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Abstract Given a graph G without loops, the pseudograph associahedron PG is a smooth polytope, so
there is a projective smooth toric variety XG corresponding to PG. Taking the real locus of XG, we have
the projective smooth real toric variety XR

G. The integral cohomology groups of XR
G can be computed by

studying the topology of certain posets of even subgraphs of G; such a poset is neither pure nor shellable
in general. We completely characterize the graphs whose posets of even subgraphs are always shellable.
It follows that we get a family of projective smooth real toric varieties whose integral cohomology groups
are torsion-free or have only 2-torsion.
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1. Introduction

A convex polytope of dimension n is simple if there are exactly n facets intersecting at
each vertex. A simple convex polytope P is smooth (or Delzant) if the normal fan of P is
unimodular, that is, each cone in the fan is spanned by an integral basis. The importance
of smooth polytopes stems from the fact that each smooth polytope P corresponds to a
projective smooth toric variety XP, see [11]. Taking the real locus of a projective smooth
toric variety XP, we obtain a smooth manifold XR

P of dimension n, which is also known
as a projective smooth real toric variety.
In the late 1970s, it was known that the cohomology of a smooth compact toric variety

is torsion-free and the integral cohomology ring H∗(XP ;Z) of a projective smooth toric
variety XP can be explicitly described by the corresponding smooth polytope P, see [13].
On the other hand, the topology of the real locus XR

P is much more complicated than
that of XP in general. In 1985, Jurkiewicz [14] showed that H∗(XR

P ;Z2) can be explicitly
formulated via P just as H∗(XP ;Z). Yet, XR

P may have p-torsion for arbitrary p> 1 in
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Cohomology of a real toric variety and shellability of posets 1045

its cohomology in general, and for that reason, there was no significant progress in this
direction for a long time. Recently, there have been some attempts to computing the
integral cohomology of a real toric variety [5, 10, 19].
Let P be a smooth polytope of dimension n and F(P ) = {F1, . . . , Fm} the set of all the

facets of P. In the normal fan of P, each one-dimensional cone is generated by the primitive
integral vector nj normal to a facet Fj , j = 1, . . . ,m. Define a map λ : F(P ) → Zn

2 by
taking λ(Fj) ≡ nj (mod 2). Then λ can be represented by a Z2-matrix of size n ×m as
follows:

ΛP =
(
λ(F1) · · · λ(Fm)

)
.

For ω ∈ Zm
2 , let Pω be the union of facets Fj such that the j th entry of ω is nonzero.

For each S ⊂ [n], by summing the ith rows of ΛP for all i ∈ S, we obtain the vector
ωS ∈ Zm

2 . Let KP denote the simplicial complex dual to P and KP,S denote the simplicial
subcomplex of KP dual to PωS

. That is,

KP,S is the simplicial complex on {j ∈ [m] | the jth entry of ωS is nonzero} such
that σ = {j1, . . . , jk} ∈ KP,S if and only if Fj1

∩ · · · ∩ Fjk
6= ∅ in PωS

.

Recently, Cai and Choi [5, Theorem 1.1] showed that the integral cohomology of XR
P

is completely determined by the reduced integral cohomology of KP,S (S ⊂ [n]) and the
h-vector of P. Their formulation says that the integral cohomology of XR

P is torsion-free
or has only 2-torsion if and only if the integral cohomology of KP,S is torsion-free for each
S ⊂ [n]. Moreover, the reduced Betti numbers of KP,S (S ⊂ [n]) and the h-vector of P
completely determine the integral cohomology of XR

P if the integral reduced cohomology
of KP,S is torsion-free for every S ⊂ [n]. In particular, the reduced Betti numbers of KP,S

(S ⊂ [n]) determine the Betti numbers of XR
P . Naturally, the following question arises:

Question 1.1. Find a family of smooth polytopes P such that the integral cohomology
of KP,S is torsion-free for every S ⊂ [n], where n = dimP . (This is equivalent to finding
a family of projective smooth real toric varieties XR such that H∗(XR;Z) is torsion-free
or has only 2-torsion.)

Given a simplicial complex K, it is not easy to determine whether H∗(K;Z) is torsion-
free or not. Furthermore, H∗(KP,S ;Z) may have p-torsion for arbitrary p> 1, see [10].
Thus, the above question seems to cover a wide scope.
Shellability is a combinatorial property of simplicial complexes with strong topological

consequences. A simplicial complex K is shellable if its maximal simplices can be arranged
in a linear order F1, F2, . . . , Ft such that the subcomplex (

∑k−1
i=1 Fi) ∩ Fk is pure and

(dimFk−1)-dimensional for all k = 2, . . . , t. It was shown in [3] that a shellable simplicial
complex is homotopy equivalent to a wedge of spheres (in varying dimensions). It follows
that the integral cohomology of a shellable simplicial complex is torsion-free. Thus, we
can ask to find a family of smooth polytopes P such that KP,S is shellable for every
subset S in the set {1, 2, . . . , dim(P )}.
Now we restrict our attention to the real toric varieties arising from graphs. Throughout

this paper, a graph permits multiple edges but no loops. A graph is simple if it does not
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have multiple edges. A bundle is a maximal set of multiple edges with the same pair of
endpoints.
For a graph G, the pseudograph associahedron PG is a smooth polytope, and hence

we have the projective smooth toric variety XPG
and the projective smooth real toric

variety XR
PG

as well. See §3.2 for the construction of PG. For convenience, we use the

notation XG = XPG
and XR

G = XR
PG

. We also refer the readers to [8, §2] for a more

detailed description of PG.
For a simple graph G, it was shown in [9] that H̃∗(KPG,S ;Z) is torsion-free for every

subset S in the set {1, 2, . . . , dim(PG)}, which implies that the polytope PG belongs to
the family to be found in Question 1.1. The main contribution of their result is finding a
pure shellable poset Peven

H such that ∆(Peven
H ), the order complex of the proper part of

Peven
H , is homotopy equivalent to the complement KPG

\KPG,S . Here, H is the subgraph
of G determined by S (see [9, §4]), and Peven

H is a poset consisting of the induced sub-
graphs of H whose connected components are of even order, including ∅ and H, ordered
by the subgraph containment. Note that the reduced cohomology groups of KPG,S are

determined by the reduced homology groups of ∆(Peven
H ) by the Alexander duality since

KPG
is homeomorphic to a sphere.

The work of [9] on simple graphs was generalized to graphs (allowing multiple edges)
in [8]. Namely, for each simplicial complex KPG,S , there is a poset Peven

H,A such that

∆(Peven
G,A ) is homotopy equivalent to the complement KPG

\KPG,S . Here, H is a graph
determined by S, obtained from G by deleting some vertices and replacing some bundles
with simple edges, and A is a set of vertices and multiple edges of H such that |A ∩
V (H ′)| ≡ 0 (mod 2) for each connected component H ′ of H with the following properties:

(1) each vertex that is incident to only simple edges of H is contained in A, and
(2) B ∩A 6= ∅ and |B ∩A| ≡ 0 (mod 2) for each bundle B of H.

We call A an admissible collection of H. The poset Peven
H,A is defined to be a poset

consisting of all the subgraphs I of H such that I includes at least one edge between
every pair of vertices in I if such edges exist in H, and each connected component of I
has an even number of elements in A, including both ∅ and H, ordered by the subgraph
containment. All definitions are elaborated in §3.
Now we let A∗(G) be the set of all pairs (H,A), where H is a graph obtained from

G by deleting some vertices and replacing some bundles with simple edges, and A is
an admissible collection of H. In order to show KPG,S is torsion-free for every S, it is

sufficient to check ∆(Peven
H,A ) for every (H,A) ∈ A∗(G). Unlike simple graphs, for a non-

simple graph H, the poset Peven
H,A is neither pure nor shellable in general, see §4. Hence, it

is natural to ask the following, which is a subproblem of Question 1.1.

Question 1.2. [8]. Find all graphs G such that Peven
H,A is shellable for every (H,A) ∈

A∗(G).

Our main result is the following, which answers Question 1.2.
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Figure 1.1. Non-simple connected graphs with n vertices and m multiple edges (m ≥ 2).

Theorem 1.3. Let G be a graph. Then Peven
H,A is shellable for every (H,A) ∈ A∗(G) if

and only if each connected component of G is a simple graph or one of the graphs in the
following figure.

To show the main theorem, we use the notion of chain-lexicographic shellability
(CL-shellability for short) of posets; this tool is based on labelling the edges of the
Hasse diagram of a poset in a certain way. Note that CL-shellability is stronger than
shellability, and there is an example of a shellable poset with no CL-shelling, see [21]. We
refer the readers to [20] and references therein regarding lexicographic shellability, but
we lay out some basic facts in §2.
Björner and Wachs [2] proved that if a bounded poset P is CL-shellable, then the

homotopy type of ∆(P), the order complex of the proper part of P, is determined by
the information of the falling chains of P with a CL-labelling. Hence, our results give a
way to compute the homotopy type of KPG,S , and hence we can compute the integral

cohomology groups of XR
G explicitly for a graph G in Theorem 1.3.

This paper is organized as follows. Section 2 collects some basic definitions and impor-
tant facts about a poset and its shellability. In §3, we provide our motivation from the
cohomology of real toric varieties associated with a graph. We also explain Theorem 1.3,
which is the main theorem. Section 4 proves the necessary condition of Theorem 1.3, which
gives a possible list of graphs G such that Peven

H,A is shellable for every (H,A) ∈ A∗(G).
Section 5 proves the sufficient condition of Theorem 1.3, which shows the CL-shellability
of each poset Peven

H,A for a graph G in the list and (H,A) ∈ A∗(G). In Section 6, we deter-

mine the homotopy type of ∆(Peven
G,A ) by considering the falling chains of Peven

G,A for a graph
G in Figure 1.1. In §7, as an application of our result, we compute the Betti numbers of
the projective smooth real toric variety associated with the graph P̃n,2. In Appendix 1,
we add a sketch of the proof of Proposition 3.4, which is obtained by combining several
results from [8].

2. Preliminaries: Shellability of a poset

In this section, we prepare some notions and basic facts about a poset and its shellability.
See [20] for a more detailed explanation about this section.
We only consider a finite poset in this paper. Let P be a poset (partially ordered set).

For two elements x, y ∈ P, we say y covers x, denoted by xl y, if x < y, and there is no
z such that x < z < y. We also call it a cover xl y. One represents P as a mathematical
diagram, called a Hasse diagram, in a way that a point in the plane is drawn for each
element of P, and a line segment or curve is drawn upward from x to y whenever y covers
x. A chain of P is a totally ordered subset σ of P, and we say the length `(σ) of σ is
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|σ| − 1. We say P is pure if all maximal chains have the same length. The length `(P)
of P is the length of a longest chain of P. For x ≤ y in P, let [x, y] denote the (closed)
interval {z ∈ P : x ≤ z ≤ y}. We say P is semimodular if for all x, y ∈ P that cover
a ∈ P, there is an element b ∈ P that covers both x and y. If every closed interval of
P is semimodular, then P is totally semimodular. If P has a unique minimum element,
it is usually denoted by 0̂ and referred to as the bottom element. Similarly, the unique
maximum element, if it exists, is denoted by 1̂ and referred to as the top element. An
element of P that covers the bottom element is called an atom. We say P is bounded if
it has the elements 0̂ and 1̂. The order complex of P, denoted by ∆(P), is an abstract
simplicial complex whose faces are the chains of P. Note that if P has either 0̂ or 1̂, then
∆(P) is contractible; hence, we usually remove the top and bottom elements, and then
study the topology of the remaining part. The proper part of a bounded poset P with
length at least one is defined to be the poset P := P \ {0̂, 1̂}.
The notion of shellability first appeared in the middle of the nineteenth century in the

computation of the Euler characteristic of a convex polytope [16]. A simplicial complex
K is shellable if its maximal simplices can be arranged in a linear order F1, F2, . . . , Ft in
such a way that the subcomplex (

∑k−1
i=1 Fi)∩Fk is pure and (dimFk−1)-dimensional for

all k = 2, . . . , t. Such an ordering of the facets is called a shelling. A poset P is shellable
if its order complex ∆(P) is shellable.
The idea of lexicographic shellability is based on a technique introduced by Stanley

[17, 18] for showing that the Möbius function of rank-selected subposets of certain posets
alternates in sign. This technique involved labelling the edges of the Hasse diagram of
the poset in a certain way. Stanley conjectured that the posets that he was considering
were topological and algebraic properties of simplicial complexes implied by shellability.
This conjecture was proved by Björner [1] by finding a condition on edge labellings,
which implies shellability of the poset, and then the theory of lexicographic shellability
was further developed in a series of papers by Björner and Wachs [2–4]. In this paper,
we consider CL-shellability. CL-shellability was introduced to establish the shellability
of Bruhat order on a Coxeter group [2]. It is known that every CL-shellable poset is a
shellable poset, but the converse is not true in general; see [21]. We refer to the readers
[20, Lecture 4] and the references therein.
Let P be a bounded poset and ME(P) the set of pairs (σ, x l y) consisting of a

maximal chain σ and a cover xl y along that chain. For x, y ∈ P and a maximal chain
r of [0̂, x], the closed rooted interval [x, y]r of P is a subposet of P obtained from [x, y]
adding the chain r. A chain-edge labelling of P is a map ρ : ME(P) → L satisfying
the following: if two maximal chains coincide along their bottom d covers, then their
labels also coincide along these covers. Here, L is a poset. A chain-lexicographic labelling
(CL-labelling for short) of a bounded poset P is a chain-edge labelling such that for
each closed rooted interval [x, y]r of P, there is a unique strictly increasing maximal
chain, which lexicographically precedes all other maximal chains of [x, y]r. A poset that
admits a CL-labelling is CL-shellable. Figure 2.1 shows an example of a CL-shellable
poset.
We recall well-known properties on shellability which we will use. The product P ×Q

of two posets P and Q is the new poset with partial order given by (a, b) ≤ (c, d) if and
only if a ≤ c (in P) and b ≤ d (in Q).

https://doi.org/10.1017/S001309152300055X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152300055X


Cohomology of a real toric variety and shellability of posets 1049

Figure 2.1. A CL-labelling of a poset with four maximal chains (same example in [20]).

