorem
7.1, grϕ|N : C+ → [1,∞) defines a function that gives the exponential growth rates of
closed orbits of the flow for each ξ ∈ C+. Since the value grϕ|N(ξ) is given by the
reciprocal of the smallest root of P�|N specialized at ι∗ξ by Theorem 7.2, we can use
results of McMullen to study its properties.

For this, we define the associated entropy function:

entϕ|N(ξ) = log(grϕ|N(ξ))

and note that Proposition 7.7 characterizes when entropy is non-zero. Our next theorem
summarizes the entropy function’s basic properties.

THEOREM 9.1. (Entropy) The entropy function entϕ|N : C+ −→ [0,∞) is continuous,
convex, and has degree −1, that is, entϕ|N(r · ξ) = 1/r · entϕ|N(ξ) for r > 0.

Proof. As noted above, by Proposition 7.7, there is nothing to prove if there are only
finitely many closed primitive orbits in N since then the entropy function is 0. So we
assume that this is not the case. That entϕ|N has degree −1 follows directly from the
definition.

The restricted flow graph �|N is itself the disjoint union of recurrent subgraphs. For
each such component J, the inclusion ι : �|N → N induces a pullback ι∗ : H 1(N)→
H 1(J ) that maps the positive cone C+ to the cone C+(J ) of positive classes on J, that
is, classes that are positive on directed cycles of J. Let entJ : C+(J )→ [0,∞) denote the
corresponding entropy function. Clearly this function is 0 when J is a cycle. When it is
not, since J is strongly connected, McMullen [McM15, Theorem 5.2] shows that entJ is
real-analytic, strictly convex, and blows up at the boundary of C+(J ) (that is, tends to
infinity along a sequence that converges to a point in the boundary).

From Theorem 7.1, we know that on C+, entropy is equal to the pointwise max over the
components of �|N :

entϕ|N = ent�|N ◦ ι∗ = max{entJ ◦ ι∗}, (9.1)

and so we immediately obtain that entϕ|N is continuous and convex.
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Remark 9.2. ((Strongly positive cones forM|S)) A version of Theorem 9.1 also applies to
the setup of §8, where S is a closed connected transverse surface in the closed manifoldM .
In this case, C+ ⊂ H 1(M|S) is the cone of strongly positive classes as defined in §8.2.

In the special case of a fibered cone (that is, when S = ∅ as in §9.2) it is well known
that the entropy function on the interior of the fibered cone is real analytic, strictly convex,
and blows up at the boundary [Fri82b, McM00]. However, this does not generally need
to be the case for entϕ|N : C+ −→ [0,∞) defined here. For example, if the manifold N
has a non-separating properly embedded essential annulus disjoint from all of its closed
orbits, then this annulus is dual to a non-trivial cohomology class a on the boundary of C+
that pulls back to 0 under ι∗ : H 1(N)→ H 1(�|N). If u ∈ C+, then {u+ ta | t ∈ [0, 1]}
is a line segment in C+ on which entϕ|N is constant, so entϕ|N is not strictly convex in
this case. Similarly, if N contains an essential separating annulus disjoint from the closed
orbits, then entϕ|N may not be real analytic since more than one term of the maximum in
equation (9.1) may be realized.

However, more can be said if the semiflow ϕ|N satisfies stronger dynamical conditions.
To motivate the definition, first recall that, as in the proof of Lemma 4.2, the flow ϕ is
always transitive on M , meaning that it has an orbit that is dense in both the forward and
backward directions. It is also well known that the closed orbits of ϕ generate H1(M; R)
as a vector space. We say that the induced semiflow ϕ|N is essentially transitive if O+|N
generates H1(N ; R) as a vector space, and if the semiflow has an orbit that accumulates
on each closed orbit of ϕ|N in the forward direction (that is, the closure of any forward ray
contains all closed orbits) and meets every neighborhood of each end of N that contains
an unstable prong curve. We note that each end of N is either an annulus or torus cross an
interval.

The following theorem establishes the strongest properties of entϕ|N for essentially
transitive flows.

THEOREM 9.3. If the semiflow ϕ|N is essentially transitive, and entϕ|N is not identically 0,
then entϕ|N is real-analytic, strictly convex, and blows up at the boundary of C+.

Before beginning the proof, we require an understanding of carried surfaces and their
relation to the flow space. We define a generalized leaf � of the stable/unstable foliation
of P to be either a non-singular leaf or the union of two singular leaves at the (unique)
singularity they contain. We say that a generalized stable leaf is regular to one of its sides if
either it is non-singular or the singularity that it contains has exactly one singular unstable
leaf meeting the interior of that side. The definition of a generalized unstable leaf that is
regular to one of its sides is analogous. We note that a generalized leaf � is regular to one
side if and only if every finite segment of � is contained in the boundary of a rectangle R;
this rectangle is necessarily contained in the regular side of �. We also define the boundary
of an orthant at p to be the union of a singular stable leaf at p and a singular unstable leaf
at p that are adjacent in the ordering around p.

Now suppose that S is a connected surface carried by τ (2) and hence transverse to
the flow ϕ. Consider a lift S̃ of S to the universal cover M̃ , and observe that S̃ is a
properly embedded, ideally triangulated plane in M̃ (the triangulation being induced by τ̃ )

https://doi.org/10.1017/etds.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.63


3096 M. P. Landry et al

that is positively transverse to the lifted flow. Since S̃ separates M̃ , this implies that S̃
intersects each flow line at most once. Hence, the projection of S̃ to the flow space P is
a homeomorphism onto its image and we will consider its image with the projected ideal
triangulation. As in §8.1, the projection of x̃ ⊂ M̃ to P will be denoted by x̂.

The following lemma generalizes [CLR94, Proposition 3.9] and [Fen99b,
Proposition 4.3].

