Article contents
On invariant subalgebras of group
$C^*$ and von Neumann algebras
Published online by Cambridge University Press: 04 November 2022
Abstract
Given an irreducible lattice $\Gamma $ in the product of higher rank simple Lie groups, we prove a co-finiteness result for the
$\Gamma $-invariant von Neumann subalgebras of the group von Neumann algebra
$\mathcal {L}(\Gamma )$, and for the
$\Gamma $-invariant unital
$C^*$-subalgebras of the reduced group
$C^*$-algebra
$C^*_{\mathrm {red}}(\Gamma )$. We use these results to show that: (i) every
$\Gamma $-invariant von Neumann subalgebra of
$\mathcal {L}(\Gamma )$ is generated by a normal subgroup; and (ii) given a weakly mixing unitary representation
$\pi $ of
$\Gamma $, every
$\Gamma $-equivariant conditional expectation on
$C^*_\pi (\Gamma )$ is the canonical conditional expectation onto the
$C^*$-subalgebra generated by a normal subgroup.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline764.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline765.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline766.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline767.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline768.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline769.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline770.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline771.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline772.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline773.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline774.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline775.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline776.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline777.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline778.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230904123214871-0233:S0143385722000761:S0143385722000761_inline779.png?pub-status=live)
- 4
- Cited by