Theorem 2.1. ([1, 3, 4]). The following statements hold:

(1) Every (closed) interval of a shellable (respectively, CL-shellable) poset is shellable
(respectively, CL-shellable).

(2) The product of bounded posets is shellable (respectively, CL-shellable) if and only if
each of the posets is shellable (respectively, CL-shellable).

(3) If a bounded poset is pure and totally semimodular, then it is CL-shellable.

For a bounded poset P with a CL-labelling ρ : ME(P) → Z, a chain σ : x0lx1l· · ·lx`

of P is called a falling chain if it is a maximal chain such that ρ(σ, xi−1 l xi) 6<L

ρ(σ, xi l xi+1) for every 1 ≤ i < `.

Theorem 2.2. ([3]). If a bounded poset P is CL-shellable, then the order complex of
the proper part of P,∆(P), is homotopy equivalent to a wedge of spheres. Furthermore,
for every fixed CL-labelling, the ith reduced Betti1 number of ∆(P) is equal to the number
of falling chains of P of length (i+ 2).

The poset in Figure 2.1 has exactly one falling chain a < c < d < f . On the other
hand, the order complex of the proper part of the poset is homotopy equivalent to S 1

whose first reduced Betti number is 1.
A recursive atom ordering is an alternative approach to lexicographic shellability, which

is known to be an equivalent concept of CL-shellability.

Definition 2.3. A bounded poset P is said to admit a recursive atom ordering if its
length `(P) is 1, or `(P) > 1, and there is an ordering α1, . . . , αt of the atoms of P
satisfying the following:

(1) For all j = 1, . . . , t, the interval [αj , 1̂] admits a recursive atom ordering in which
the atoms of [αj , 1̂] that belong to [αi, 1̂] for some i< j come first.

(2) For all i, j with 1 ≤ i < j ≤ t, if αi, αj < y, then there exist an integer k and an
atom z of [αj , 1̂] such that 1 ≤ k < j and αk < z ≤ y.

For example, for the poset in Figure 2.1, if we order the atoms of each interval by
alphabetical order (for the atoms of [a, f ], the ordering is b ≺ c; for the atoms of [b, f ],

1 For a topological space X, the ith reduced Betti number of X, denoted by β̃i(X), is the free rank of
the reduced singular cohomology group H̃i(X;Z), and the ith reduced Betti number of X over a field F,
denoted by β̃i

F (X), is the dimension of H̃i(X;F ) as a vector space over F.
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the ordering is d ≺ e; and for the atoms of [c, f ], the ordering is d ≺ e), then it is a
recursive atom ordering.
We note that any atom ordering of a pure totally semimodular bounded poset is a

recursive atom ordering, which implies (3) of Theorem 2.1. We finish the section by
introducing a sketch of the proof shown in [3] that the existence of a recursive atom
ordering implies CL-shellability.

Theorem 2.4. ([3]). A bounded poset admits a recursive atom ordering if and only if
it is CL-shellable.

Sketch of proof of the ‘only if ’ part. Suppose that a bounded poset P admits a
recursive atom ordering, and let the atoms of P be ordered as α1, . . . , αt. Let us give an
integer labelling ρ of the bottom covers of P such that ρ(0̂, αi) < ρ(0̂, αj) for all i < j.
For each j, let F (αj) be the set of all atoms of [αj , 1̂] that cover some αi, where i < j.
We label the bottom covers of [αj , 1̂] consistently with the atom ordering of [αj , 1̂] and
satisfying

x ∈ F (αj) ⇒ ρ(αj , x) < ρ(0̂, αj) and x 6∈ F (αj) ⇒ ρ(αj , x) > ρ(0̂, αj),

where ρ denotes the labelling of the bottom covers of [αj , 1̂] as well as the original labelling
of the bottom covers of P. This labelling inductively extends to an integer CL-labelling
of [αj , 1̂]. Choosing such an extension at each αj, we obtain a chain-edge labelling ρ of P,
which is a CL-labelling of [αj , 1̂] for all j = 1, . . . , t, and hence for every rooted interval
whose bottom element is not 0̂, and which extends the original labelling of the bottom
covers of P. Then one can show that the unique lexicographically first maximal chain
of each interval [0, y] is the only increasing maximal chain of that interval. Hence, the
labelling ρ is an integer CL-labellling on P. �

3. Real toric variety arising from a graph G and a poset Peven
G,A

In this section, we first introduce the integral cohomology of a projective smooth real toric
variety and then restrict our attention to projective smooth real toric varieties arising
from graphs. For a graph G, we construct the pseudograph associahedron PG, which
defines the projective smooth real toric variety XR

G. We describe the cohomology of XR
G

in terms of posets of even subgraphs of G, and then introduce our main result.

3.1. Cohomology of a real toric variety

A toric variety of complex dimension n is a normal algebraic variety containing an
algebraic torus (C∗)n as a Zariski open dense subset such that the action of the torus on
itself extends to the whole variety. A real toric variety is the real locus of a toric variety.
The fundamental theorem of toric geometry says that there is a one-to-one correspondence
between the class of toric varieties of complex dimension n and the class of fans in Rn. In
particular, for a complete smooth toric variety X, the corresponding fan ΣX is complete
and smooth. Furthermore, a complete smooth toric variety X is projective if and only if
ΣX can be realized as the normal fan of a smooth polytope in Rn.
Although the integral cohomology ring of a complete smooth toric variety was studied

by Danilov [12] and Jurkiewicz [13] in the late 1970s, only little is known about the
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cohomology of complete smooth real toric varieties. For a complete smooth toric variety X
and its real locus XR, the cohomology ring H∗(XR;Z2) was computed by Jurkiewicz [14]
in 1985, and it has a similar form to the integral cohomology ringH∗(X;Z). Note that the
dimension of Hi(XR;Z2) as a vector space over Z2 is equal to hi, where (h0, h1, . . . , hn)
is the h-vector of KX, the underlying simplicial sphere of the fan ΣX .
Recently, there were several efforts to compute the integral cohomology of a real toric

variety. Let P be a smooth polytope of dimension n and let F(P ) = {F1, . . . , Fm} be the
set of facets of P. Then the primitive outward normal vectors of P can be understood

as a function φ from F(P ) to Zn, and the composition map λ : F(P )
φ→ Zn mod 2−→ Zn

2 is
called the (mod 2) characteristic function over P. Note that λ can be represented by a
Z2-matrix ΛP of size n ×m as

ΛP =
(
λ(F1) · · · λ(Fm)

)
,

where the ith column of ΛP is λ(Fi) ∈ Zn
2 . For ω ∈ Zm

2 , we define Pω to be the union of
facets Fj such that the j th entry of ω is nonzero. Then the following holds:

Theorem 3.1. ([10, 19]). Let P be a smooth polytope of dimension n and XR
P the

projective smooth real toric variety associated with P. Then the Betti numbers of XR
P is

given as follows:

βi(XR
P ) =

∑
S⊂[n]

β̃i−1(PωS
), (3.1)

where ωS is the sum of the kth rows of ΛP for all k ∈ S.

For S ⊂ [n], let KP,S be the simplicial subcomplex of KP dual to PωS
. Note that KP,S

and PωS
have the same homotopy type. Hence, we can rewrite Equation (3.1) by using

KP,S :

βi(XR
P ) =

∑
S⊂[n]

β̃i−1(KP,S). (3.2)

In general, the integral cohomology of KP,S may have p-torsion for arbitrary p> 1, and
hence it is not easy to compute. Furthermore, the torsion of H∗(KP,S ;Z) influences the
torsion of H∗(XR

P ;Z).

Theorem 3.2. ([5]). Let P be a smooth polytope of dimension n and XR
P the projec-

tive smooth real toric variety associated with P. Then the integral cohomology of XR
P is

completely determined by the reduced cohomology group of KP,S (for S ⊂ [n]) and the
h-vector of P. Moreover, the following are equivalent:

(1) H∗(XR
P ;Z) has no p-torsion for every p> 2.

(2) H̃∗(KP,S ;Z) is torsion-free for every S ⊂ [n].

See Theorem 1.1 and Corollary 1.2 of [5] for more details of the above theorem.
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3.2. Real toric variety arising from a graph

Given a graph G, the pseudograph associahedron PG is first introduced in [7] as a
generalization of a graph associahedron in [6]. In this paper, we use the construction of
a pseudograph associahedron in [8], slightly different from [7]. When G is connected, our
pseudograph associahedron PG is the same as the pseudograph associahedron KG in [7],
but if G is disconnected, we get a different polytope. In our constructon, if G consists of
connected components G1, . . . , Gk, then PG is defined to be the product PG1

×· · ·×PGk
.2

We introduce the construction of PG briefly.
For a graph G, we label the vertices and the multiple edges of G. We write a subgraph H

of G as the set of the vertices of H and the edges of H in a bundle of G. For simplicity, we
omit the braces and commas to represent a subset of CG and we always denote it in a way
that the vertices precede the multiple edges. We say that a subgraph H of G is induced
(respectively, semi-induced) if H is a subgraph that includes all edges (respectively, at
least one edge) between every pair of vertices in H, if such edges exist in G. For instance,
in Figure 3.1, the four subgraphs 12a, 12b, 123a, 123b are semi-induced but not induced
subgraphs of G. It should be noted that our set expression makes sense for a semi-induced
subgraph because semi-induced subgraphs of a given graph G can be distinguishable by
the corresponding set.
We remark that when we consider a subgraph H of a graph G, the labels of H are

inherited from the labels of G. Thus, if a graph H is considered as a subgraph of a graph
G, then H may have a labelled simple edge, which is not in a bundle of H (actually, it
is in a bundle of G). Note that for the graph G in Figure 3.1, 12a and 12b are different
objects if they are considered as semi-induced subgraphs of G.
Let G be a connected graph on the vertex set V = [n] and with exactly k bundles

B1, . . . , Bk. Let ∆V be the simplex ∆|V |−1 whose facets are labelled with the vertices of
G. Then each face of ∆V corresponds to a proper subset of vertices of G, defined by the
intersection of the facets associated with those vertices.3 For each i = 1, . . . , k, let ∆Bi

be the simplex ∆|Bi|−1 whose vertices are labelled with the multiple edges in Bi. Then
each face of ∆Bi

corresponds to a subset of Bi defined by the vertices spanning the face.4

Now we define ∆G as the product of simplices

∆G := ∆V ×∆B1
× · · · ×∆Bk

endowed with the labels naturally induced from the labelling on ∆V and ∆Bi
(1 ≤ i ≤ k).

Then the pseudograph associahedron PG is obtained from ∆G by truncating the faces
corresponding to the proper connected semi-induced subgraphs of G in increasing order
of dimension.5 See Figure 3.1. Then the following hold:

2 For a simple graph G, this modified construction is affinely equivalent to the graph associahedron
in [15] based on the Minkowski sum.

3 The simplex ∆n−1 is a smooth polytope; the (outward) normal vector of the facet labelled by j is
the vector −ej (respectively,

∑n−1
j=1 ej) if 1 ≤ j < n (respectively, j =n).

4 The simplex ∆|Bi|−1 is a smooth polytope; the (outward) normal vector of the facet opposite to

the vertex labelled by eji , j = 1, . . . , |Bi|, is the vector −ej (respectively,
∑|Bi|−1

j=1 ej) if 1 ≤ j < |Bi|
(respectively, j = |Bi|).

5 Note that for a graph G, a proper connected semi-induced subgraph of some connected component
of G is called a tube in [8].
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Figure 3.1. The proper connected semi-induced subgraphs of G and the facets of PG

(1) There is a one-to-one correspondence between the facets FI of PG and the proper
connected semi-induced subgraphs I of G.