LEMMA 9.4. The topological boundary of Ŝ in P is a disjoint union of stable and unstable
generalized leaves that are regular to their Ŝ-side, along with boundaries of orthants and
isolated singularities.

Boundaries of orthants correspond to punctures of S whose boundary slopes are those
of prong curves, and isolated singularities correspond to punctures of S whose boundary
slopes are not those of prong curves.

Proof. The region Ŝ has an ideal triangulation T inherited from S̃ whose vertices are
singularities of P in the closure of Ŝ and whose edges are singularity-free diagonals,
that is, τ -edges. We will see that components of the boundary of Ŝ, other than isolated
singularities, are limit sets of edges of this triangulation and that these limit sets have the
required form.

If x is an isolated singular point in the boundary of Ŝ, then S̃ intersects every singular
leaf meeting x. It follows that the corresponding puncture of S has a slope which is not that
of a prong curve.

Let x be a non-singular point in the boundary of Ŝ and let (xi)i≥0 be a sequence in Ŝ
converging to x. We can assume that each xi lies in the interior of an edge ei of T and that
ei , ei+1 are incident to a common face of T for each i ≥ 0. Since x is not a singularity, we
may further assume that the ei are distinct.

LetQi be the edge rectangle of ei . The sequence (Qi) cannot have both an upper bound
and a lower bound with respect to the ‘above/below’ partial order on rectangles. This is due
to the discreteness of singularities as in the proof of Fact 4.4. Without loss of generality,
suppose that there is no rectangle R that lies above each Qi . In this case, we will see that
Qi limit to a stable leaf or to a generalized stable leaf. The other case, where (Qi) has no
lower bound, the limit is an unstable leaf or generalized leaf and is handled similarly.

First suppose that the stable leaf � through x is non-singular. We will show that � is in
the boundary of Ŝ. For this, let R be any maximal rectangle containing a (vertical) leaf
segment of � through x. For sufficiently large i, xi is contained in the interior of R and
Qi does not lie below R. Since Qi is the edge rectangle for ei containing xi , it must be
that Qi lies above R for large enough i. By applying the same argument to rectangles R
that contain increasingly larger leaf segments of � about x, and using the fact that such
rectangles converge to �, we see that Qi and hence ei limit to �.

This shows that � is in the closure of Ŝ in P. To see that it is in the boundary, it suffices
to show that no point of � is contained in Ŝ. This is easy since any point y ∈ Ŝ ∩ � would
be contained in a face f of the triangulation T of Ŝ which crosses �. However, f would then
have to be crossed by the edges ei for large i, which contradicts that these are all cells of a
fixed triangulation T.
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It remains to consider the case where the (stable) leaf through x contains a singularity p.
The above argument still applies with a few minor modifications. Again, let xi , ei , Qi be
defined as above and let � be the stable generalized leaf through x, containing p, that is
regular to its side that contains infinitely many of the xi . Let R be any maximal rectangle
that contains a leaf segment of � through x and p in its vertical boundary. If the edges ei do
not eventually all terminate at the singularity p, then the same argument as above implies
that Qi , and hence ei , limit to �. So the entire generalized leaf � is in the boundary of Ŝ as
required.

Otherwise, the edges ei eventually all have p as a singular endpoint. In this case, the
rectangles Qi and edges ei limit to the singular stable leaf �′ through x terminating at
p (that is, the half of � containing x). Since the set of edges ei is finite up to the π1(S)

action, and these edges all eventually have p as a singular endpoint, there is a g ∈ π1(S)

fixing p and an edge e of T with endpoint p such that (gj (e))j≥0 occurs as a subsequence
(ei), and hence converges to �′. This implies that g stabilizes �′ and hence stabilizes
all stable/unstable leaves at p. However, then the sequence (gj (e))j≤0 converges to the
unstable leaf �′′ through p such that �′ ∪ �′′ forms the boundary of an orthant. In this
case, one easily sees that g ∈ π1(S) is peripheral and since it fixes each prong at p, the
corresponding slope is that of a prong curve as claimed.

With Lemma 9.4 in hand, we can turn to the proof of Theorem 9.3.

Proof of Theorem 9.3. The theorem will follow fairly directly from the following claim.

CLAIM 9.5. If the semiflow ϕ|N is essentially transitive and entϕ|N is not identically 0,
then the graph �|N contains a unique component J which is not a cycle. All curves of
O+|N are, up to positive multiples, homotopic to images of directed cycles in J.

Indeed, if J is such a component, then equation (9.1) becomes

entϕ|N = entJ ◦ ι∗.
Since O+|N generate H1(N ; R), so do the images of directed cycles in J. This implies
that the homomorphism ι∗ : H 1(N)→ H 1(J ) is injective and maps the boundary of C+
into the boundary of C+(J ). Since entJ : C+(J )→ [0,∞) is real-analytic, strictly convex,
and blows up at the boundary (again by [McM15, Theorem 5.2]) this implies the same for
entϕ|N : C+ → [0,∞).

We now proceed with the proof of Claim 9.5.
Let γ be an orbit of ϕ|N which, in the forward direction, accumulates on every closed

orbit in O|N and meets every neighborhood of each end of N that contains an unstable
prong curve.

Fix a lift Ñ to M̃ and let γ̃ be a lift of γ to Ñ , which is determined up to the action of
π1(N). Let p = γ̂ be its projection to the flow space P and note that p is not contained in a
singular stable leaf since otherwise, γ would be attracted to a singular orbit in the forward
direction.

Let Dp be the dynamic plane for p given after Proposition 6.4 and let γ̃� be a �̃-line
such that F̃(γ̃�) = p, the existence of which is guaranteed by Proposition 6.12. Note that

https://doi.org/10.1017/etds.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.63


3098 M. P. Landry et al

either by the construction of γ̃� or Proposition 6.4, we know that γ̃� is contained in Dp.
Let γ� be the projection of γ̃� to �. We claim that:
(1) γ� is disjoint from S; and
(2) for any directed cycle c of�|N , any directed subray γ+� of the the bi-infinite path γ�

contains a closed subpath d such that as loops in N, d is homotopic to ck for some
k ≥ 1.

