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Abstract
In the present note, we establish a finiteness theorem for 17 harmonic 1-forms on hypersurfaces with finite index,
which is an extension of the result of Choi and Seo (J. Geom. Phys. 129 (2018), 125-132).

1. Introduction

It is an interesting problem in geometry and topology to find sufficient conditions on the manifold for
the space of harmonic k-forms to be trivial. The nonexistence of nontrivial L* harmonic 1-forms on a
complete noncompact submanifold has been studied by many geometers.

Palmer [23] proved that a complete minimal hypersurface in the Euclidean space R"*! has no nontriv-
ial L? harmonic 1-forms. Thereafter, using the Bochner’s vanishing technique, Miyaoka [22] obtained
the nonexistence of nontrivial L* harmonic 1-forms on complete orientable noncompact stable minimal
hypersurface in a Riemannnian manifold with nonnegative sectional curvature. Later, this result was
extended to more general ambient spaces [16, 20, 21]. When the curvature of the ambient manifold is
negative, Seo [28] proved that such a vanishing theorem holds for a complete stable minimal hypersur-
face in H"*' with a further assumption about the first eigenvalue of Laplacian (A, > 2n — 1)(n — 1)).
Dung and Seo [8] dealed with case of the curvature of the ambient manifold is pinched and obtained
the corresponding vanishing result for a complete noncompact stable non-totally geodesic minimal
hypersurface in Riemannian manifold N with K < Ky(K <0) and A;(M) > —K(2n — 1)(n — 1).

A natural question is that how about the nonexistence results of nontrivial L”(p # 2) harmonic 1-
forms? Yau [33] proved that there is no nonconstant L”(1 < p < oo) harmonic function on a complete
Riemannian manifold. Later, Li and Schoen [19] proved that Yau’s result is valid for L”(0 < p < o0)
harmonic functions on a complete manifold with nonnegative Ricci curvature. For L harmonic forms,
Greene and Wu [12, 13] presented a vanishing theorem for the complete Riemannian manifolds or Kéhler
manifolds of nonnegative curvature. Recently, under the stability assumption, Seo [26] obtained that
there is no nontrivial L¥ harmonic 1-form on a stable minimal hypersurface M" of Riemannian man-
ifold N with Ky > K(K <0), provided *,(M) > % for O<p< ﬁ + m Moreover, Dung
and Seo [9] studied the same topic on a complete 4-stability hypersurface in a Riemannian manifold
with nonnegative sectional curvature. The first author and Lv [6] also investigated the nonexistence of
nontrivial L7 harmonic 1-form of a complete §-stable hypersurface with weighted Poincaré inequal-
ity in a Riemannian manifold with sectional curvature bounded below by a nonpositive function.
Most recently, without the stability assumption, Choi and Seo [7] proved the following finiteness
theorem.
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Theorem 1.1 ([7]). Let N be an (n + 1)-dimensional complete simply connected Riemannian manifold
with sectional curvature Ky satisfying —k*> < Ky < 0 for a nonzero constant k. Let M be an n(n > 3)
dimensional complete noncompact minimal hypersurface with finite index in N. For Z—z <p<

assume that

1;

A(M) > max{ (n—DKp*  n(n— DEp }

mn—p—n+2"n—m—1p
Then, dim H'(L*(M)) < oo.

In this paper, removing the minimality assumption of M in Theorem 1.1, we can obtain the following
finiteness result.

Theorem 1.2. Let N be an (n + 1)-dimensional complete simply connected Riemannian manifold with
sectional curvature Ky satisfying —k* < Ky <0 for a nonzero constant k. Let M be an n-dimensional

(3 < n < 6) complete noncompact hypersurface with (|, y H")7 <50 and finite index in N, where S(n) is

the Sobolev constant. For u <p< ﬁ assume that |A| is bounded and

(n—12k*p*> nvn—1k%p
(m—Dp—n+2"2—pJn—1

A (M) > max

Then, dim H'(L*(M)) < oo.