(2) Two facets FH and FH′ of PG intersect if and only if H and H ′ are disjoint and
cannot be connected by an edge of G, or one contains the other.

If G1, . . . , G` are the connected components of G, then PG = PG1
× · · · × PG`

and the
dimension of PG is

dimPG = |V (G)| − `+
k∑

i=1

(|Bi| − 1),

where Bi’s are all the bundles of G. See [8, §2], where the readers may find
examples, definitions and a much more detailed account of results for pseudograph
associahedra.
Note that

• a product of smooth polytopes is a smooth polytope,
• any face of a smooth polytope is a smooth polytope, and
• for a smooth polytope P and a proper face F, there is a canonical truncation of
P along F such that the result is a smooth polytope. (See [8, Lemma 2.5].)

For a connected graph G, since ∆G is a smooth polytope, the pseudograph associa-
hedron PG can be realized as a smooth polytope canonically. In particular, the normal
vector of the facet corresponding to a proper connected semi-induced subgraph H of G
is determined by the label of H. Hence, under the canonical smooth realization, we get
the projective smooth toric variety XG := XPG

and the projective smooth real toric

variety XR
G := XR

PG
, associated with a graph G. For example, it is known that if G is the

simple path graph P3, then the polytope PG is a pentagon. Hence, XG is CP 2#2CP 2,
obtained from CP 2 by blowing up two fixed points; XR

G is #3RP 2, the connected sum
of three copies of the real projective plane RP 2. If G is the graph with two vertices and
two multiple edges, then XG is CP 1 × CP 1 and XR

G is RP 1 × RP 1.6

6 Note that only when every connected component of G has a few vertices and multiple edges, we can
describe the variety XG or XR

G in terms of elementary smooth manifolds.
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Figure 3.2. Examples for PI-graphs of G and the posets Peven
H,A .

3.3. A poset of even subgraphs

For a graph G, a graph H is a partial underlying graph of G if H can be obtained from
G by replacing some bundles with simple edges, that is, the set of all the bundles of H is
a subset of G. A graph H is a partial underlying induced graph (PI -graph for short) of
G if H is an induced subgraph of some partial underlying graph of G. Note that a graph
is a PI-graph of itself. For instance, for the graph G with two bundles {a, b} and {c, d, e}
in Figure 3.2,

• H1,H2 and H 3 are partial underlying graphs of G, and
• all Hi’s are PI-graphs of G.

For a graph G, we let CG be the set of all labels of G, i.e., CG = V (G)∪B1 ∪ · · · ∪Bk,
where B1, . . . , Bk are the bundles of G. For instance, CG = {1, 2, 3, 4, a, b, c, d, e} and
CH3

= {1, 2, 3, 4, c, d, e} for the graphs G and H 3 in Figure 3.2.

Definition 3.3. For a graph H, a subset A of CH is called an admissible collection of
H if |A ∩ V (H ′)| ≡ 0 (mod 2) for every connected component H′ of H with the following
properties:

(1) each vertex that is incident to only simple edges of H is contained in A, and
(2) B ∩A 6= ∅ and |B ∩A| ≡ 0 (mod 2) for each bundle B of H.

Let A(H) denote the set of all the admissible collections of H. The set of admissible
collections each of the graphs Hi’s in Figure 3.2 are as follows:

A(H1) = {1234}, A(H2) = {34ab, 1234ab}, A(H3) = {14cd, 14ce, 14de, 1234cd,
1234ce, 1234de} ,

A(H4) = ∅, A(H5) = {13ab, 23ab}, A(H6) = {12cd, 12ce, 12de, 13cd,
13ce, 13de} ,
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Let A ⊂ CH . We say that a semi-induced subgraph I of H is A-even (respectively, A-
odd) if |A ∩ I ′| is even (respectively, odd) for every connected component I ′ of I.7 Then
we define the poset Peven

H,A as follows. If A ∈ A(H), then the poset Peven
H,A is defined to be

the poset consisting of all A-even semi-induced subgraphs of H ordered by the subgraph
containment, including both ∅ and H. Hence, Peven

H,A is a bounded poset. If A 6∈ A(H),
then we define Peven

H,A by the null poset. Figure 3.2 shows (the Hasse diagram of) the
posets Peven

H1,1234
,Peven

H2,1234ab
and Peven

H3,1234cd
. Note that the first two posets are shellable

but the last is not. For more examples of Peven
H,A , see also Figure 5.3.

Combining Lemma 4.5 with Proposition 4.7 of [8], it holds the following.

Proposition 3.4. ([8]). Let G be a graph.

(1) For every subset S in the set of integers {1, 2, . . . , dimPG}, the simplicial complex
KPG,S is contractible or there exist a PI-graph H of G and A ∈ A(H) such that

KPG,S is homotopy equivalent to the order complex of the proper part of Podd
H,A.

(2) The ith Betti number of XR
G is

βi(XR
G) =

∑
H:PI-graph

of G

∑
A∈A(H)

β̃i−1
(
∆
(
Podd
H,A

))
.

For the sake of convenience, we put a sketch of the proof of Proposition 3.4 in Appendix.

For a graph H, it was also noted in [8, §5] that ∆(Peven
H,A ) (respectively, ∆(Podd

H,A)) is
a geometric subdivision of the simplicial complex dual to the union of the facets FI of
the polytope PH such that |I ∩A| is even (respectively, odd). Hence, from the Alexander
duality, we have

H̃i
(
∆
(
Podd
H,A

)
;Z

)
∼= H̃dim(PH )−i−2

(
∆
(
Peven
H,A

)
;Z

)
. (3.3)

Therefore, if KPG,S is homotopy equivalent to ∆(Podd
H,A) and Peven

H,A is shellable, then

H̃∗(KPG,S ;Z) is torsion-free.
Let H be a simple graph. Then A(H) = {H} if each connected component of H has

an even number of vertices, and A(H) = ∅ otherwise. Thus, we write Peven
H instead of

Peven
H,H .

Theorem 3.5. ([9, Proposition 4.9]). For a simple graph H, Peven
H is pure and

totally semimodular, so it is shellable.

Recall that a pure and totally semimodular poset is CL-shellable by Theorem 2.1-(3).
Hence, Peven

H is CL-shellable for every simple graph H.
In [8], there was an effort to extend results of [9] for a simple graph to a graph allowing

multiple edges. Almost all results of [9] except for Theorem 3.5 were well-extended by
using Peven

H,A , where H is a PI-graph of G and A ∈ A(H). In fact, since the poset Peven
H3,1234cd

7 Recall that each semi-induced subgraph of G is identified with a subset of CG by the definition of
semi-induced subgraphs.
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in Figure 3.2 is not shellable, Theorem 3.5 cannot be generalized to Peven
H,A . Hence, it is

natural to ask which Peven
H,A is shellable. Taking an interest in a projective smooth real

toric variety associated with a graph, the following Question 1.2 was asked in [8]. For a
graph G, let A∗(G) = {(H,A) | His a PI-graph of G and A ∈ A(H)}.

Question 1.2. ([8]) Find all graphs G such that Peven
H,A is shellable for every (H,A) ∈

A∗(G).
For simplicity, throughout the paper, let G∗ be the family of all graphs G such that

Peven
H,A is shellable for every (H,A) ∈ A∗(G). Clearly, the family G∗ contains all simple

graphs by Theorem 3.5. The answer to Question 1.2 is the following, which restates
Theorem 1.3.

Theorem 1.3. A graph G is in G∗ if and only if each connected component of G is either
a simple graph or one of the graphs in Figure 1.1.
By Theorem 1.3, for every G ∈ G∗, each poset Peven

H,A is shellable, and hence ∆(Peven
H,A )

is homotopy equivalent to a wedge of spheres. Thus, H̃∗(KPG,S ;Z) is torsion-free for
every subset S of the set of integers {1, 2, . . . , dimPG}, and we get the following from
[5, Corollary 1.2].

Corollary 3.6. For a graph G ∈ G∗, the integral cohomology of the projective smooth
real toric variety XR

G is torsion-free or has only 2-torsion elements:

Hi
(
XR

G;Z
)
= Zβi ⊕ Zhi−βi

2 ,

where βi = βi(XR
G) and hi = hi(PG).

As an immediate consequence of the proof in §5, we also get the following:

Theorem 3.7. For every G ∈ G∗, each Peven
H,A is CL-shellable for every (H,A) ∈

A∗(G).

We finish the section by giving a remark that it is sufficient to consider a connected
graph to prove Theorem 1.3 and Theorem 3.7. To see why, letG1, . . . , Gk be the connected
components of a graph G. Note that for a subgraph H of G and A ∈ CH , (H,A) ∈ A∗(G)
if and only if (H∩Gi, A∩CGi

) ∈ A∗(Gi) for each i. Thus, for each (H,A) ∈ A∗(G), Peven
H,A

is isomorphic to the product Peven
H1,A1

×· · ·×Peven
Hk,Ak

, where Hi = H∩Gi and Ai = A∩CGi

for each i. By (2) of Theorem 2.1, Peven
H,A is shellable if and only if Peven

Hi,Ai
is shellable for

each i. Thus, G ∈ G∗ if and only if Gi ∈ G∗ for each i.

4. Graphs that admit a non-shellable poset Peven
H,A

In this section, we give the ‘only if’ part of Theorem 1.3. We will see that almost all
graphs do not belong to the family G∗. The result of this section is based on the following
basic observation.

Lemma 4.1. Let P0 be the poset in Figure 4.1 and let Q be any subposet that has at
least two chains of length 3, with one containing a or b and another containing a′ or b′.
Then Q is not shellable.
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Figure 4.1. The poset P0.

Figure 4.2. A graph I and the interval I.

Theorem 4.2. Let G be a connected non-simple graph in G∗. Then G is one of the
graphs in Figure 1.1.

Before starting the proof, recall that we often drop the braces and commas to denote
a subset of CG.

Proof. Suppose that G is a connected non-simple graph in G∗. If |V (G)| = 2, then

G = P̃2,m in Figure 1.1 for some m. Assume that |V (G)| ≥ 3 and G has a bundle B
whose endpoints are 1 and 2. �

Claim 4.3. The graph G has exactly one bundle B.

Proof of Claim 4.3. Suppose that G has a bundle B ′ other than B. Take a shortest
path in G whose starting vertex is an endpoint of B and whose terminal vertex is an
endpoint of B ′. We denote the path by Q. Note that Q does not contain a multiple edge.
Let Q := (v1, . . . , vk), where k ≥ 1, and let v1 = 2 without loss of generality. Let H be a
PI-graph of G such that V (H) = V (Q) ∪ {1, 2} ∪ {endpoints of B′} and H has exactly
two bundles B and B ′. Let a, b ∈ B and a′, b′ ∈ B′.
(Case 1) Suppose that k =1. Then |V (H)| = 3, so we set V (H) = {1, 2, 3}. Then

A := 23aba′b′ belongs to A(H). Setting I = 123aba′b′ (the dashed edge in Figure 4.2 is a
simple edge or does not exist), we see I ∩A = A, and hence I is an element of Peven

H,A . Let
I ′ = 1 and consider the interval I = [I ′, I] of Peven

H,A , see Figure 4.2. Then I is isomorphic
to a subposet of P0 in Figure 4.1. By Lemma 4.1, I is not shellable, a contradiction to
(1) of Theorem 2.1.
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Figure 4.3. A graph I and the interval I where the dashed boxes may be in I.

(Case 2) Suppose that k ≥ 2. Let the endpoints of B ′ be labelled by 3 and 4, and
vk = 3. Let

A =

(V (H) \ {1}) ∪ aba′b′ if k is odd;

(V (H) \ {1, 2}) ∪ aba′b′ if k is even.

Note that A ∈ A(H). Let I ′ = V (Q) \ {vk} and I = I ′ ∪ 134aba′b′. Then I ′ ∩ A =
{v1, . . . , vk−1} (if k is odd) or I ′ ∩A = {v2, . . . , vk−1} (if k is even). Then they have the
form in Figure 4.3 (the dashed edges are simple edges or do not exist), and both I ′ and
I are elements of Peven

H,A . Consider the interval I = [I ′, I] in Peven
H,A , see Figure 4.3. Thus,

I is isomorphic to a subposet of P0 in Figure 4.1. Note that I ′ ∪ 134aa′, I ′ ∪ 134ab′, I ′ ∪
134ba′, I ′ ∪ 134bb′ are elements in I, and both I ′ ∪ 13a and I ′ ∪ 13b are also elements in
I. The elements I ′ ∪ 14a and I ′ ∪ 14b in the dashed boxes of Figure 4.3 are in I if there
is an edge between the vertex 4 and a vertex in I ′. By Lemma 4.1, I is not shellable, a
contradiction to (1) of Theorem 2.1. �

Hence, G has only one bundle B. If |V (G)| = 3, then clearly G is one of the graphs in
Figure 1.1. Now assume that |V (G)| ≥ 4. For each vertex i, we let N∗(i) = NG(i)\{1, 2},
where NG(i) is the set of vertices which are adjacent to i in G.