Note that the second item implies that either F(d) = F(ck) or F(d) and F(ck) are
homotopic unstable prong curves corresponding to the same end of N (Theorem 6.1).

Let us show how Claim 9.5 follows from these two subclaims. By claim (1) above, γ�
lies in some component of � \ S and so some subray γ+� lies in some component J of
�|S. If c is any directed cycle of �|N , then by claim (2), there is some directed cycle of
J whose image under F is an element of O+|N that is homotopic to a multiple of F(c).
In particular, the cone in H1(J ; R), positively generated by directed cycles, maps onto
the cone in H1(N ; R) positively generated by O+|N (see Lemma 7.4). This gives the
second statement in the claim. Moreover, item (3) of Theorem 6.1 gives that for all but
finitely many primitive directed cycles c of � (that is, those for which F(c) is not a prong
curve and not homotopic to an AB cycle), ck = F−1(F(ck)) for all k ≥ 1 and, in fact, no
other directed cycles of � are homotopic to ck in M. It follows that, outside finitely many
exceptions, every primitive directed cycle of �|N is actually in J, so all components of
�|N other than J are cycles. If J were a cycle too, then entϕ|N would be identically 0. This
proves the claim.

It remains to establish the two subclaims. For the first, suppose that γ� intersects some
component S′ of S. Then γ̃� intersects some lift S̃′ of S′ to M̃ in some face f̃ of the
triangulation on S̃′ induced by τ̃ . Let f ⊂ Ŝ′ be the corresponding triangle in P and let
Rf be the face rectangle determined by f. Since γ̃� is a p-line, Rf contains the point p.
If the regular point p is not contained in Ŝ′, then by Lemma 9.4, either the vertical or
horizontal leaf through p is also disjoint from Ŝ′. However, each side of Rf contains a
singular vertex of f and so in this case, the vertical or horizontal leaf through p would have
to cut through f, giving a contradiction. This implies that p ∈ f and so the orbit γ̃ also
intersects S̃′. This, however, contradicts the assumption that γ is contained in N where N
is a component of M|S.

For the second subclaim, fix a directed subray γ̃+� of γ̃� with initial maximal p-rectangle
R0 and let c be any directed cycle of �|N . Let c̃ be a lift of c to Ñ and choose g ∈ π1(N)

to generate its stabilizer so that it translates c̃ in its positive direction. We set q = F̃(̃c), set
γc = F(c), and let γ̃c be the lift to Ñ that is also stabilized by g. Note that the projection
of γ̃c to P is q, which is also stabilized by g.

To complete the proof, we first assume that q is a regular point. Fix a maximal
q-rectangle R along the �̃-line c̃ and let Dq be the dynamic plane for q, which
contains c̃ by Proposition 6.4. Also let n be the number of vertices in the chains of
sectors associated to the sectors immediately above σ(R) in Dq , as in Remark 6.11.
Here, we recall that σ(R) is the sector immediately below the vertex in Dq

corresponding to R.
The fact that γ accumulates on γc in its positive direction translates into the statement

that there is a sequence hi ∈ π1(N) such that hip→ q and that hiR0 eventually lies below
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the q-rectangle g−(n+1)(R). To see this, fix an equivariant family of rectangle sections {sR}
as in Lemma 4.3 and let x be the intersection point of γ̃c with the section over g−(n+1)(R).
Let y be the intersection point of γ̃ with the section overR0 and let r0 be the positive subray
of γ̃ starting at y. The positive accumulation of γ on γc implies there exist hi ∈ π1(N) and
ti →∞ such that hi(r0(ti)) converges to x. We may choose ti so that the flow segment
hir0([0, ti]) begins at the section over hi(R0) and ends at the section over g−(n+1)(R).
Applying Lemma 4.3 now tells us that, for i sufficiently large, g−(n+1)(R) lies above hiR0.
This is the desired statement.

Further choose i sufficiently large that hip lies in R ∩ g−(n+1)(R). Hence, the descend-
ing set �(σ(R)) ⊂ Dq is also contained in the dynamic plane Dhip (Proposition 6.4).
Moreover,Dhip = hiDp contains hiγ̃+� whose initial maximal rectangle hiR0 corresponds
to a vertex contained in �(σ(g−(n+1)(R))). Then by Lemma 6.9 and Remark 6.11, hiγ̃+�
must pass through a vertex in the chain of one of the sectors above g−i (σ (R)) for each
i = 1, . . . , n+ 1. Since for each i there are n of these vertices, hiγ̃+� must pass through
two vertices of Dp which lie in the same 〈g〉-orbit. Hence, there is a subpath d̃ of hiγ̃+�
such that gk takes its initial vertex to its terminal vertex. In �|N , this projects to a closed
subpath d of γ+� that is homotopic to ck as a loop in N, establishing the second claim when
q is regular.

When q is a singular point only minor modifications to the setup are needed. In this
case, γc is an unstable prong curve and γ̃c is its lift determined by an unstable singular leaf
�u emanating from q. This time, g ∈ π1(N) stabilizes �u and therefore it stabilizes each
orthant based at q. The fact that γ meets each neighborhood of the end of N corresponding
to γc implies that there is a sequence hi ∈ π1(N) such that hip→ q. Since the stabilizer
of q acts cofinitely on the orthants at q, we can also assume that the hip all lie in a single
half-plane (that is, union of two adjecent orthants) cobounded by two consecutive singular
stable leaves �1, �2 emanating from q. There is a unique dynamic plane Dq containing the
dynamic half-planesD�1 , D�2 , which can be characterized as the union of descending sets
�(σ(R′)) where R′ is a maximal rectangle with q in its vertical boundary that is contained
in the half-space at q cobounded by �1, �2 (see Remark 6.5). Note that g stabilizes Dq and
so there is a g-periodic �̃-line c̃′ in Dq whose image c′ in N is homotopic to c. The rest of
the proof now goes through as above after replacing c with c′.