Corollary 1.3. Let M be an n-dimensional (3 <n <4) complete noncompact hypersurface with finite
index in hyperbolic space H''. If 1,(M) > 2”{/"; and (fM H")i < - S( S where S(n) is the Sobolev
constant, then dim H'(L>(M)) < 0o. Moreover, M has finitely many ends.

We say that an n-dimensional complete Riemannian manifold M has property (P,), if a weighted
Poincaré inequality is valid on M with some nonnegative weight function p(x), namely

/ P(X)UZS/ IVal?,  ¥ne CrM). (1.1)

Moreover, the p-metric, defined by dsi = pds, is complete. In particular, if A,(M) is assumed to be
positive, then obviously M possesses property (P,) with p = A,(M). So, the notion of property (P,) may
be viewed as a generalization of the assumption A,(M) > 0. Recently, Sang and Thanh [25] proved that
a complete noncompact stable minimal hypersurface with property (P,) in Riemannian manifold N has
no nontrivial L*> harmonic 1-form if the sectional curvature of N satisfies Ky (x) > —%, O0<t<l1
and p(x) satisfies certain growth condition. Motivated by [4, 5, 6, 9, 25], we can obtain an another
improvement of Theorem 1.1. More precisely, we have the following theorem.

Theorem 1.4. Let M"(3 <n <6) be a complete noncompact hypersurface with property (P,) in an
(n + 1)-dimensional Riemannian manifold N. Assume that p is bounded and

1 =1)p®

0> Ky(x) > —m,

Vxe M)

for some T : 'f;i]jgf <t <1. If M has finite index, then dim H'(L*(M)) < oo for any constant p

satisfying Ci(n, t) < p < Cy(n, 1), where
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@i 1+m-1)

Co= Qn—Dn—-1
2(1—\/1—%(1+C0))
e T ((FYeA)
2(14+,/1 - #2504+ Cy)
Cy(n, 7) = ( \/ il 0>.

vn—1(1+ Cy)
when T =1, we have
Corollary 1.5. Let M"(3 < n < 6) be a complete noncompact hypersurface with property (P,) in R™.

If M has finite index and p is bounded, then dim H'(L*(M)) < oo for any constant p satisfying C,(n) <
p < Cy(n), where

Ci(n)= 2 1— 1_i
: _«/n—l 24/n—1 ’
cm=—2 14+ 1- "=
R 2n=1)

Moreover, we can prove a similar finiteness theorem for L” harmonic 1-forms on complete noncom-
pact hypersurfaces with property (P,) as Theorem 1.4 except the condition that the lower bound of K
depends on n, p, p. More precisely, we have

Theorem 1.6. Let N'*!' be an (n + 1)-dimensional Riemannian manifold, and M"(3 < n < 6) be a com-
plete noncompact hypersurface satisfying weighted Poincaré inequality (P,) for some nonnegative
bounded function p in N. If M has finite index and

Apn—1) =20 —2)—(n— Dv/n— 1p?

0>K, >
- P(n—D2n—2+ndn—1)

[l

where p satisfies

2 n—2 2 n—2
1—- [1-—= ] <p< 1+ /1 ——].
«/n—l( 2«/n—1) P «/n—l( 2\/n—1)
Then, dim H'(L*(M)) < oo.

2. Some lemmas

In this section, we will recall some useful results which will be adopted in the proof of main theorems.
The most basic one is the following Weitzenbock formula.

Lemma 2.1 ([18]). Given a Riemannian manifold M", for any 1-form w on M", we have
Alol* =2|Vol* + 2(Aw, o) + 2Ric(o, ),

where " is the dual vector field of w.

Besides, the Kato inequality is also a fundamental technique.
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Lemma 2.2 ([1]). Given a Riemannian manifold M", for any closed and coclosed k-form w on M", we
have

1

1<k<

NS

k?
Vol > (1 + C,)IVIol’,  where C,=

—

n_
1
-, <k<n-—
k

NS RN

What’s more, Shiohama and Xu [29] proved the following estimation on the Ricci curvature of
submanifold.