Claim 4.4. |N∗(1) ∪N∗(2)| = 1.

Proof of Claim 4.4 Since |V (G)| ≥ 3 and G is connected, |N∗(1) ∪ N∗(2)| ≥ 1.
Suppose that |N∗(1) ∪N∗(2)| ≥ 2, and 3, 4 ∈ N∗(1) ∪N∗(2). Let H be a PI-graph of G
such that V (H) = {1, 2, 3, 4} and H has the bundle B. Let A = 1234ab for some a, b ∈ B.
Note that A ∈ A(H). Let I = 1234ab, and consider the interval I = [∅, I] in Peven

H,A , see
Figure 4.4. Then I is a subgraph of a complete graph of four vertices with exactly one
bundle of size two, and I is isomorphic to a subposet of P0. Note 123a, 123b, 124a and
124b are elements of I. Since the vertex 3 is a neighbour of 1 or 2, at least one of 13 and
23 is an element of I (the elements 13 and 23 are drawn in a dotted box in Figure 4.4).
Similarly, since the vertex 4 is also a neighbour of 1 or 2, at least one of 14 and 24 is
an element of I (the elements 14 and 24 are drawn in a dotted box in Figure 4.4). By
Lemma 4.1, I is not shellable, a contradiction to (1) of Theorem 2.1. �

From now on, we set N∗(1) ∪N∗(2) = N∗(2) = {3}.
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Figure 4.4. A graph containing I and the interval I, where at least one of the elements in each
dotted box is in I, and the dashed box 34 may be in I.

Claim 4.5. For each vertex i other than 1 or 2, let Qi be the shortest path of G from
3 to i. Then

|N∗(i) \ V (Qi)| ≤ 2,

where the equality holds if and only if |V (Qi)| is odd and V (G) = V (Qi)∪{1, 2}∪N∗(i).

Proof of Claim 4.5. Suppose that there is a vertex i ∈ V (G) \ {1, 2} satisfying one
of the following:

(1) |N∗(i) \ V (Qi)| ≥ 3,
(2) |N∗(i) \ V (Qi)| = 2 and |V (Qi)| is even, and
(3) |N∗(i) \ V (Qi)| = 2, |V (Qi)| is odd, and V (G) 6= V (Qi) ∪ {1, 2} ∪N∗(i).

If |V (Qi)| is even, then it is the case of (1) or (2), so we set I ′ = Qi and take two vertices
x and y in N∗(i)\V (Qi). Suppose that |V (Qi)| is odd. Then it is the case of (1) or (3). In
case (1), we take three vertices w, x, y ∈ N∗(i)\V (Qi) and set I ′ = Qi∪w. Otherwise, we
take a vertex w ∈ N∗(i)\V (Qi) and a vertex y ∈ V (G)\(V (Qi) ∪ {1, 2} ∪N∗(i)) so that
Qi ∪ wy is connected. Then we set I ′ = Qi ∪ w and take x as a vertex in N∗(i) \ V (Qi)
other than w. For any case, note that 3 ∈ I ′, I ′ ∩ {1, 2} = ∅, |I ′| is even, and each of I ′,
I ′ ∪ x and I ′ ∪ y is a connected subgraph of G.
Let H be a PI-graph such that V (H) = I ′ ∪ 12xy and B is the bundle of H. Let

A = V (H) ∪ ab and I =A for some a, b ∈ B. Note that A ∈ A(H) and I is the graph
in the left of Figure 5.1 (the dashed edges are simple edges or do not exist). Consider
the interval I = [I ′, I] in Peven

H,A , see Figure 5.1. Then I is isomorphic to a subposet of
P0. Note that I ′ ∪ 12xa, I ′ ∪ 12xb, I ′ ∪ 12ya and I ′ ∪ 12yb are elements in I. Moreover,
both I ′ ∪ 2x and I ′ ∪ 2y are in I. The elements I ′ ∪ 1x and I ′ ∪ 1y in the dashed boxes
of Figure 5.1 are in I if there is an edge between the vertex 1 and a vertex in I ′. By
Lemma 4.1, I is not shellable, a contradiction to (1) of Theorem 2.1. �

Proof. Since |V (G)| ≥ 4, we have |N∗(3)| ≥ 1. Since N∗(3) \ V (Q3) = N∗(3), we see
|N∗(3)| ≤ 2 by Claim 4.5. If |N∗(3)| = 2, then the equality part of Claim 4.5 says that G

is one of S̃5,m, S̃′
5,m, T̃5,m and T̃ ′

5,m in Figure 1.1 for some m. Suppose that |N∗(3)| = 1,
and let N∗(3) = {4}. Since N∗(4) \ V (Q4) = N∗(4) \ {3}, we see |N∗(4) \ {3}| ≤ 1 by

Claim 4.5. If |N∗(4)\{3}| = 0, then G is one of P̃4,m, and P̃ ′
4,m in Figure 1.1 for some m.
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Figure 5.1. A graph containing I and the poset containing I, where the dashed boxes may be
in I.

Suppose that |N∗(4)\{3}| = 1, and let N∗(4)\{3} = {5}. Then consider N∗(5)\V (Q5).
Repeating the argument through the vertices one by one completes the proof. �

5. CL-shellability of Peven
G,A

In this section, we show that the poset Peven
H,A is CL-shellable for every (H,A) ∈ A∗(G) if

G is a graph in Figure 1.1. Note that a connected PI-graph of G in Figure 1.1 is a simple
graph or a graph in Figure 1.1. Thus, it is sufficient to show that when G is a graph in
Figure 1.1, Peven

G,A is shellable for every A ∈ A(G). From now on, throughout this section,
we fix a graph G with n vertices and m multiple edges in Figure 1.1, and an admissible
collection A ∈ A(G).

5.1. Definition of an ordering ≺I
atm for the atoms of [I,G]

We let V = {1, 2, . . . , n} (n ≥ 2) be the set of vertices ofG, and 1 and 2 be the endpoints
of the bundle B. By the definition of an admissible collection, note that {3, . . . , n} ⊂ A,
A ∩ B 6= ∅ and |A ∩ B| is even, so we let B ∩ A = {a1, . . . , a2m} (m ≥ 1) and B \ A =
{b1, . . . , b`}. Here, B \A may be the empty set. There are three cases:

• |V | is odd and V ∩A = V \ {w} for some w ∈ {1, 2};
• |V | is even and V ∩A = V \ {1, 2};
• |V | is even and V ∩A = V .

We label the vertices that are not the endpoints of B so that for each i ∈ {3, . . . , n},
the vertex i is closest to the vertex i − 1. We relabel the endpoints of B so that 1 6∈ A
if |V | is odd and 13 is an edge if |V | is even. See (i) of Figure 5.2 for all the possible
labellings when |V | is odd. We illustrate all the possible labellings when |V | is even in (ii)
of Figure 5.2. See Figure 5.3 for examples of Peven

G,A under this labelling. We also assume
that there is a total ordering between the vertices: 1 ≺ 2 ≺ · · · ≺ n. Thus, for I ⊂ V , the
minimum of I, denoted by min(I), means the frontmost one in the ordering.
Note that given a cover IlJ in Peven

G,A , if (J \I)∩B 6= ∅, then either (J \I)∩(B∩A) = ∅
or (J \I)∩(B\A) = ∅. Suppose not, that is, (J \I)∩(B∩A) 6= ∅ and (J \I)∩(B\A) 6= ∅.
Then K := J \{(J \I)∩(B \A)} satisfies that I < K < J and |(K \I)∩A| ≡ |(J \I)∩A|,
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Figure 5.2. Labelling of the vertices.

Table 1. Types of I l J in Peven
G,A , where a, a′ ∈ B ∩A, b ∈ (B \A), c, c′ ∈ A, v = min(V \ (I ∪

{1, 2}))

(E3′)

IlJ Type (E1) (E2) (E3) (E4) (E1′) (E2′) (E3′-1) (E3′-2)

J\I V :odd A ∩
{1, 2} =
{2}

1 cc′ 1ac – b 1b 2vb –

V :even A ∩
{1, 2} =
∅

1 or
2

cc′ 1ac
or
2ac

– b 1b
or
2b

– –

{1, 2} ⊂
A

– cc′ – 12aa′ b – 1vb or
2vb

12b

For the case of (E3), c ∈ B ∩A or c = min(V \ (I ∪ {1, 2})).

a contradiction to IlJ . Hence, we can define the type of a cover IlJ in Peven
G,A according

to the size of J \I and the intersection with B\A. A cover IlJ has type (Ei) if |J \I| = i
and J \ I has no element of B \ A; I l J has type (Ei′) if |J \ I| = i and J \ I contains
some elements of B \A. Hence, (Ei′) can occur only when B \A 6= ∅.

Lemma 5.1. Let I l J be a cover in Peven
G,A . Then J \ I is one of the sets represented

in Table 1.

Proof. It follows from the fact that for a cover I l J in Peven
G,A , each of |I ∩A|, |J ∩A|

and |(J \ I)∩A| is even, and J \ I satisfies the following condition, which we will call (†).

(†) The elements in J \ I belong to the same connected component of J. �
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Figure 5.3. Examples of posets Peven
G,A .

When I l J is of (E3′), as in Table 1, we divide the type (E3′) into two subtypes
according to the size of (J \ I) ∩ {1, 2}:
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• I l J has type (E3′-1) if I l J has type (E3′) and |(J \ I) ∩ {1, 2}| = 1;
• I l J has type (E3′-2) if I l J has type (E3′) and |(J \ I) ∩ {1, 2}| = 2.

We can also show that when I l J is of (E3′-1), J \ I contains the vertex min(V \ (I ∪
{1, 2})).

Proposition 5.2. The lengths of maximal chains of Peven
G,A are


|A|
2 + |B \A|+ 1 or |A|

2 + |B \A| if |V |is odd,
|A|
2 + |B \A|+ 1 if |V |is even and A ∩ V 6= V, and
|A|
2 + |B \A| or |A|

2 + |B \A| − 1 if |V |is even and A ∩ V = V.

Moreover, if |V | is odd, 2 and 3 are not adjacent in G and B ⊂ A, then Peven
G,A is pure

and its length is |A|
2 + 1.

Proof. Recall that |V | = n, |B ∩A| = 2m and |B \A| = `. Note that 2m+ n ≥ 4. Let
σ : I0 l I1 l · · ·l Ip be a maximal chain of Peven

G,A . Note that {Ii \ Ii−1 | i = 1, . . . , p} is a
partition of V ∪B.
Let k be the smallest index such that Ik \ Ik−1 contains an element in B, that is, Ik

is the first element of σ containing a multiple edge. Then {1, 2} ⊂ Ik and {1, 2} 6⊂ Ik−1.
Together with Table 1, we see that for each cover Ii−1lIi of σ, except the cover Ik−1lIk,
it holds that |Ii\Ii−1| = 1 or 2. For each j ∈ {1, 2}, let tj be the number of covers Ii−1lIi
of σ, except the cover Ik−1 l Ik, such that |Ii \ Ii−1| = j. Then the number of covers of
σ, which is equal to `(σ), is 1 + t1 + t2. Since {Ii \ Ii−1 | i = 1, . . . , p} is a partition of
V ∪B, we have

t1 + 2t2 + |Ik \ Ik−1| = |Ip \ I0| = n+ 2m+ `,

or t2 =
(n+2m+`)−t1−|Ik\Ik−1|

2 . Therefore,

`(σ) = 1 + t1 + t2 =
(n+ 2m+ `) + 2 + t1 − |Ik \ Ik−1|

2
. (5.1)

Note that σ has exactly |B \ (A∪ Ik)| covers of (E1′) and at most one cover of (E1). In
addition, σ has one cover of (E1) if and only if Ik−1 contains a vertex in {1, 2} \A. Since
t1 is the sum of the number of covers of (E1) and the number of covers of (E1′), we get

t1 =

1 + |B \ (A ∪ Ik)| if Ik−1 contains a vertex in {1, 2} \A,
|B \ (A ∪ Ik)| otherwise.

(5.2)
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Suppose that |V | is odd. Then |A| = 2m+ n− 1. By Table 1 again, Ik−1 l Ik has one
of types (E2), (E3), (E2′) and (E3′-1). By Equations (5.1) and (5.2),

`(σ) =



(n+2m+`)+2+(1+`)−2
2 = `+ 1 + n+2m−1

2 = `+ 1 + |A|
2 if Ik−1 l Ik is of (E2),

(n+2m+`)+2+`−3
2 = `+ n+2m−1

2 = `+ |A|
2 if Ik−1 l Ik is of (E3),

(n+2m+`)+2+(`−1)−2
2 = `+ n+2m−1

2 = `+ |A|
2 if Ik−1 l Ik is of (E2′),

(n+2m+`)+2+(1+(`−1))−3
2 = `+ n+2m−1

2 = `+ |A|
2 if Ik−1 l Ik is of (E3′-1).