Remark 9.6. Our definition of essentially transitive concerns an orbit which ‘sees’ every
orbit and every unstable prong curve in the forward direction. In fact, the conclusions of
Theorem 9.3 also hold if ϕ|N has an orbit which, in the backward direction, accumulates
on every closed orbit and meets every neighborhood of every end of N containing a stable
prong curve. Indeed, after reversing the orientation of ϕ and the coorientation of τ (2), we
can apply the argument from above to conclude that the corresponding entropy function
is real analytic, strictly convex, and tends to infinity at the boundary of the positive cone.
This implies that the original entropy function has the same properties.

9.2. Suspension flows and fibered cones. Again returning to Theorem 7.2 (or
Theorem 8.1 in the closed case), if we let S = ∅, then there exists a (strongly) positive
class ξ in H 1(M) (or H 1(M)) if and only if the flow ϕ is isotopic to the suspension
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flow of a pseudo-Anosov homeomorphism and ξ lies in the interior of the associated
fibered cone R+ F. (When S = ∅, all positive classes are strongly positive.) This follows
from either Fried’s criterion for the existence of cross sections [Fri82b, Theorem D] or
a combinatorial analogue proven in [LMT20, Theorem E]. Hence, we conclude that the
growth rate grϕ(ξ) of the closed orbits of ϕ with respect to ξ is given by the reciprocal of

the smallest positive root of the specialization V ξτ of the veering polynomial.

Remark 9.7. (Teichmüller polynomial) Applying Theorem 7.2 in this setting to the
primitive integral points in the interior of R+F, and using the connection to the
Teichmüller polynomial established in [LMT20, Theorem B], we recover McMullen’s
theorem [McM00, Theorem 5.1] that the Teichmüller polynomial computes stretch factors
of monodromies associated to the fibered cone R+F.

Combining [LMT20, Theorem E] with the above discussion, ϕ is circular (that is,
admits a cross section) if and only if the associated veering triangulation τ is layered
(that is, admits a fully carried surface) and this occurs if and only if the associated cone
cone2(τ ) = R+F is fibered (see Theorem 2.2). In this setting, we call F a fully punctured
fibered face.

We next focus on the case in which S represents a class in the boundary of the fibered
cone R+F. To this end, let τ be a layered veering triangulation with dual flow ϕ and let S
be a connected surface carried by τ (2) that is not a fiber. We remark that every primitive
integral class in ∂(R+F) is represented by such a surface. Then M|S is connected and any
ξ ∈ H 1(M) dual to a class in int(R+F) pulls back under M|S → M to a positive class in
H 1(M|S). Hence, Theorems 7.1 and 7.2 give the growth rate of the closed orbits missing
S, and, in this case, more can be said.

Let F be the fibered face associated to τ and fix a subface S ⊂ F. By the relative interior
of the cone R+S, we mean the cone on S \ ∂S (that is, the interior of R+S within the
subspace it spans). If V = Vτ is the veering polynomial of τ , let V |S be the polynomial
obtained by deleting the terms that pair positively with S. In more detail, if V =∑

agg,
then

V |S =
∑

a′gg,

where a′g = ag if η(g) = 0 for some η in the relative interior of R+S and a′g = 0 otherwise
(cf. Proposition 7.6). We note that this definition does not depend on the choice of η in the
relative interior of R+S. This follows from the fact that the cone of homology directions
cone1(�) and cone2(τ ) = R+F are dual (Theorem 2.2(2)). Indeed, the basic theory of
convex polyhedral cones in finite-dimensional vector spaces (see e.g. [Ful93, §1.2]) gives
that if η, η′ are two classes lying in the relative interior of R+S, then ker(η) ∩ cone1(�) =
ker(η′) ∩ cone1(�).

In this setting, Theorems 7.1 and 7.2 easily imply the following.

COROLLARY 9.8. (Counting orbits missing transverse surfaces) Suppose that M has a
fully punctured fibered face F. Let τ be the associated veering triangulation and ϕ the
associated suspension flow. Finally, fix a subface S of F and let η ∈ int(R+S).
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For any ξ ∈ int(R+F), the growth rate

grϕ(ξ ; S) = lim
L→∞ #{γ ∈ Oϕ : η(γ ) = 0 and ξ(γ ) ≤ L}1/L (9.2)

exists and equals the reciprocal of the smallest root of the specialization V |Sξ .
Moreover, the following hold.

(1) The growth rates grϕ(ξ ; S) depend only on the face S and not the chosen η.
(2) If S is any surface carried by τ dual to a class in int(R+S), then grϕ(ξ ; S) computes

the growth rate (with respect to ξ ) of closed orbits that miss the surface S and is
equal to grϕ|S(ξ) from equation (7.1).

(3) The growth rate grϕ(ξ ; S) is strictly larger than 1 if and only if there are infinitely
many primitive closed orbits that are η-null.

We remark that a straightforward calculation shows that V |S ∈ Z[H1(M)/torsion] is
equal to the image of P�|S under the map induced by the inclusion �|S → M|S → M ,
regardless of whether F is fibered. However, for V |S to output interesting dynamical
information as in the above result, the fibered hypothesis is essential: there exists a class
ξ ∈ H1(M) which pulls back to a positive class on M|S if and only if F is fibered. For the
less trivial direction of this statement, note that if ξ ∈ H 1(M) is a class pairing positively
with every closed orbit that has zero pairing with η, then ξ + kη pairs positively with every
closed orbit of ϕ for sufficiently large k. As a consequence, ξ + kη is dual to a cross section
to ϕ.