Lemma 2.3 ([29]). Let M be an n-dimensional complete immersed hypersurface in a Riemannian
manifold N. If all the sectional curvatures of N are bounded pointwise from below by a function k, then

—1 —2)/n(n —1
Ric > (1— Dk — "L AP 4 200 — D — 2V =D R i, 2.1)
n n
where H is the mean curvature and A is the second fundamental form of M.

We should note in [29], the author assumed that all the sectional curvatures of N are bounded below by
a constant k. But according to his argument, this assumption was only used in the end of the proof; hence,
this method can be used to prove the above lemma without any change. Under the same assumption, the
following lemma estimates the right hand side of (2.1).

Lemma 2.4 ([6]). Let M" be an n-dimensional orientable submanifold in Riemannian manifold N. We
have

2 — = =V =D A e s 2D 2_ nwnole 2.2)
n n

Definition 2.5. Let M" be an n-dimensional orientable hypersurface in a Riemannian manifold N. We
say M is stable if the following inequality

[ ronr = [ (1P + Ricw. )’ 23)

holds for any n € C5°(M), where v is a unit normal vector field on M, Ric is the Ricci curvature of N,
and A is the second fundamental form of M.

Now, we will give a condition to ensure that the volume of Riemannian manifold to be infinite.

Lemma 2.6 ([9]). Let M be a complete oriented noncompact immersed hypersurface in a complete
Riemannian manifold N""" with nonnegative sectional curvature. If the stability inequality (2.3) holds
on M, then the volume of M is infinite.

In addition, the following Hoffman-Spruck inequality generalizes the Poincaré inequality and relates
it to the Sobolev inequality.

Lemma 2.7 ([14]). Let x : M" < N be an isometric immersion of a complete manifold M in a complete
simply connected manifold N with nonpositive sectional curvature. Then, the following inequality
holds:

n—2

( / wav)™ <sm) / (VA + (Rl H)?)dV,
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for all nonnegative C'-functions h : M" — R with compact support, where S(n) is the Sobolev constant,
which is positive and only depends on n.

The following Cauchy inequality gives the L* upper bound of a nonnegative sub-eigenfunction.

Lemma 2.8 ([18]). Let M be an n-dimensional complete noncompact Riemannian manifold. For x € M
and a constant k > 0, we assume that the Ricci curvature of M satisfies

Ric>—-(n— 1)k

on the geodesic ball B,.(4r) centered at p with radius 4r. Let 0 < § < % and A > 0 be two fixed constants.
Then there exists a positive constant C = C(r, 8, A, k) so that if any nonnegative function n € C*(B.(2r))
satisfying the differential inequality An > —An, then

sup 2

2
nN"=c— = n
Bu((1-8)) Vol(B.(7)) /5,0

The last lemma associates the L? and L* norms of harmonic forms with the dimension of the space
of harmonic forms.

Lemma 2.9 ([17, 24]). Let K be a finite dimensional subspace of L¥* harmonic q-forms on an
m-dimensional complete noncompact Riemannian manifold M for any p > 0. Then, there exists n € K
such that

(dlm K)min(l,p} /

Bx(r)

min{1,p}
m
[n]* < Vol(B,(r)) - min { ( ) ,dim K} -sup ||,
q

By (r)

foranyxe M and r > 0.

3. Proofs of the theorems

Proof of Theorem 1.2. Let o be a L* harmonic 1-form. Using the Weitzenbdck formula and the Kato
inequality, we can get that

1 ]
IMNMZ;jﬂWMV+Mddw7 3.1)

Under our hypothesis on the sectional curvature of N, we can estimate the Ricci curvature of M by
using Lemmas 2.3 and 2.4:

Ricy > —(n — DI + A2

2(n — 1)—;1«/}1—1|A|2 n—1
2n n

=—(n— DK —

Vn—1
BFER

Thus equation (3.1) becomes

1 vn—1
lw|Alw| = mlvlwll2 —(n— Di*|o|* — T|A|2|w|2- (3.2)
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Furthermore, using (3.2) we have that

I Aol = o (pp = DI Viel +ploP~ Alo])

—1
= ”T|V|w|”|2 + plo o] Aol
-2 Jn—1
>(1- )IVIol = B AP — ¢ = DIEplof. (3.3)
n—p 2