Hence, every maximal chain has a length of either |A|
2 + `+ 1 or |A|

2 + `, and hence the
poset Peven

G,A is nonpure. Note that if 2 and 3 are not adjacent in G, then there is no cover
of (E3), and if B ⊂ A, then B \A = ∅ and then there is no cover of (E2′) or (E3′). Hence,

if 2 and 3 are not adjacent in G and B ⊂ A, then Peven
G,A is a pure poset of length |A|

2 + 1.
We summarize in the following table:

Ik−1 l Ik The types of the covers in σ Length of σ

(E2) one (E1), ` (E1′)s, 2m+n−1
2 (E2)s 2m+n+1

2 + `

(E3) one (E3), ` (E1′)s, 2m+n−3
2 (E2)s 2m+n−1

2 + `

(E2′) one (E2′), (`−1) (E1′)s, 2m+n−1
2 (E2)s

(E3′-1) one (E1), one (E3′-1), (`−1) (E1′)s, 2m+n−3
2 (E2)s

Suppose that |V | is even. When A ∩ {1, 2} = ∅, it holds that |A| = 2m + n − 2 and
Ik−1 l Ik is of (E3) or (E2′). By Equations (5.1) and (5.2),

`(σ) =

 (n+2m+`)+2+(1+`)−3
2 = `+ 1 + n+2m−2

2 = `+ 1 + |A|
2 if Ik−1 l Ik is of (E3),

(n+2m+`)+2+(1+(`−1))−2
2 = `+ 1 + n+2m−2

2 = `+ 1 + |A|
2 if Ik−1 l Ik is of (E2′).

Hence, every maximal chain has length |A|
2 + `+ 1.

When A contains {1, 2}, it holds that |A| = 2m+ n and Ik−1 l Ik is one of (E2), (E4)
and (E3′). By Equation (5.1) and (5.2),

`(σ) =


(n+2m+`)+2+`−2

2 = `+ n+2m
2 = `+ |A|

2 if Ik−1 l Ik is of (E2),
(n+2m+`)+2+`−4

2 = `− 1 + n+2m
2 = `− 1 + |A|

2 if Ik−1 l Ik is of (E4),
(n+2m+`)+2+(`−1)−3

2 = `− 1 + n+2m
2 = `− 1 + |A|

2 if Ik−1 l Ik is of (E3′).

Hence, every maximal chain has length ` + |A|
2 or ` − 1 + |A|

2 . We summarize in the
following table: �

We shall show that Peven
G,A admits a recursive atom ordering. We first define the lexico-

graphic order ≺I
lex on V ∪B for each I ∈ Peven

G,A and then define the atom ordering ≺I
atm

for [I,G].
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A ∩ {1, 2} Ik−1lIk The types of the covers in σ Length of σ

∅ (E3) one (E1), one (E3), ` (E1′)s, 2m+n−4
2 (E2)s 2m+n

2 + `

(E2′) one (E1), one (E2′), (`−1) (E1′)s, 2m+n−2
2 (E2)s

{1, 2} (E2) 2m+n
2 (E2)s, ` (E1′)s 2m+n

2 + `

(E4) one (E4), ` (E1′), 2m+n−4
2 (E2)s 2m+n−2

2 + `

(E3′) one (E3′), (`−1) (E1′)s, 2m+n−2
2 (E2)s

Definition 5.3. Let I ∈ Peven
G,A . We define the lexicographic order ≺I

lex on V ∪ B as
follows:

• If B ∩ I = ∅, then

≺I
lex: 1, 2, 3, . . . , n, a1, . . . , a2m, b1, . . . , b`.

• If B ∩ I 6= ∅ and (B \A) ∩ I = ∅, then let k := max{i | ai ∈ B ∩A ∩ I} and

≺I
lex: 1, 2, a1, . . . , ak, 3, . . . , n, ak+1, . . . , a2m, b1, . . . , b`.

• If (B \A) ∩ I 6= ∅, then let k := max{i | bi ∈ (B \A) ∩ I} and

≺I
lex: 1, 2, a1, . . . , a2m, b1, . . . , bk, 3, . . . , n, bk+1, . . . , b`.

Then for two atoms J and J′ of [I,G], we define J ≺I
atm J ′ if

(O1) |(J \ I) ∩ {1, 2}| = 1 and |(J ′ \ I) ∩ {1, 2}| = 2, or
(O2) (O1) does not hold and J \ I ≺I

lex J ′ \ I, where we compare lexicographic order
induced by ≺I

lex, that is, we sort the elements in each of J\I and J ′\I in ascending
order by ≺I

lex and compare them by the lexicographic order ≺I
lex.

In the above, we check (O1) first, and if (O1) does not hold, we check whether (O2)
holds. Note that (O1) is considered only when Peven

G,A admits a cover of (E4) or (E3′-2),
that is, |V | is even and A contains {1, 2}.

Here is an example. Let G be the graph P̃6,5 in Figure 1.1. Suppose that A = V ∪
{a1, a2, a3, a4}. Then the atoms of Peven

G,A are ordered as follows:

≺∅
atm: 13, 12a1a2, 12a1a3, 12a1a4, 12a2a3, 12a2a4, 12a3a4, 12b1, 34, 45, 56.

For I = 12a1a3, ≺I
lex: 1, 2, a1,a2, a3,3,4,5,6,a4,b1, and the atoms of [I,G] are ordered

as follows:

≺I
atm: 123a1a2a3, 12a1a2a3a4, 1234a1a3, 123a1a3a4, 1245a1a3, 1256a1a3,12a1a3b1
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because a23 ≺I
lex a2a4 ≺I

lex 34 ≺I
lex 3a4 ≺I

lex 45 ≺I
lex 56 ≺I

lex b1, where the bold letters
indicate the elements not in I.
The following is the main theorem of this section, whose proof is given in §5.2.

Theorem 5.4. Let G be a connected graph in Figure 1.1, and A be an admissible
collection of G. Then the poset Peven

G,A admits a recursive atom ordering, and hence Peven
G,A

is CL-shellable.

Remark. We insist that the ordering ≺I
atm is essential. Suppose that we consider the

lexicographic order ≺∗ given by 1, 2, a1, a2, . . . , a2m, 3, 4, . . . , n, b1, . . . , b` and define ≺∗
atm

by an ordering obtained by replacing ≺I
lex in (O2) of Definition 5.3 with the fixed ordering

≺∗. For the posets in Figure 5.3, ≺∗
atm gives a recursive atom ordering. However, it fails

to be a recursive atom ordering in general. For example, let G be a graph in Figure 1.1
with |V | = 4 and |B| = 6, and let A = V ∪ B. Then A ∈ A(G). Let I = 12a1a3, and
consider the atoms J1 = 12a1a3a5a6 and J2 = 123a1a3a5 of [I,G], where the bold letters
indicate the elements not in I. Then the atoms of [∅, G] preceding I in ≺∗

atm are 13 and
12a1a2. However, J1 ≺∗

atm J2, J2 contains the atom 13, and J 1 does not contain any atom
of [∅, G] preceding I. Thus, (2) of Definition 2.3 fails.

5.2. Proof of Theorem 5.4

For a subsetX ⊂ V ∪B, minI(X) and maxI(X) denote the minimum and the maximum
of X with respect to ≺I

lex, respectively. We will show that the ordering ≺I
atm (I ∈ Peven

G,A )
is a recursive atom ordering. We first check Condition (2) of Definition 2.3.

Lemma 5.5. Let Ii and Ij be atoms of [I,G] such that Ii ≺I
atm Ij. If there is an

element K of [I,G] such that Ii, Ij < K, then there exists an atom K∗ of [Ij , G] and an
atom I∗ of [I,G] such that

K∗ ≤ K, K∗ ∈ [I∗, G], and I∗ ≺I
atm Ij .

Proof. Let K0 = Ii ∪ Ij for simplicity. Note that K0 ⊂ K, and one can check from
Lemma 5.1 that there is no element L ∈ Peven

G,A such that Ij ( L ( K0.
(Case 1) K 0 is not a semi-induced subgraph of G. Note that a subset of V ∪ B is not

a semi-induced subgraph if and only if it contains {1, 2} and has no element in B. Then
Ii \ I and Ij \ I contain exactly one of the endpoints of B, not the same. More precisely,
letting v = min(V \ (I ∪ {1, 2})), one of the following holds:

Ii \ I = 1 and Ij \ I = 2v if A ∩ {1, 2} = {2},
Ii \ I = 1 and Ij \ I = 2 if A ∩ {1, 2} = ∅,
Ii \ I = 1v and Ij \ I = 2v if A ∩ {1, 2} = {1, 2}.

Note that Ij \I = 2v occurs only when 2 and 3 are adjacent in G. Moreover, if Ii\I = 1v1
and Ij \ I = 2v2 hold, then I is a simple connected graph with even number of vertices,

so v1 = v2 = v. Indeed, if G is P̃ ′
n,m, then v1 = v2 = v by the structure of a path.

If G is S̃′
n,m or T̃ ′

n,m (n ≥ 5, odd), then v1 6= v2 only when I = V \ {1, 2, n − 1, n}.

https://doi.org/10.1017/S001309152300055X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152300055X


Cohomology of a real toric variety and shellability of posets 1067

However, since n is odd, I has an odd number of vertices. This is a contradiction. In
addition, 1 6∈ A if and only if |K0 ∩ A| ≡ |(K0 \ I) ∩ A| ≡ 0 (mod 2). Since K has both
1 and 2, it should have a multiple edge e. We find K∗ and I∗ according to the parity of
|A ∩ {1, e}|.
(Subcase 1) |A ∩ {1, e}| ≡ 0 (mod 2). In this case, K∗ = K0 ∪ e = Ij ∪ 1e and I∗ = Ii.

(Subcase 2) |A ∩ {1, e}| = 1. We consider the connected component H of K containing

e. Since e ∈ H \K0, |K0∩A| ≡ |H ∩K0∩A| ≡ |(H \K0)∩A|, where the first equivalence
follows from the definition of H and the second equivalence comes from |H ∩ A| ≡ 0
(mod 2). Hence, 1 6∈ A if and only if |(H \K0) ∩ A| is even. Let X = (H \K0) ∩ A for
simplicity. If |X| is even, then 1 6∈ A and e ∈ A, and therefore, |X \ {e}| ≥ 1. If |X| is
odd, then 1 ∈ A and e 6∈ A, and therefore, |X \ {e}| = |X| ≥ 1. Hence, in any case, we
can take an element c ∈ X \ {e} so that K∗ = K0 ∪ ce = Ij ∪ 1ce and I∗ = Ii. More
precisely, either c is the vertex min(V \ (Ij ∪ {1, 2})) or belongs to (B ∩A) \ e.
(Case 2)K 0 is a semi-induced subgraph of G . Note that (Ii\I)∩(Ij\I)∩A is nonempty

and has at most three elements.
(Subcase 1) |(Ii \ I) ∩ (Ij \ I) ∩A| is even. In this case,

|K0∩A| = |Ii∩A|+|Ij∩A|−|(Ii∩Ij)∩A| = |Ii∩A|+|Ij∩A|−|I∩A|−|(Ii\I)∩(Ij\I)∩A|,

and therefore |K0 ∩ A| is even. By (†) in the proof of Lemma 5.1, K0 = Ij ∪ (Ii \ Ij) is
an atom of [Ij , G], so K∗ = K0 and I∗ = Ii.
(Subcase 2) |(Ii \ I) ∩ (Ij \ I) ∩A| is odd. Then |(Ii \ I)∩ (Ij \ I)∩A| is one or three.

Since (Ii \ I) ∩ (Ij \ I) ∩ A 6= ∅, the elements in K0 \ I lie on the same connected
component of K 0 by (†). Thus, K 0 has exactly one connected component H 0 such that
|H0 ∩A| is odd. Note that for the connected component H of K containing H 0, we have
|(H \H0) ∩A| ≥ 1 since |H ∩A| is even.
(i) If H 0 contains a multiple edge, then there exists an element c ∈ (H \H0) ∩A such

that K∗ = K0∪c and I∗ = Ii. More precisely, if (H \H0) ∩ B ∩ A 6= ∅, then c ∈ B ∩ A;
otherwise, c is the vertex min(V \H0).
(ii) Suppose that H 0 has no multiple edges. Then both Ii \ I and Ij \ I consist of two

vertices in A, and |(Ii \ I) ∩ (Ij \ I) ∩A| = 1. Since H 0 is a semi-induced subgraph of G
and |H0 ∩ A| is odd, (H \H0) ∩ V 6= ∅. If (H \H0) ∩ V has a vertex in {3, . . . , n}, then
by the structure of G, it is easy to see that there is a vertex v in (H \H0) ∩ {3, . . . , n}
such that K∗ = K0 ∪ v and I∗ = Ii. Hence, we only need to consider the case in which
(H \H0) ∩ V ⊂ {1, 2}. If (H \H0) ∩ V = {1, 2}, thenK∗ = Ij ∪ 1 and I∗ = I ∪ 1 if 1 6∈ A

K∗ = K0 ∪ 1 and I∗ = Ii if 1 ∈ A.