Also, we again emphasize that Corollary 9.8 has a natural generalization to closed
manifolds by first puncturing along singular orbits of the suspension flow.

Remark 9.9. (Depth one foliations and stretch factors of endperiodic monodromies) The
growth rates appearing in Corollary 9.8 when ξ is integral can be naturally interpreted as
stretch factors of endperiodic homeomorphisms associated to depth one foliations of M (or
more precisely, its compact model as in Remark 4.6). Indeed, if S is a surface carried by τ
that is not a fiber, then any primitive integral class ξ in the interior of the associated fibered
cone gives rise to a depth one taut oriented foliation on M|S that is positively transverse
to flow lines of ϕ (see for example [Ago08, Theorem 3.7]). The foliation restricted to
the complement of the boundary (depth zero) leaves is a fibration over the circle and the
first return map to a fiber (that is, a depth one leaf) is a endperiodic homeomorphism
[Fen92, Lemmas 4.1 and 4.2]. The growth rate of periodic points of the first return map is
equal to grϕ|S(ξ), giving a direct generalization of the stretch factor of a pseudo-Anosov
homeomorphism. These stretch factors will be the subject of future work [LMT22].

We can use these tools to answer the following question of Chris Leininger.

Question 1. (Leininger) Given a fibered face F of a hyperbolic 3-manifold M, what is the
limit set of stretch factors arising from monodromies whose fibers correspond to integral
points in R+F?

It is clear that 1 is such an accumulation point, but in unpublished work, Leininger and
Shixuan Li have produced examples where there are accumulation points greater than 1.
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To answer Question 1, we introduce the following notation. For each subface S of F
define

	(S) = {grϕ(α; S) : α is an integral point of int(R+F)},
where grϕ(α; S) is as in equation (9.2). Also set 	 = 	(∅), which is exactly the set of
stretch factors of the monodromies of fibrations corresponding to integral points in R+F.
Our goal is to understand its closure 	.

Recall that X′ denotes the derived set of X, that is, its set of accumulation points. Also
inductively set X0 = X and Xn+1 = (Xn)′.
THEOREM 9.10. (Structure of stretch factors) Let 	 ⊂ (1,∞) be the set of stretch factors
of the monodromies of fibrations corresponding to integral points in R+F. Then its closure
	 is compact, well ordered under ≥, and 	n = {1} for some 1 ≤ n ≤ dim(H 1(M; R)).

Moreover:
• each number in 	′ \ {1} is itself a growth rate in the sense of Corollary 9.8 and an

infinite type stretch factor in the sense of Remark 9.9;
• the accumulation set 	′ is infinite if and only if there are infinitely many primitive

orbits in Oϕ that are null with respect to some class in ∂(R+F); and
• the derived length is maximal (that is, n = dim(H 1(M; R))) if and only if there are

infinitely many primitive orbits in Oϕ that represent a multiple of a vertex class in the
cone of homology directions in H1(M; R).

Proof. In the proof, we assume that the fibered face F is fully punctured and associated
to the veering triangulation τ of M. The general case then follows from puncturing along
singular orbits and considering only cohomology pulled back from the original manifold.

We begin by establishing a more technical claim.

CLAIM 9.11. (going up) Let S be a face of F. Then

	(S)′ \ {1} =
⋃
T⊃S

	(T) \ {1},

where the union is over proper faces T of F that properly contain S.
Moreover, if (λk) is a sequence in 	(S) converging to λ ∈ 	(S)′, then λ ≤ λk for

sufficiently large k.

Proof of claim. Any integral α in the interior of R+F can be realized as a (multiple of
a) fiber surface Sα carried by τ . We note that while the isotopy class of Sα is unique,
its carried position is not, but this will not matter here. Since the image of � in M is
positively transverse to τ (2), the non-negative integral cocycle mα on � given by mapping
each directed edge to its intersection number with Sα represents the pullback of α to �.
Obviously, the restriction of mα to any subgraph of � represents the pullback of α to that
subgraph.

We first prove the containment	(T) \ {1} ⊂ 	(S)′ \ {1} for each T ⊃ S. Fix an integral
class η in the relative interior of R+T, and let �|T = �|η be the subgraph of � covered
by cycles that are η-null (as in §7.1). Also fix α ∈ int(R+F) so that gr(α; �|T) > 1. For
i > 0, we note that α + iη and α agree on cycles of�|T, while the value of α + iη on any
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cycle of �|S not contained in �|T goes to∞ with i. At this point, we use the following
lemma about growth rates in graphs. It is probably well known, but for completeness, we
will include a proof at the end.

For a directed graph D and positive class α ∈ H 1(D) (that is, class that is positive on
directed cycles), let gr(α; D) denote the growth rate of directed cycles in D with respect to
α (as in equation (7.2)).

LEMMA 9.12. Let D be a directed graph with subgraphD′. Let αi be a sequence of positive
classes in H 1(D) that pull back to the same positive class α ∈ H 1(D′). Then,

gr(αi ; D) ≥ gr(α; D′).

Suppose further that:
(1) the αi blow up on the complement ofD′ (that is, αi(γ )→∞ for each directed cycle

γ of D that is not contained in D′); and
(2) lim infi→∞ gr(αi ; D) > 1.
Then,

gr(αi ; D)→ gr(α; D′)

as i →∞.

We apply Lemma 9.12 to conclude that gr(α + i · η; �|S) ≥ gr(α; �|T) > 1 and that

gr(α + i · η; �|S)→ gr(α; �|T)
as i →∞, and note that this sequence is non-constant exactly when the containment
T ⊃ S is proper. By Theorem 7.1 (and Corollary 9.8(2)), this gives us

grϕ(α + i · η; S)→ grϕ(α; T).