Since M has finite index, there exists a compact subset 2 C M such that M\ 2 is stable ([10, 31]).
Without loss of generality, we assume that Q2 = B,(R,). Then, according to Definition 2.5, for any
compactly supported Lipschitz function n on M\ B,(R,),

[z Riewn)
M\ Bx(Ro) M\ Bx(Ro)

The assumption on the sectional curvature of N implies that ﬁ(u, V) > —nk? and

[ = (ap e (3.4)

M\Bx(Ro) M\Bx(Ro)

for all compactly supported Lipschitz function n on M\B,(R,). Replacing n by n|w|” in (3.4), we get
/ AP || — nk? / n’lol” < / IV(nlewl")[. (3.5
M\Bx(Ro) M\Bx(Ro) M\Bx(Ro)

Moreover, the domain monotonicity of eigenvalues implies that

2
fM\BA(Rm IVl

A(M) < A (M\B,(Ry)) < 5
fM\Bx(Rm n

for any compactly supported Lipschitz function n on M\B,(R,). Replacing n by n|w|” in this inequality
and using (3.5), we have

1
20012 2
nlwl” < [ IV(nle”)I". (3.6)
L\Bx (Ro) MM) Jns.ro)

and

2

[ weper <+ 505 [ valenr
M\Bx(Ro) B Al (M) M\Bx(Ro)

nk*
=(1+555) [ (vierE + vaPlef + 2nior (vn. Vo). G)
AM(M) M\B.(Ry)

Applying the divergence theorem, we get
2 / nol’ (Vn, Viol') = - / (PIVIoP P+ or alor). (3.8)
M\Bx(Ro) M\Bx(Ro)

Therefore,

nk?
Aol < (14 05) [ (9Pl — Plorslor). (3.9)
\/M\Bx(Ro) )"I(M) M\Bx(Ro)
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From (3.3) and (3.9), we have

2

nk
aror < (14 570) [ onrop
/M\B,v(RO) )"I(M) M\Bx(Ro)

2 —
B (1 + A?&))(l - (:_ 12)p> /M\BA(RO) n’[Viel?

i =1
+<1+ " )/ (’L|A|2+(n—1)k2p)n2|w|2".
M\By(Ro)

A (M) 2

Therefore, the assumption on X, (M) implies

n—2 ) o2
(1- ) PIVIoP|
(n—Dp/ Jus.ry

5/ IVl +(n — 1)k2P/ o]
M\B,(Ro) M\B.(Ro)

pvn—1 1 )
+ ( -— ) / AP o]
M\Bx(Ro)

2 1+ A1 (M)

S/ IViPlol” + (n — 1)k2P/ ol
M\B(Ro) M\Bx(Ro)

On the other hand, applying Young’s inequality in (3.6), we obtain

1 14+¢ 14+¢
/ n’lw|? < : / IVl + f n’|Viwl|?
M\Bx(Ro) Ai(M) € JM\B(Ry M(M) Jus.ko)

for any ¢ > 0. Combining this with (3.10), we get

n—2 (n— DK*p(1+¢)
(1 - )[ vl
M\Bx(Ro)

(- 1p (M)
— Di? 1
§(l+(n kp +8>/ VnPlol?.
AM(M) € M\B.(Ro)

Using the assumption on A;(M), we choose a sufficiently small & > 0 such that

n—2 B (n— DK*p(1+¢)
(n—1p rM(M)

> 0.

Then we have

2 2 2 2
/ n°|Vie|’| SCJ/ IVal“lwl™,
M\B.(Ro) M\B.(Ro)

(3.10)

@3.11)

for some positive constant C; which depends only on p, n, k and A,(M). Moreover, from Lemma 2.7 and

Holder inequality, we obtain
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n=2

an N\ D 4
( / (o)) " = Sm (VO + 1] |HP)
M\Bx(Ro) M\Bx(Ro)

=28(n) 7 |V]wl’|?