It remains to consider the case where (H \H0)∩V = {1} or {2}. Let (H \H0)∩V = {w1},
and let w2 be the other vertex in {1, 2}. If H 0 does not contain w2, then H = H0 ∪ w1

and w1 ∈ A (and therefore, w1 must be a neighbour of 3 since H is an element of Peven
G,A ),

and hence K∗ = K0 ∪w1 and I∗ = Ii. The remaining case is that H 0 contains w2. Then
H contains a multiple edge, that is, (H \H0) ∩B = H ∩B 6= ∅. Hence,

1 ≤ |H ∩B| = |H ∩B ∩A|+ |H ∩ (B \A)|.
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Since |(H \H0) ∩A| is odd and

|(H \H0)∩A| = |(H \H0)∩V ∩A|+ |(H \H0)∩B∩A| = |{w1}∩A|+ |(H \H0)∩B∩A|,

we see 
|H ∩B ∩A| ≥ 1 if w1 6∈ A,

|H ∩B ∩A| ≥ 2 if w1 ∈ A and H ∩ (B \A) = ∅
|H ∩ (B \A)| ≥ 1 otherwise.

Now there are two possibilities: (a) w1 6∈ A and (b) w1 ∈ A. In (a), it easily follows that
K∗ = K0 ∪w1a and I∗ = Ii for some a ∈ H ∩B ∩A. In (b), we prove it by dividing two
subcases whether w2 ∈ I or not. If w2 ∈ I, thenK∗ = Ij ∪ w1aa

′ and I∗ = I ∪ w1a for some a, a′ ∈ H ∩B ∩A if H ∩ (B \A) = ∅,
K∗ = K0 ∪ w1b and I∗ = Ii for some b ∈ H ∩ (B \A) if H ∩ (B \A) 6= ∅.

If w2 6∈ I, then w2 ∈ (Ii \ I) ∪ (Ij \ I). Since Ii ≺I
atm Ij , w2 ∈ Ii. Moreover, by the

structure of G, Ii \ I = w2v and Ij \ I = vv′ for v = min(V \ (I ∪ {1, 2})) and v′ =
min(V \ (I ∪ {1, 2, v})). Hence,K∗ = Ij ∪ 12aa′ and I∗ = I ∪ 12aa′ for some a, a′ ∈ H ∩B ∩A if H ∩ (B \A) = ∅,

K∗ = Ij ∪ 12b and I∗ = I ∪ 12b for some b ∈ H ∩ (B \A) if H ∩ (B \A) 6= ∅.

This completes the proof. �

For an element I of Peven
G,A , a multiple edge e is called a big (respectively, small) edge

of I if e �I
lex n (respectively, e �I

lex n). Note that if e is a small edge of I, then e ≺I
lex 3.

Now we check that ≺I
atm satisfies Condition (1) of Definition 2.3.

For an atom Ij of [I,G], suppose that an atom J of [Ij , G] belongs to [I∗, G] for some

atom I∗ of [I,G] with I∗ ≺I
atm Ij if and only if minIj (J \ Ij) ≺

Ij
lex z for some z ∈ V ∪B.

Then the atoms J belonging to [I∗, G] for some atom I∗ of [I,G] with I∗ ≺I
atm Ij come

first in the order ≺
Ij
atm. Hence, the following lemma says that ≺I

atm satisfies Condition
(1) of Definition 2.3.

Lemma 5.6. Let Ij be an atom of [I,G], not the first in ≺I
atm. Then an atom J

of [Ij , G] belongs to [I∗, G] for some atom I∗ of [I,G] with I∗ ≺I
atm Ij if and only if

minIj (J \ Ij) satisfies one of the following:

(1) minIj (J \ Ij) ≺
Ij
lex 2 if Ij \ I ⊂ V and (Ij \ I) ∩ {1, 2} 6= ∅;

(2) minIj (J \ Ij) ≺
Ij
lex minIj{v, b1} if Ij \ I = va for v ∈ V and a small edge a of I in

B ∩A;
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(3) minIj (J \ Ij) �
Ij
lex n if Ij \ I consists of only big edges of I;

(4) minIj (J \ Ij) �
Ij
lex min(V \ Ij) if V \ Ij 6= ∅, Ij \ I has an element c �I

lex n and a
big edge of I, and |(Ij \ I) ∩ {1, 2}| ≡ 0 (mod 2); and

(5) minIj (J \ Ij) ≺
Ij
lex maxIj (Ij \ I) otherwise.

Proof. In each case, when we show the ‘if’ part, we show that there exists an atom
I∗ [I,G] such that J ∈ [I∗, G] and I∗ ≺I

atm Ij . On the other hand, we prove the ‘only if’

part by contradiction. Set x = minIj (J \ Ij).
(1) Suppose that Ij \ I ⊂ V and (Ij \ I) ∩ {1, 2} 6= ∅. Note that

≺I
lex: 1, 2, . . . , n, a1, . . . , a2m, b1, . . . , b`.

Since we assumed Ij is not the first atom of [I,G], we have (Ij \I)∩{1, 2} = {2}. Suppose
that x ≺

Ij
lex 2. Then x =1, and

J \ Ij =

{
1ac or 1b, if 1 6∈ A,

1a or 1vb if 1 ∈ A,

where a ∈ B ∩ A, c ∈ A, b ∈ B \ A and v = min(V \ (Ij ∪ {1})). Then I∗ is either I ∪ 1
or I ∪ 1v, which proves the ‘if’ part.

Suppose that x �
Ij
lex 2. Then 1 6∈ J \ Ij , so J \ Ij cannot have a multiple edge. Thus,

J \ Ij consists of vertices greater than maxI(Ij \ I) by (†) in the proof of Lemma 5.1.
Then Ij is the first atom of [I,G], which is a contradiction to the assumption.
(2) Suppose Ij \ I = va for v ∈ V and a small edge a of I in B ∩ A. The existence of a

small edge of I implies {1, 2} ⊂ I and v = min(V \ I). Hence, ≺I
lex=≺

Ij
lex, and they are

either

≺I
lex=≺

Ij
lex: 1, 2, a1, a2, . . . , ak, 3, . . . , n, ak+1, . . . , a2m, b1, . . . , b`, or

≺I
lex=≺

Ij
lex: 1, 2, a1, a2, . . . , a2m, b1, . . . , bk, 3, . . . , n, bk+1, . . . , b`.

Suppose x ≺
Ij
lex minIj{v, b1}. Then J \ Ij has an element a′ ≺

Ij
lex minIj{v, b1}. Hence,

a′ ∈ B ∩A and I∗ = I ∪ aa′, which proves the ‘if’ part.

Suppose x �
Ij
lex minIj{v, b1}. Then IjlJ is of type (E1′) or (E2). If J \Ij = b for some

b ∈ B \A, then [I, J ] has only two atoms Ij and I ∪ b, so Ij is the first. If J \ Ij = cc′ ⊂ A

for some c, c′ �
Ij
lex v, then Ij \ I consists of the first two smallest elements of J \ I, so Ij is

the first. Then, in any case, Ij is the first atom of [I, J ], which is a contradiction to the
assumption.
(3) Suppose that Ij \ I consists of only big edges of I. Then I ∩ B 6= ∅ and either
Ij \ I = aa′ or Ij \ I = b, where a, a′ ∈ B ∩A and b ∈ B \A.
(Case 1) Ij \ I = aa′. The existence of a big edge of I in B∩A implies that I∩(B\A) = ∅,

so the lexicographic orders ≺I
lex and ≺

Ij
lex are as follows:

≺I
lex: 1, 2, a1, . . . , ak, 3, . . . , n, ak+1, . . . , a, . . . , a

′(= at), . . . , a2m, b1, . . . , b`
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≺
Ij
lex: 1, 2, a1, . . . , ak, . . . , a, . . . , a

′(= at), 3, . . . , n, at+1, . . . , a2m, b1, . . . , b`.

Suppose that x �
Ij
lex n. Then x ≺I

lex a′ and Ij l J is of (E2). Hence, we can set J \ Ij =
xx′ ⊂ A, where x ≺

Ij
lex x′. If x �

Ij
lex min(V \ I), then I∗ = I ∪ ax. If min(V \ I) ≺

Ij
lex x,

then both x and x ′ are vertices and I∗ = I ∪ xx′. This proves the ‘if’ part.

Suppose that x �
Ij
lex n. Then either J \ Ij = xx′ ⊂ B ∩ A or J \ Ij = x ∈ B \ A.

Since a ≺I
lex a′ ≺I

lex x, Ij is the first atom of [I, J ] in ≺I
atm. This is a contradiction to the

assumption.

(Case 2) Ij \ I = b. In this case, the lexicographic order ≺
Ij
lex is given as follows:

≺
Ij
lex: 1, 2, a1, a2, . . . , a2m, b1, . . . , b(= bk), 3, 4, . . . , n, bk+1, . . . , b`.

Suppose that J \ Ij contains an element x with x �
Ij
lex n. Note that x ≺I

lex b. If x is a
vertex, then J \ Ij consists of two vertices, and I∗ = I ∪ (J \ Ij). Now let x be a multiple
edge e. If e ∈ B \ A, then I∗ = Ij ∪ e. If e ∈ B ∩ A, then J \ Ij = ec for some c ∈ A,
which implies that I∗ = I ∪ ec. This proves the ‘if’ part.

If x �
Ij
lex n, then J \ Ij = {b′} for some b′ ∈ B \ A with b ≺

Ij
lex b′, and hence [I, J ] has

only two atoms Ij and I ∪ b′, where Ij is the first atom in ≺I
atm. This is a contradiction

to the assumption. �

In order to show (4) and (5), we need to show the following claim.

Claim 5.7. Suppose that I ∩ (B \ A) is empty, Ij \ I has both an element c �I
lex n

and a big edge of I, and |(Ij \ I)∩ {1, 2}|≡ 0 (mod 2). Then an atom J of [Ij , G] belongs
to [I∗, G] for some atom I∗ of [I,G] with I∗ ≺I

atm Ij if and only if one of the following
holds:

(i) x �
Ij
lex min(V \ Ij) if V \ Ij 6= ∅,

(ii) x ≺
Ij
lex maxIj (Ij \ I) if V \ Ij = ∅.

Proof of Claim 5.7. From the hypotheses, we need to consider the following four
cases ①∼④ in the table below, where a, a′ ∈ B ∩ A with a′ ≺I

lex a, b ∈ B \ A, and
v = min(V \ I):
Note that cases ① and ② occur only when {1, 2} ⊂ A. Let v∗ := min(V \ Ij), provided

V \ Ij 6= ∅. In cases ①∼④, if v∗ ∈ J \ Ij , then I∗’s are I ∪ 1v∗, I ∪ 1v∗, I ∪ vv∗ and

I ∪ a′v∗, respectively. Note that when v∗ 6∈ J \ Ij , it holds that x �
Ij
lex v∗ if and only if

x ≺
Ij
lex maxIj (Ij \ I). Now we assume that v∗ 6∈ J \ Ij and x ≺

Ij
lex maxIj (Ij \ I). Since x is

a small edge of Ij, x is also a multiple edge, and hence J \ Ij consists of multiple edges.
In case ②, I∗ = I ∪ 12 ∪ (J \ Ij). For the other cases, x ≺I

lex a and x, a ∈ B ∩ A. Hence,
I∗ is obtained from Ij by replacing a with x. This proves the ‘if’ part.