Thus, any point of 	(T) is a limit point of 	(S).
Conversely, let αi ∈ int(R+F) be a sequence of integral classes so that the sequence of

growth rates λi = grϕ(αi ; S) is pairwise distinct and converges to λ > 1, and let us show
that λ ∈ 	(T) for some face T � S.

Now let η denote an integral class in the relative interior of R+S (if S = ∅, then by
convention, η = 0 and�|η = �|S = �). Replace each αi in this sequence with αi + i · η.
This does not change λi = gr(αi ; S), but it ensures that αi(γ )→∞ for any directed cycle
of � that is not in �|S.

After passing to a subsequence, we may assume that for each edge e of �|S, either
mαi (e) stays bounded for all i or mαi (e)→∞. Let E be the set of edges whose lengths
stay bounded. Because each mαi is integral, we may pass to a further subsequence and
assume that mαi (e) =: m(e) is constant for each edge e of E.

We can again apply Lemma 9.12 to the pullback of αi on the graphs E and �|S,
concluding

gr(αi ; �|S)→ gr(α; E).
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This limit is then λ since gr(αi ; �|S) = grϕ(αi ; S) by Theorem 7.1 and Corollary 9.8.
Since λ > 1, E has a non-trivial recurrent subgraph. It remains to find a face T strictly
containing S such that gr(α; E) = gr(α; �|T).

Set ηi = αi − α1. We claim that for i sufficiently large, ηi is contained in the relative
interior of R+T for some face T that properly contains S. Let γ be a directed cycle in �.
If γ is not contained in �|S, then η(γ ) > 0 and so αi(γ )→∞ by definition of η. Hence,
ηi(γ ) > 0 for large i. If γ is contained in �|S but not in E, then again αi(γ )→∞ by
definition of E so ηi(γ ) > 0 for large i. If γ is contained in E, then αi(γ ) = α1(γ ) so
ηi(γ ) = 0. At any rate, ηi(γ ) ≥ 0 and since the cone of homology directions is spanned
by finitely many cycles in � (Theorem 2.2), we may fix i so that ηi ∈ R+F.

Let T be the face of F such that ηi is in the relative interior of R+T. Then from
the previous paragraph, we see that E and �|T have the same directed cycles, namely
those where ηi vanishes. Thus, gr(α; E) = gr(α; �|T), and the latter equals grϕ(α; T) by
Theorem 7.1. Note that S is a proper subface of T because we have assumed the λi are not
eventually constant.

Applying this to all limit points λ, we obtain the containment

	(S)′ \ {1} ⊂
⋃

T�S

	(T) \ {1}.

The final statement, that eventually λi ≥ λ, follows from the first conclusion of
Lemma 9.12, and the fact that λi = gr(αi ; �|S) again by Theorem 7.1. This concludes
the proof of Claim 9.11.

The claim now immediately implies that 	 is well ordered by ≥ and that the length
of the derived sequence is bounded above by dim(H 1(M; R)). Compactness of 	 was
previously observed by Leininger (see also [Fri82a, Theorem A]), but it also follows from
our setup. First recall that as in the proof of Claim 9.11, the pullback to � of each integral
class α in R+F can be represented by a non-negative, integral cocyclemα that is positive on
directed cycles of�. By Theorem 7.1, to show that	 is bounded above, it suffices to show
that gr�([m]) is uniformly bounded over all non-negative, integral cocycles m representing
a positive class [m] ∈ H 1(�). This is straightforward: if m is such a cocycle, then we obtain
another such cocyclem′ by declaring thatm′(e) = 0 ifm(e) = 0 andm′(e) = 1 otherwise,
for each directed edge e of �. Since m is integral and non-negative, m′(e) ≤ m(e) for all
directed edges e of �. This implies that gr�([m]) ≤ gr�([m

′]). However, since there are
only finitely many cocycles taking values in {0, 1}, there is a maximum to their growth
rates (after restricting to those that are positive on directed cycles). Hence, 	 is bounded
and so 	 is compact.

It only remains to prove the additional items. The first item follows from the proof of
Claim 9.11. The second item follows from Corollary 9.8(3), since if (αi) is a sequence of
classes with gr(αi)→ x > 1, then for all n ∈ N, we have gr(nαi) = gr(αi)1/n→ x1/n.
Finally, for the third item, it is easy to see (again by Corollary 9.8(3)) that the derived
length is maximal if and only if for some η in the relative interior of a top dimensional
face S of F, there are infinitely many closed primitive orbits that are η-null. All such orbits
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must represent a multiple of the vertex of the cone of homology directions that is dual to
R+S. This completes the proof of Theorem 9.10.

We conclude with a proof of Lemma 9.12. Instead of assuming that the αi pull back to
the same class on D′, it in fact suffices to assume that the pullbacks to H 1(D′) converge,
but we will only need the weaker statement. Also, condition (2) could be replaced by the
condition that gr(α; D′) ≥ 1, that is, thatD′ contains a directed cycle, but we have chosen
to state Lemma 9.12 so that it can be directly applied in the proof of Theorem 9.10.

Proof of Lemma 9.12. Set λi = gr(αi ; D) and λ = gr(α; D′). Clearly, λ ≤ λi since
D′ ⊂ D.

Now assume items (1) and (2) from the lemma statement. We claim that λi are bounded
above: for i sufficiently large, αi(γ ) ≥ α1(γ ) for all directed cycles γ of D and this implies
that gr(αi ; D) ≤ gr(α1; D). Thus, it suffices to show that any accumulation point μ ≥ λ

of (λi ) is equal to λ.
Let PD be the Perron polynomial of D. From equation (2.2), we see that this is a sum

PD = PD′ +N ,

where PD′ is the Perron polynomial of D′ consisting of the terms of PD that correspond
to cycles contained in D′ and where N has terms corresponding to cycles that are not
contained in D′. Specializing (as in §2.3), we get

P
αi
D (t
−1) = PαD′(t−1)+Nαi (t−1),

where the largest real root of PαiD (t
−1) is λi and the largest real root of Pα

D′(t
−1) is λ (see

[McM15, Theorem 1.2]), unlessD′ contains no directed cycles. In this last case, we would
have that PD′ = 1 and λ = 0.