M\Bx(Ro)

+25(n) Vil |ol

M\By(Ro)

n—=2

+S(n)(/]:4\&(1%) |H|n)§</M (n|w|p)%)7’ (312)

\Bx(Ro)

i.e.
n-2

(1=l ) ([ o)

\Bx(Ro)

=28(n) nZIVIwI”IZJrZS(n)/ IVl |w]*. (3.13)

M\Bx(Ro) M\Bx(Ro)

Combining (3.11) and (3.13) and the assumption 1 — S(n)||H||2n(M) > 0, we get

n=2

(f (i) sCQ/ ViPlol”, (3.14)
M\Bx(Ro) M\Bx(Ro)

for some positive constant C,. Now we choose our test function 0 <n <1 asin [7]: given R > Ry + 1,
1, on B (R)\B.(Ry + 1)

B { 0, on B,(Ry) U (M\B,(2R)),

V1] < Cson B,(Ry + D\B.(R,) and | V| < £ on B,(2R)\B.(R). Applying this test function 7 to (3.14),

we get
n=2
(f ) " < C4f ol + 9[ .
- 2
By(R)\Bx(Rp+1) Bx(Ro+1)\Bx(Ro) R By (2R)\Bx(R)

Letting R — oo and using the assumption that / |w|? < 0o, we obtain
M

n—2
2np \ n
( / wl#) " <y / . (3.1)
M\Bx(Ro+1) By(Ro+1)\Bx(Ro)

Then, using Holder inequality and (3.15), we conclude that

n—=2

2 2p \ n
f 0l < (Vol(B.(R, +2)) " ( f 0]#%)
Be(Ro+2)\Bx(Ro+1) By(Ro+2)\Bx(Ro+1)

2

<G+ (Vol(B,(Ry +2)))" f ] (3.16)
Bx(Ro+1)\Bx(Ro)

Adding / |w|? to both sides of (3.16), we get
B(Ro+D\Bx(Ro)

2
/ [ < (1 +Cy - (VOI(BL(Ro + 2)))") / ||
Bx(Ro+2)\Bx(Rp) By(Ro+1)\Bx(Ro)

Again adding / |w|* to both sides infers

By(Rp)
/ 0l < Cs / . (3.17)
Bx(Rp+2) By(Ro+1)
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On the other hand, since |w| satisfies the differential inequality (3.3), Lemma 2.8 implies that

sup  |o|” < Csf lw|*
Bu(Ro+2)

B(1-8)(Ro+2))
for some positive constant Cs = C4(8, 1, k, VOl(B.(Ry + 2)), SUPg (g 12) 1A ). For a sufficiently small § > 0
such that (1 —8)(Ry+2) > Ry + 1,

sup ol < G, / ],
By(Ro+2)

By(Ro+1)

Together with (3.17), we have

sup |wl? < a/ lol?. (3.18)
Bx(Ro+1)

Bx(Ro+1)

for some positive constant C; = C;(n, p, k, Ry, A1 (M), S(n), Vol(B,.(R, + 2))). In what follows, as in [7],
we consider any finite dimensional subspace K C H'(L*(M)). According to Lemma 2.9, we see that
there exists an L* harmonic 1-form v C K such that

(dim K)™int1-7} / |w|* < Vol(B,(R, + 1)) - min{n, dim K}™"" . sup |w|?.

By(Ry+1) By(Ro+1)

From (3.18), we have

1
dimK < (c7 - Vol(B.(R, + 1))) " min{n, dim K} ,

which implies that dim K is bounded by a fixed constant. Since K is an arbitrary subspace of finite
dimension, we get that dim H'(L¥*(M)) < oo. O

Proof of Theorem 1.4. Let w be a L* harmonic 1-form. Using Weitzenbock formula and Kato
inequality, we can get that

1 4
lw|Alw| = —1IV|wIIZ+RiC(w”,w')- (3.19)
n—

Under our hypothesis on the sectional curvature of N, we can estimate the Ricci curvature of M by
using Lemmas 2.3 and 2.4:

1— -1 — /=1
Ricy = —(n— )= D2y - " L pp - VIO D) g
Q2n—1n—1) n "