To prove the ‘only if’ part, first suppose that V \Ij 6= ∅ and x �
Ij
lex v∗. Then x is either

a vertex greater than v∗ or a big edge of Ij. Hence, J \ Ij consists of either two vertices
greater than v∗ or only big edges of Ij. Note that a big edge of Ij is also a big edge of I.
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Ij \ I The lexicographic orders

① 12a′a ≺I
lex: 1, 2, . . . , n, a1, . . . , a

′, . . . , a(= ak), . . . , a2m, b1, . . . , b`

≺
Ij
lex: 1, 2, a1, . . . , a

′, . . . , a(= ak), 3, . . . , n, ak+1, . . . , a2m, b1, . . . , b`

② 12b ≺I
lex: 1, 2, . . . , n, a1, . . . , a2m, b1, . . . , b(= bk), . . . , b`

≺
Ij
lex: 1, 2, a1, . . . , a2m, b1, . . . , b(= bk), 3, . . . , n, bk+1, . . . , b`

③ va ≺I
lex: 1, 2, a1, . . . , aj , 3, . . . , v, . . . , n, aj+1, . . . , a(= ak), . . . , a2m, b1, . . . , b`

≺
Ij
lex: 1, 2, a1, . . . , a

′(= ak), 3, . . . , v, . . . , n, ak+1, . . . , a2m, b1, . . . , b`

④ a′a ≺I
lex: 1, 2, a1, . . . , a

′, . . . , aj , 3, . . . , n, aj+1, . . . , a(= ak), . . . , a2m, b1, . . . , b`

≺
Ij
lex: 1, 2, a1, . . . , a

′, . . . , a(= ak), 3, . . . , n, ak+1, . . . , a2m, b1, . . . , b`

Then Ij is the first atom of [I, J ] in ≺I
atm, which is a contradiction to the assumption. If

V \ Ij = ∅ and x �
Ij
lex maxIj (Ij \ I), then x is a big edge of Ij, and hence Ij \ I consists of

only big edges of Ij. Then Ij is the first atom of [I, J ] in ≺I
atm, which is a contradiction

to the assumption. �

From Claim 5.7, (4) follows and (5) partially follows. We exclude the cases of (1)–(4)
and the case shown by Claim 5.7. We divide the remaining part into two cases according
to the existence of a big edge of I in Ij \ I.
(Case 1) Ij \ I has no big edge of I. By excluding (1) and (2), we get one of the following:

① Ij \ I = b, where b ∈ B \A and b is a small edge of I ;
② Ij \ I = aa′, where both a, a′ ∈ B ∩A are small edges of I ; or
③ Ij \ I = vv′, where v, v′ ∈ V \ {1, 2}.

In each case, the ‘only if’ part easily follows, that is, if x �
Ij
lex maxIj (Ij \ I), then Ij \ I

has the first |Ij \ I| smallest elements of J \ I (in ≺I
lex), so Ij is the first atom of [I, J ] in

≺I
atm. Let us prove the ‘if’ part of each case. We assume that x ≺

Ij
lex maxIj (Ij \ I) and

note that ≺I
lex=≺

Ij
lex.

① From the existence of a small edge in B \A, it follows that I ∩ (B \A) 6= ∅ and

≺I
lex=≺

Ij
lex: 1, 2, a1, a2, . . . , a2m, b1, . . . , b, . . . , bk, 3, . . . , n, bk+1, . . . , b`.

If x ≺
Ij
lex b, then I∗ = I ∪ (J \ Ij).

② Assume a ≺
Ij
lex a′. Then a′ = maxIj (J \ Ij). The assumption x ≺

Ij
lex a′ implies that

J \ I contains a multiple edge a
′′
with a′′ ≺I

lex a′, so I∗ = I ∪ aa′′.

③ Assume v ≺
Ij
lex v′. Then v′ = maxIj (Ij \ I), so x ≺

Ij
lex v′. If J \ Ij ⊂ V , then J \ I ⊂ V

and I∗ = I ∪ xy, where x and y are the first two smallest elements of J \ I. When
J \ Ij 6⊂ V , Table 2 shows how to obtain I∗:
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Table 2. I∗, where b ∈ B \ A, a, a′ ∈ A ∩ B, v′′ = minV \ (Ij ∪ x), v∗ = min{v, v′′} and
c∗ = minIj{v, c}

J \ Ij 1ac or 2ac
1v′′a

or 2v′′b v′′a
other cases

(b, 1b, 2b, 12b, aa′, 12aa′, 1a, 2a)

I∗ I ∪ 1ac∗ or
I ∪ 2ac∗

I ∪ 1v∗b or
I ∪ 2v∗b

I ∪ v or
I ∪ v∗a

I ∪ (J \ Ij)

(Case 2) Ij \ I has a big edge of I. Excluding (3) and (4), we get the following five cases

①∼⑤ in the table, where w ∈ {1, 2}, a, a′ ∈ B ∩ A with a′ ≺
Ij
lex a, b ∈ B \ A, and

v = min(V \ (I ∪ {1, 2})):

Ij \ I The lexicographic order ≺
Ij
lex maxIj (Ij \ I)

w 6∈ A ① wa′a ≺
Ij
lex: 1, 2, a1, . . . , a

′, . . . , a(= ak),
3, . . . , n, ak+1, . . . , a2m, b1, . . . , b`

a

② wva ≺
Ij
lex: 1, 2, a1, . . . , a(= ak),

3, . . . , v, . . . , n, ak+1, . . . , a2m, b1, . . . , b`

v

③ wb ≺
Ij
lex: 1, 2, a1, . . . , a2m, b1, . . . , b(= bk),

3, . . . , n, bk+1, . . . , b`

b

w ∈ A ④ wa ≺
Ij
lex: 1, 2, a1, . . . , a(= ak),

3, . . . , n, ak+1, . . . , a2m, b1, . . . , b`

a

⑤ wvb ≺
Ij
lex: 1, 2, a1, . . . , a2m, b1, . . . , b(= bk),

3, . . . , v, . . . , n, bk+1, . . . , b`

v

Note that, in any case, the lexicographic ordering ≺I
lex on V ∪B is given by

≺I
lex: 1, 2, 3, . . . , n, a1, . . . , . . . , a2m, b1, . . . , b`,

and any atom of [I, J ] containing the element w has a multiple edge. If x �
Ij
lex maxIj (Ij \

I), then J \ Ij cannot have a multiple edge less than maxI(B ∩ (Ij \ I)) in ≺I
lex. Then Ij

is the first atom of [I, J ] in ≺I
atm, which is a contradiction to the assumption.

Proof. Suppose that x ≺
Ij
lex maxIj (Ij \ I). In cases ①, ② and ④, J \ Ij contains a

multiple edge a
′′

with a′′ ≺
Ij
lex a, which implies that I∗ can be obtained from Ij by

replacing a with a
′′
. In cases ③ and ⑤, Ij \ I contains a multiple edge e ≺

Ij
lex b. If e ∈ A,

then J \ Ij is ec for some c ∈ A, and hence I∗’s are I ∪ wec and I ∪ we, respectively. If
e 6∈ A, then I∗’s are I ∪ we and I ∪ wve, respectively. This proves the ‘if’ part. �

Lemmas 5.5 and 5.6 imply that the ordering ≺I
atm satisfies Definition 2.3. This proves

Theorem 5.4.
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6. Falling chains of Peven
H,A

In this section, for a graph H in Figure 1.1 and its admissible collection A, we study the
falling chains of our CL-shelling on Peven

H,A , which let us know the homotopy type of the

order complex of the proper part ∆(Peven
H,A ). Throughout the section, the labelling of the

vertices follows the way in Figure 5.2, so that the labels of the endpoints of the bundle
are changed according to A. We always let V and B be the vertex set and the bundle
of G, respectively.
Recall that if a bounded poset P admits a recursive atom ordering, then we can find a

CL-labelling ρ as in the sketch of the proof of Theorem 2.4. Furthermore, the ith reduced
Betti number of the order complex ∆(P) equals the number of falling chains of length
i +2 from Theorem 2.2. For a graph G ∈ G∗, if G is simple, then the homotopy type
of ∆(Peven

G ) is completely determined by the length `(Peven
G ) and the Möbius invariant

µ(Peven
G ), see [9]. If G is a graph in Figure 1.1, then as we saw in §5, the order ≺I

atm in
Definition 5.3 gives a recursive atom ordering of Peven

G,A for every A ∈ A(G). Hence, we

can determine the homotopy type of ∆(Peven
G,A ) by considering the CL-labelling ρ obtained

from the recursive atom order on Peven
G,A .

Proposition 6.1. Let (G,A) be a pair of a graph G and its admissible collection A
illustrated in Figure 5.2. Then Peven

G,A has a falling chain if and only if one of the following
holds: (a) 2 and 3 are adjacent, and (b) |V | is even.

Proof. We show the ‘only if’ part first. Let σ : I0 l I1 l · · ·l Ip be a falling chain of
Peven
G,A and let Ik−1lIk be the cover such that Ik\Ik−1 contains the vertex 1. Suppose that

the vertices 2 and 3 are not adjacent and |V | is odd. Then A ∩ V 6= V and 1 6∈ A. Note
that there is no cover I l J such that J \ I contains {1, 2}, and therefore, 2 6∈ Ik \ Ik−1.
Since 1 6∈ Ik−1 and (a) fails, it follows that 2 6∈ Ik−1, so 2 6∈ Ik. Thus, Ik = Ik−1 ∪ 1 and
hence Ik−1 l Ik is the first atom of [Ik−1, G], which implies that σ cannot be a falling
chain, a contradiction.
To show the ‘if’ part, recall that A = {a1, . . . , am} and B \A = {b1, b2, . . . , b`} as long

as B \ A 6= ∅. We fix a falling chain σE of an interval of Peven
G,A as follows. If B \ A 6= ∅,

then let σE be a falling chain of [V ∪ b`, G] defined by

V ∪b`lV ∪b`−1b`l · · ·lV ∪b1 · · · b`l · · ·lV ∪am−1amb1 · · · b`l · · ·lV ∪a1 · · · b` = G.

If B ⊂ A, then let σE be a falling chain of [V ∪ am−1am, G] defined by

V ∪ am−1am l V ∪ am−3am−2am−1am l · · ·l · · ·l V ∪ a1 · · · am = G.

Note that there is a falling chain σ∗ of [∅, I], where

I =


34 · · ·n if n is even;

4 · · ·n if n is odd and n ≥ 5;

∅ if n = 3.
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Suppose that (a) or (b) is true. We will show that σ∗ and σE are extended to a falling
chain of Peven

G,A . When {1, 2} ⊂ A, the chain σ obtained by concatenating σ∗, σ0 and σE

is a falling chain of Peven
G,A , where

σ0 =

I l I ∪ 12b` if B \A 6= ∅,
I l I ∪ 12am−1am if B ⊂ A.

When A ∩ {1, 2} = ∅, the chain σ obtained by concatenating σ∗, I l I ∪ 2l I ∪ 1b` and
σE is a falling chain of Peven

G,A . If A ∩ {1, 2} = {2}, then (a) is true, and hence the chain
σ obtained by concatenating σ∗, σ0 and σE is a falling chain of Peven

G,A , where

σ0 =

I l I ∪ 23l 1b` if B \A 6= ∅,
I l I ∪ 23l 1am−1am if B ⊂ A.

�
Proposition 6.2. Let (G,A) be a pair of a graph G and its admissible collection A

illustrated in Figure 5.2. Let σ : I0 l I1 l · · · l Ip+1 be a falling chain of Peven
G,A , and

Ik−1 l Ik be the cover satisfying 1 ∈ Ik \ Ik−1. Then the possible values of length `(σ)
and the set Ik \ Ik−1 are represented in Table 3.

Proof. We first prove the case where A∩V 6= V . Then 1 6∈ A by the way of labelling.
If Ik = Ik−1 ∪ 1, then Ik−1 ∪ 1 is the first atom of [Ik−1, G], so the chain σ cannot be a
falling chain. Hence, Ik 6= Ik−1 ∪ 1 and 2 ∈ Ik−1. Then the vertices 2 and 3 are adjacent.

By Proposition 5.2, if |V | is even, then Peven
G,A is pure and `(σ) = |A|

2 + |B \A|+1; if |V | is
odd, then σ is not a longest chain, so `(σ) = |A|

2 + |B \A|. If B \A 6= ∅, then we let q be
the first index such that Iq \ Iq−1 contains an element b in B \A. Since Iq−2 l Iq−1 l Iq
is falling, we get k = q, that is, Ik \ Ik−1 = 1b. If B ⊂ A, then Ik \ Ik−1 = 1aa′ or 1av for
some a, a′ ∈ B ∩A and v ∈ V \ {1, 2}.
Now we assume A ∩ V = V . Then |V | is even. If 2 6∈ Ik, then Ik = Ik−1 ∪ 1v for

some v ∈ V \ {1, 2}. Then σ cannot be a falling chain since Ik−1 ∪ 1v is the first atom of
[Ik−1, G]. Thus, 2 ∈ Ik.
Suppose that B \ A 6= ∅. We let q be the first index such that Iq \ Iq−1 contains an

element b in B \ A. Since Iq−2 l Iq−1 l Iq is a falling chain of [Iq−2, Iq], we have k = q,
that is, b ∈ Ik. Then

Ik \ Ik−1 =

1vb if 2 ∈ Ik−1;

12b if 2 ∈ Ik \ Ik−1.

Thus, σ is not a longest chain, so `(σ) = |A|
2 + |B \A| − 1 by Proposition 5.2.

Suppose that B ⊂ A. Suppose that the vertices 2 and 3 are not adjacent. Then 2 6∈ Ik−1,
so 2 ∈ Ik−1. Thus, Ik \ Ik−1 = 12aa′ for some a, a′ ∈ B, which implies that σ is not a

longest chain. Hence, `(σ) = |A|
2 + |B \A| − 1 by Proposition 5.2. If the vertices 2 and 3
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are adjacent, then by Proposition 5.2, `(σ) = |A|
2 − 1 or |A|

2 , and it holds that

Ik \ Ik−1 =

1a if 2 ∈ Ik−1;

12aa′ if 2 ∈ Ik \ Ik−1.