Since the αi blow up on loops not in D′, Nαi (t−1) is a finite sum of terms of the form
at−xi , where xi →∞ as i →∞.

Let μ be an accumulation point of (λi ). Then μ ≥ λ > 1. Passing to a subsequence, we
may assume λi → μ, and plugging into the specializations, we obtain

0 = PαD′(λ−1
i )+Nαi (λ−1

i ).

Then using the above description of Nαi and that fact that λi → μ > 1, we see that
Nαi (λ−1

i )→ 0 as i →∞. So by continuity of Pα
D′(t
−1), we get that μ is a root of

Pα
D′(t
−1). Since λ is the largest root, we conclude μ = λ. This completes the proof of

Lemma 9.12.

Acknowledgements. We thank Chris Leininger for illuminating discussions on the topic
and for asking Question 1, Amie Wilkinson for helpful remarks related to §5.9, and Chi
Cheuk Tsang for comments on an earlier draft. This work was partially supported by the
NSF postdoctoral fellowship DMS-2013073, NSF grants DMS-1744551, DMS-2005328,
DMS-2102018, and the Sloan Foundation.

https://doi.org/10.1017/etds.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.63


3106 M. P. Landry et al

REFERENCES

[Ago08] I. Agol. Criteria for virtual fibering. J. Topol. 1(2) (2008), 269–284.
[Ago11] I. Agol. Ideal triangulations of pseudo-Anosov mapping tori. Topology and Geometry in Dimension

Three (Contemporary Mathematics, 560). Eds. W. Li, L. Bartolini, J. Johnson, F. Luo, R. Myers and
J. Hyam Rubinstein. American Mathematical Society, Providence, RI, 2011, pp. 1–17.

[Ano63] D. V. Anosov. Ergodic properties of geodesic flows on closed Riemannian manifolds of negative
curvature. Dokl. Akad. Nauk SSSR 151 (1963), 1250–1252.

[AT21] I. Agol and C. C. Tsang. Dynamics of veering triangulations: infinitesimal components of their flow
graphs and applications. Preprint, 2022, arXiv:2201.02706.

[CLR94] D. Cooper, D. D. Long and A. W. Reid. Bundles and finite foliations. Invent. Math. 118(1) (1994),
255–283.

[Fen92] S. R. Fenley. Asymptotic properties of depth one foliations in hyperbolic 3-manifolds. J. Differential
Geom. 36(2) (1992), 269–313.

[Fen99a] S. Fenley. Foliations with good geometry. J. Amer. Math. Soc. 12(3) (1999), 619–676.
[Fen99b] S. R. Fenley. Surfaces transverse to pseudo-Anosov flows and virtual fibers in 3-manifolds. Topology

38(4) (1999), 823–859.
[Fen03] S. R. Fenley. Pseudo-Anosov flows and incompressible tori. Geom. Dedicata. 99(1) (2003), 61–102.
[Fen12] S. Fenley. Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connec-

tions and applications to large scale geometry. Geom. Topol. 16(1) (2012), 1–110.
[FG13] D. Futer and F. Guéritaud. Explicit angle structures for veering triangulations. Algebr. Geom. Topol.

13(1) (2013), 205–235.
[FM01] S. Fenley and L. Mosher. Quasigeodesic flows in hyperbolic 3-manifolds. Topology 40(3) (2001),

503–537.
[FO84] W. Floyd and U. Oertel. Incompressible surfaces via branched surfaces. Topology 23(1) (1984),

117–125.
[Fri79] D. Fried. Fibrations over S1 with pseudo-Anosov monodromy. Travaux de Thurston sur les surfaces

(Astérisque, 66–67). Eds. A. Fathi, F. Laudenbach and V. Poénaru. Société mathématique de France,
Paris, 1979, pp. 251–266 (translated to English by D. Kim and D. Margalit).

[Fri82a] D. Fried. Flow equivalence, hyperbolic systems and a new zeta function for flows. Comment. Math.
Helv. 57(1) (1982), 237–259.

[Fri82b] D. Fried. The geometry of cross sections to flows. Topology 21(4) (1982), 353–371.
[FTW20] D. Futer, S. J. Taylor and W. Worden. Random veering triangulations are not geometric. Groups

Geom. Dyn. 14(3) (2020), 1077–1126.
[Ful93] W. Fulton. Introduction to Toric Varieties (Annals of Mathematics Studies, 131). Princeton University

Press, Princeton, NJ, 1993.
[GO89] D. Gabai and U. Oertel. Essential laminations in 3-manifolds. Ann. of Math. (2) 130(1) (1989), 41–73.
[Gri22] R. Griebenow. Personnel Communication, 2022.
[Gué16] F. Guéritaud. Veering triangulations and Cannon–Thurston maps. J. Topol. 9(3) (2016), 957–983.
[Hir10] E. Hironaka. Small dilatation mapping classes coming from the simplest hyperbolic braid. Algebr.