1— — /=1 -1
:_ﬂ_,_z(n_l)l-p_wuﬂ /|A|z_nHz_n_|A|2
2n—1 n n

1— 2n—1)—nv/n—1 —1
Z_( Dp 2= —nvn ap = "= Lap
2n—1 2n n
__(l—t),o_«/n—llm2
T n—1 2 ’
Thus, equation (3.19) becomes
1 1— Vn—1
0lAlol 2 ——Viol? = LD e - YL e, (3.20)
n—1 2n—1 2
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Given any « > 0, using (3.20) we have that
ol Aol = ol (at@ = Dol ViolF +alol" Alo|)
a—1 a2 202
=— Vol +ajo™|o|Alo]

n—2 w as/n—1 . d—=7)pa "
> (1= = )1Vl P = S5 — APl - = o,
n—Da 2

A 3.21
APl — = (3.21)

Since M has finite index, as in the proof of Theorem 1.2, we assume that M\B,(R,) is stable. In other
words,

[z [ (1P R ) (3.22)
M\Bx(Ro) M\Bx(Ro)

for all compactly supported Lipschitz function n on M\B,(R,). Replacing 1 by |@|“™*n in (3.22) and
applying the lower bound of sectional curvature of N allow us to conclude that

/ |A|2|a)|2(x+l)an2
M\Bx(Ro)
n(l —1)

< |V(|a)|(x+l)ocn)|2 + / p|w|2(s+1)an2
\/M\BX(RO) @2n—-1Dn-1) M\Bx(Ro)

=(s+ 1) f V]l n + / @[+ VP2
M\Bx(Ro) M\Bx(Ro)

+2(s + 1)/ | ®+ D0 (Y, V]w|*)

M\Bx(Ro)
n(l —1)

p|w|2(v+l)a 2 (323)
@Cn—1Dn—1) Jinswro

On the other hand, for s > 0 and a smooth function 7 with compactly support in M, multiplying both
sides of the inequality (3.21) by |w|**n* and integrating over M, we obtain that

n—2
(== [ vy
(n =D/ Jins.wy

. a/n—1
S/ |a)|(23+1)an2A|w|a + 2 |A|2|w|2(s+1)an2
M\Bx(Ro) M\Bx(Ro)
a(l—1)
+ / Io|w|2(r+l)ot 2
2n =1 Jingro
=—2s+1) o> |V]w|*[*n* — 2/ o * 0 (Vn, Viw|*)
M\Bx(Ro) M\Bx(Ro)

a«/n — , a(l—1)

|A|2|a)|2(s+l)an2 4+

2(s+1 2
P plwe
M\B(Ro) n— M\B(Ro)

n,
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i.e.

2 1 _ n-— 2 2sa V a2, 2
s+1)— —7 lw|™*IV]w|*[™n
(n— Do M\Bx(Ry)

av/n—1

|A|2|a)|2(s+l)an2
2 M\By(Ro)

= —2/ o>V, Viw|") +
M\BL(Ro)

a(l—1)
2n =1 Jus.wy

Combining (3.24) with (3.23), we obtain that

-2 vn—1
(2(S+ 1) . n _ as/n . (S+ l)2> / |a)|25a|v|a)|a|2n2
(n—Da 2 M\Bx(Ro)

av/n—1
< 5 / |w|2(x+l)a|vn|2 +E/ p|w|2(x+l)an2
M\Bx(Ro)

M\Bx(Ro)

| |2(s+l)oz

plw n. (3.24)

+(avn—1-(s+ 1>—2)/ | (T, Viwl), (3.25)

M\Bx(Ro)

where

_ nvn—1 a(l—1)
E‘( 2 +"_1>'(2n—1)(n—1)'

From the assumption of weighted Poincaré inequality (1.1), we obtain that
/ p(|w|2(x+l)an2) S / Iv(|w|(x+l)an)|2
M\Bx(Ro) M\B(Ro)
—6r 1 [P Vief e [ e e
M\Bx(Ro) M\Bx(Ry)

+2(s + 1)/ lw| =0 (Vn, V]w|*). (3.26)

M\By(Ro)

Plugging (3.26) into (3.25) implies that

B/ |60|2'WIV|w|”|2712§C/ |w|2(‘v+1)‘1|vn|2+20/ lw|® 0 (Vn, V]w|*), (3.27)
M\Bx(Ry) M\Bx(Ro) M\By(Rp)
where
-2 Ji—1
B=2(s+1)— — O 1P —E(s+ 1)
n— e 2
Cc— avn—1 VE
=2 ,
Ji—1
D=a+-(1+s)—1+E(s+1).