Geom. Topol. 10(4) (2010), 2041–2060.
[HIS16] C. D. Hodgson, A. Issa and H. Segerman. Non-geometric veering triangulations. Exp. Math. 25(1)

(2016), 17–45.
[HRST11] C. D. Hodgson, J. Hyam Rubinstein, H. Segerman and S. Tillmann. Veering triangulations admit

strict angle structures. Geom. Topol. 15(4) (2011), 2073–2089.
[KKT13] E. Kin, S. Kojima and M. Takasawa. Minimal dilatations of pseudo-Anosovs generated by the magic

3-manifold and their asymptotic behavior. Algebr. Geom. Topol. 13(6) (2013), 3537–3602.
[Lac00] M. Lackenby. Taut ideal triangulations of 3-manifolds. Geom. Topol. 4(1) (2000), 369–395.
[Lan18] M. Landry. Taut branched surfaces from veering triangulations. Algebr. Geom. Topol. 18(2) (2018),

1089–1114.
[Lan19] M. Landry. Stable loops and almost transverse surfaces. Groups Geom. Dynam., to appear.
[Lan22] M. Landry. Veering triangulations and the Thurston norm: homology to isotopy. Adv. Math. 396

(2022), 108102.
[LM13] C. J. Leininger and D. Margalit. On the number and location of short geodesics in moduli space.

J. Topol. 6(1) (2013), 30–48.
[LMT20] M. Landry, Y. Minsky and S. Taylor. A polynomial invariant for veering triangulations. Preprint,

2020, arXiv:2008.04836.
[LMT22] M. Landry, Y. N. Minsky and S. J. Taylor. Endperiodic maps via pseudo-anosov flows, in preparation.

https://doi.org/10.1017/etds.2022.63 Published online by Cambridge University Press

https://arxiv.org/abs/2201.02706
https://arxiv.org/abs/2008.04836
https://doi.org/10.1017/etds.2022.63


Growth rates and the veering polynomial 3107

[McM00] C. T. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for
foliations. Ann. Sci. Éc. Norm. Supér. (4) 33(4) (2000), 519–560.

[McM15] C. T. McMullen. Entropy and the clique polynomial. J. Topol. 8(1) (2015), 184–212.
[Mos92a] L. Mosher. Dynamical systems and the homology norm of a 3-manifold I: efficient intersection of

surfaces and flows. Duke Math. J. 65(3) (1992), 449–500.
[Mos92b] L. Mosher. Dynamical systems and the homology norm of a 3-manifold II. Invent. Math. 107(1)

(1992), 243–281.
[MT17] Y. N. Minsky and S. J. Taylor. Fibered faces, veering triangulations, and the arc complex. Geom.

Funct. Anal. 27(6) (2017), 1450–1496.
[Oer84] U. Oertel. Incompressible branched surfaces. Invent. Math. 76(3) (1984), 385–410.
[Par21a] A. Parlak. Computation of the taut, the veering and the Teichmüller polynomials. Exp. Math. doi:

https://doi.org/10.1080/10586458.2021.1985656. Published online 21 October 2021.
[Par21b] A. Parlak. The taut polynomial and the Alexander polynomial. Preprint, 2021, arXiv:2101.12162.
[PSS22] A. Parlak, S. Schleimer and H. Segerman. Veering, code for studying taut and veering ideal

triangulations. GitHub, 2022, https://github.com/henryseg/Veering.
[SS19] S. Schleimer and H. Segerman. From veering triangulations to link spaces and back again. Preprint,

2022, arXiv:1911.00006.
[SS20] S. Schleimer and H. Segerman. Essential loops in taut ideal triangulations. Algebr. Geom. Topol.

20(1) (2020), 487–501.
[Str18] B. Strenner. Fibrations of 3-manifolds and asymptotic translation length in the arc complex. Algebr.

Geom. Topol., to appear.
[Sun15] H. Sun. A transcendental invariant of pseudo-Anosov maps. J. Topol. 8(3) (2015), 711–743.
[Thu86] W. P. Thurston. A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc. 59(339) (1986),

99–130.
[Wal68] F. Waldhausen. On irreducible 3-manifolds which are sufficiently large. Ann. of Math. (2) 87(1)

(1968), 56–88.

https://doi.org/10.1017/etds.2022.63 Published online by Cambridge University Press

https://doi.org/10.1080/10586458.2021.1985656
https://arxiv.org/abs/2101.12162
https://github.com/henryseg/Veering
https://arxiv.org/abs/1911.00006
https://doi.org/10.1017/etds.2022.63

	1 Introduction
	1.1 Growth rates
	1.2 Transversality and coding
	1.3 Fibered faces and stretch factors
	1.4 Connections to previous and ongoing wor
	1.5 Outline of paper

	2 The flow graph, the veering polynomial, and carried surfaces
	2.1 Veering triangulations
	2.2 The dual graph, flow graph, and stable branched surface
	2.3 The veering polynomial
	2.4 Surfaces carried by τ and cones in (co)homology

	3 Dynamic planes and flow cycles
	3.1 Descending sets and dynamic planes
	3.2 Homotopy in dynamic planes

	4 Pseudo-Anosov flows and veering triangulations
	4.1 The Agol–Guéritaud construction

	5 Transversality to the flow
	5.1 Fibration on N"0365N
	5.2 Compactification and a fiberwise map
	5.3 Straightening the fibers
	5.4 Smoothing
	5.5 Step 1: drawing diagonals and building a fibration
	5.5.1 Drawing diagonals given anchors
	5.5.2 Choosing anchors

	5.6 Step 2: the fiberwise map
	5.6.1 Defining an initial map

	5.7 Step 3: straightening by convolution
	5.8 Step 4: smoothing
	5.9 Transversality in the flow space

	6 The flow graph and orbits of the flow
	6.1 The flow space and the flow graph
	6.2 Lines of Φ"0365Φ and the flow
	6.3 Cycles of Φ and closed orbits of φ

	7 Growth rates of orbits and the veering polynomial
	7.1 Cutting with cohomology
	7.2 Parameterizing orbits of φ|iS
	7.3 Comparing growth rates
	7.4 Adapting the veering polynomial and counting orbits

	8 Transverse surfaces and growth rates for closed manifolds
	8.1 Stable and unstable curves
	8.2 Strongly positive classes in H1(M|S)

	9 Entropy functions and stretch factors
	9.1 Entropy function on positive cones
	9.2 Suspension flows and fibered cones

	Acknowledgements
	References