For any ¢ > 0, using Cauchy-Schwarz inequality, we can rewrite equation (3.27) as
(B — |D|8) /
M
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0l Viwl P’ < (C+IDI-) / oV (3.28)

\Bx(Ro) M\Bx(Ro)
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Now let p = (s + 1)a, we see that

B=26+1)- __12) e L 41 =B+ 12
_l ) n—2 p«/n— nvn—1 1 (1 —1)p?
_a{p n—1 (2n—1)(n—1)]

1 n—2 T)
ZE{Zp_n—l [1+<”+2V )(Zn—l)(n—l)]pz}

Let
n 7) n—2

f)=- [1+(n+2JnT)—(2 — )]p2+2p——n_1,

then the discriminant of f (p) is

n—2 [1+(n+2«/W)(1—r)])>0

A=4(1_ 2Wn—1 Q2n—1)(n—1)
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(3.29)

(3.30)

when 2 <n <6 and 2355 < 1 < 1. Consequently, the condition C; < p < C, allows us to conclude

12445

that f(p) > 0, or equivalently B > 0. Therefore, for a sufficiently small ¢ > 0, we have B — |D|e > 0.

Then, the inequality (3.28) becomes

/ WMWSQ/ ol
M\Bx(Ro) M\Bx(Ro)

(3.31)

for some positive constant Cy = Cy(n, p, 7). Then following the same method as in Theorem 1.2, we can

obtain dim H'(L¥(M)) < oo.

O

Remark 3.1. If we assume further that index(M) =0 (i.e. M is stable) in Theorem 1.4, then H'(L*(M))

is trivial [6].

Proof of Theorem 1.6. Let Ky > —kp, where k < e e e Y TVl Similarly as in the proof of

K P2(n—1)2n—24n/n—1)
Theorem 1.4, we can obtain that

E/ |w|25a|v|a)|a|2n2 S 6/ |a)|2(s+l)ct|vn|2
M\Bx(Ro) M\Bx(Ro)

+2D / ||y (Vn, V]w|®)
M\By(Rp)

for any compactly supported nonconstant Lipschitz function n on M\B,(R,), where

n—2 a/n—1

B=2(s+1)— - . 12— E(s+ 1),
(s+1) "= D > (s+1)7° = E(s+1)
~ Jn—1 ~
c=2"" L E
2
~ Jn—1 ~
D=%~(s+1)—1+E(s+1>,
- Vn—1
E:(%—i—n—l)kd.

For any ¢ > 0, applying Cauchy-Schwarz inequality, we have that
~ ~ o~ 1
(B-1Dte) [ o ivior e < (C1B12) [ jol vl
M\Bx(Ry) €7 Jm\B.(Ro)
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Let p = (s + 1), then we have

1 n—2 n—1, nv/n—1
O e W (A

B=-12
n—1 2 2

” +n—1>kp2}.

Letf(p) =—(n— 1)v/n—1p*+4(n — 1)p — 2(n — 2), then the discriminant off(p) is

A=16(n— 1)2(1 — 2:‘/%) >0,

which is satisfied when 3 <n < 6. Thus from the assumption on p, we see thatf(p) > 0. Moreover, the
condition k < #0=D=20-2-=bVn"1p’ 4116w s to conclude that

P2(n—1)2n—24ny/n—1)

B (M e
_ $[4(n— 1)p—2(n2—(n2)_—1)(n— D/n— 1p? 3 (n«/? e 1>kp2}
IE TR GO R

Therefore, for a sufficiently small ¢ > 0, we have B— |5|8 > (. Using same argument as before, we
can complete the proof of Theorem 1.6. O
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