�

By Theorem 2.2 and Propositions 6.1 and 6.2, the following hold:

Corollary 6.3. Let (G,A) be a pair of a graph G and its admissible collection A
illustrated in Figure 5.2. If neither (a) nor (b) of Proposition 6.1 holds, then ∆(Peven

G,A )

is contractible. If not, the order complex ∆(Peven
G,A ) is homotopy equivalent to a wedge of

spheres of dimensions



|A|
2 + |B \A| − 2 if |V |is odd,
|A|
2 + |B \A| − 1 if |V |is even and A ∩ V 6= V,
|A|
2 − 1 or |A|

2 if A = V ∪B and the vertices 2 and 3 are adjacent, and
|A|
2 + |B \A| − 3 otherwise.

Example 6.4. See the posets Peven
G,A in Figure 5.3. The posets in (i) and (iii) are

nonpure but none of the longest maximal chains of (i) and (iii) are falling chains. In (i),
(ii) and (iii), there are four, three and four falling chains, respectively:

(i) ∅ < 23 < 123b1 < 1234a1b1 < 12345a1a2b1
∅ < 23 < 123b1 < 1234a2b1 < 12345a1a2b1
∅ < 34 < 2345 < 12345b1 < 12345a1a2b1
∅ < 45 < 2345 < 12345b1 < 12345a1a2b1

(ii) ∅ < 2 < 12b2 < 12b1b2 < 123a1b1b2 < 1234a1a2b1b2
∅ < 2 < 12b2 < 12b1b2 < 123a2b1b2 < 1234a1a2b1b2
∅ < 34 < 234 < 1234b2 < 1234b1b2 < 1234a1a2b1b2

(iii) ∅ < 12b2 < 12a1a2b2 < 12a1a2b1b2 < 1234a1a2b1b2
∅ < 34 < 1234b2 < 1234b1b2 < 1234a1a2b1b2
∅ < 12b2 < 12b1b2 < 123a1b1b2 < 1234a1a2b1b2
∅ < 12b2 < 12b1b2 < 123a2b1b2 < 1234a1a2b1b2

Hence, the order complexes ∆(Peven
G,A ) of the proper parts of the posets in Figure 5.3 are

homotopy equivalent to
∨
4

S2,
∨
3

S3 and
∨
4

S2, respectively.
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7. Betti numbers of the real toric variety associated with P̃n,2

In this section, we consider the graph Gn = P̃n,2 in Figure 1.1. We count the number
of falling chains of Peven

Gn,A for A ∈ A(Gn) and then compute the Betti numbers of the

projective smooth real toric variety XR
Gn

.

Proposition 7.1. Let Gn = P̃n,2 in Figure 1.1. For A ∈ A(Gn), the number of falling
chains of Peven

Gn,A is


Ck if n = 2k for some k ≥ 1

Ck+1 − Ck if n = 2k + 1 for some k ≥ 1 and A ∩ V itself induces a connected graph,

0 otherwise,

where Ck is the kth Catalan number.

Proof. Let V be the set of vertices and B = {a1, a2} be the bundle of Gn. Recall
that we follow the labelling of the vertices shown in Figure 5.2. Note that A = V ∪B or
(V ∪B) \ 1 or (V ∪B) \ {1, 2}.
Suppose that A = V ∪ B. Then |V | is even, and by the way of labelling, the vertices

2 and 3 are not adjacent. Let σ : I0 l I1 l · · · l Ip+1 be a falling chain of Peven
Gn,A, and

Ik−1 l Ik be the cover such that Ik \ Ik−1 contains the vertex 1. By Proposition 6.2,
Ik \ Ik−1 = 12a1a2 and the number of falling chains of Peven

Gn,A is equal to

∑
I⊂V \{1,2}

(#falling chains of [I ∪ 12a1a2, Gn])× (#falling chains of [∅, I]). (7.1)

Since |V | is even, we can set |V | = 2k for some k ≥ 1. If k =1, then it is clear. Suppose
that k ≥ 2. From Equation (7.1), the number of falling chains of Peven

Gn,A is

2∑
q=1

(#falling chains of P2q starting with 12a1a2)

×
∑

|I|=2k−2q
I⊂{3,4,...,2k}

(#falling chains of [∅, I])

= Ck−1+(#falling chains of P4 starting with 12a1a2)

×
∑

|I|=2k−4
I⊂V \{1,2}

(#falling chains of [∅, I]),

where P2q means the poset Peven
G2q,G2q

for q ≤ bn
2 c, and the second summation is over

the vertices I of Peven
Gn,A. Since the number of falling chains of P4 starting with 12a1a2 is
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only one (see the second poset of Figure 3.2), the number of falling chains is Ck−1 + s,
where

s =
∑

|I|=2k−4
I⊂V \{1,2}

(#falling chains of [∅, I]).

Let I ⊂ {3, 4, . . . , 2k} be an element of Peven
Gn,A with 2k − 4 vertices. Then V \ I =

{1, 2, v1, v2}, where v1 < v2. Since each connected component of I has an even number
of vertices, v1 is odd and v2 is even. Thus, the number of falling chains of [∅, I] is
Cv1−3

2
Cv2−v1−1

2
C2n−v2

2
. By a recursion of the Catalan numbers,

s =
2k−1∑
v1=3
v1:odd

2k∑
v2=v1+1
v2:even

Cv1−3
2

Cv2−v1−1
2

C 2k−v2
2

=
2k−1∑
v1=3
v1:odd

Cv1−3
2

C2k−v1+1
2

= Ck−Ck−1. (7.2)

Hence, the number of falling chains is Ck−1 + s = Ck when n = 2k (k ≥ 1).
Now we suppose that A ∩ V 6= V . Then A is either (V ∪ B) \ 1 or (V ∪ B) \ {1, 2}.

Then Ik \ Ik−1 = 1a1a2 or 1av by Proposition 6.2, where a ∈ B and v ∈ V \ {1, 2}. Thus,
the number of falling chains of Peven

Gn,A is equal to∑
I⊂V \{1}

2∈I

(#falling chains of [I ∪ 1ac,Gn] for some a ∈ B, c ∈ A)

× (#falling chains of [∅, I]). (7.3)

Note that it follows from Proposition 6.2 that there is no falling chain of Peven
Gn,A if |V |

is odd and A ∩ V does not induce a connected graph. Hence, we need to consider the
case where |V | is even or A ∩ V induces a connected graph. In Equation (7.3), a falling
chain of [I ∪ 1aic,Gn] for some ai ∈ B and c ∈ A is either I l I ∪ 1a2v lGn (v ∈ V ) or
I l I ∪ 1a1a2 = Gn. In each of the cases, it is uniquely determined. Hence, the number
of falling chains is equal to s1 + s2, where

s1 = (#falling chains of [∅, Gn \ (1∪B)]), s2 =
∑

|I|=n−3
I⊂V \{1}, 2∈I

(#falling chains of [∅, I]).

Let us compute s1+s2. First, suppose n = 2k and k ≥ 1. Then s1 is equal to Ck−1, the
number of falling chains of Peven

P2k−2
. If k =1, then s2 = 0, so the number of falling chains

is C 1 (since C0 = C1 = 1). Suppose that k ≥ 2. Let I ⊂ {2, 3, . . . , 2k} be an element
of Peven

Gn,A with 2k − 3 vertices containing the vertex 2. Then V \ I = {1, v1, v2}, where
2 < v1 < v2. Since each connected component of I has an even number of vertices and
2 6∈ A, v1 is odd and v2 is even. Since s2 has the same equation as in Equation (7.2),
s1 + s2 = Ck−1 + (Ck −Ck−1) = Ck. Hence, the number of falling chains is Ck if n = 2k.
Suppose n = 2k+1 and k ≥ 1. Then s1 is equal to Ck, the number of falling chains of

Peven
P2k

. If k =1, then s2 = 1, so the number of falling chains is C2 −C1 (note C2 = 2 and
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Table 4. The homotopy types of Peven
Gn,A for A ∈ A∗(Gn) and Gn = P̃n,2

∆(Peven
Gn,A)

n A ∈ A(Gn) Dimension Homotopy type

2k

[n] \A = ∅ |A|
2 − 3 = k − 2

∨
Ck

Sk−2

[n] \A 6= ∅ |A|
2 − 1 = k − 1

∨
Ck

Sk−1

2k + 1 [n] \A 6= ∅ |A|
2 − 2 = k − 1

∨
Ck+1−Ck

Sk−1

The last row of the table is true only when A ∩ V induces a connected graph.

C1 = 1). Suppose k ≥ 2. Let I ⊂ {2, 3, . . . , 2k + 1} be an element of Peven
Gn,A with 2k − 3

vertices containing the vertex 2. Then V \ I = {1, v1, v2}, where 2 < v1 < v2. Since each
connected component of I has an even number of vertices and 2 ∈ A, v1 is even and v2

is odd. Thus, s1 + s2 = Ck + (Ck+1 − 2Ck) = Ck+1 − Ck since

s2 =
2k∑

v1=4
v1:even

2k+1∑
v2=v1+1
v2:odd

Cv1−2
2

Cv2−v1−1
2

C2k+1−v2
2

=
2k∑

v1=4
v1:even

Cv1−2
2

C 2k−v1+2
2

= Ck+1 − 2Ck.

Thus, the number of falling chains is Ck+1 − Ck. It completes the proof. �

From Corollary 6.3 and Proposition 7.1, we can compute the homotopy types of
∆(Peven

Gn,A) when Gn = P̃n,2 and A is an admissible collection of Gn, as in Table 4.

One may formulate the number of falling chains of Peven
G,A , when G = P̃n,m, in terms of

the Catalan numbers (or the secant numbers), and it would be interesting to explain the
formula by using other combinatorial objects.
Now we are ready to compute the Betti numbers of the projective smooth real toric

variety XR
Gn

associated with the graph Gn. It was shown in [9, Theorem 2.5] that, for the

simple path Pn with n vertices, ∆(Peven
Pn

) is homotopy equivalent to
∨
Ck

Sk−1 for n = 2k

and it is contractible for an odd integer n. In addition, for an integer n ≥ 1, we have

βi(XR
Pn) =


(
n
i

)
−
(

n
i−1

)
if n ≥ 2 and 0 ≤ i ≤ bn

2 c,
1 if n = 1 and i = 0,

0 otherwise.

(7.4)
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Table 5. The Betti numbers βi(XR
P̃n,2

) for small n

i/n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 2 6 10 15 21 28 36 45 55 66 78 91 105

3 0 0 0 6 18 33 54 82 118 163 218 284 362 453

4 0 0 0 0 0 18 56 110 192 310 473 691 975 1337

5 0 0 0 0 0 0 0 56 180 372 682 1155 1846 2821

6 0 0 0 0 0 0 0 0 0 180 594 1276 2431 4277

7 0 0 0 0 0 0 0 0 0 0 0 594 2002 4433

8 0 0 0 0 0 0 0 0 0 0 0 0 0 2002

For a non-simple connected graph Gk (k > 0) in Table 4, since the pseudograph
associahedron PGk

is k -dimensional, it follows from Equation (3.3) that

∑
A∈A(Gk)

β̃i
(
∆
(
Podd
Gk,A

))
=


Ck

2
if i = k

2or
k
2 − 1 for even k

Ck+1
2

− Ck−1
2

if i = k−1
2 for odd k

0 otherwise.

(7.5)

Note that for a connected graphGn and (H,A) ∈ A∗(Gn), if H 1 is a connected component
of H and A1 = A∩CH1

for A ∈ A(H), then Podd
H,A is isomorphic to the join Podd

H1,A1
∗Podd

H2,A2
,

where H2 = H \ H1 and A2 = A \ A1, see [8, Lemma 4.5], and therefore the following
holds:

β̃i−1
(
∆

(
Podd
H,C

))
=

∑
`

β̃`
(
∆
(
Podd
H1,C1

))
× β̃i−`−2

(
∆
(
Podd
H2,C2

))
. (7.6)

Now we are ready to explain how to compute βi(XR
Gn

) from Equations (7.4), (7.5) and
(7.6). Assume that i > 0. Let H1 be the set of all simple PI-graphs of Gn and H2 the
set of all non-simple PI-graphs of Gn. By Proposition 3.4, βi(XR

Gn
) = si1(Gn) + si2(Gn),

where

si1(Gn) =
∑

H∈H1

∑
A∈A(H)

β̃i−1(∆(Podd
H,A)) and

si2(Gn) =
∑

H∈H2

∑
A∈A(H)

β̃i−1(∆(Podd
H,A)).
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As H1 is the set of PI-graphs of the simple graph Pn, s
i
1(Gn) = βi(XR

Pn
). By

Proposition 3.4 and Equation (7.6),

si2(Gn) =
n−1∑
m=2

bm2 c∑
`=0

∑
A∈A(Gm)

β̃`
(
∆
(
Podd
Gm,A

))
× βi−`−1

(
XR

Pn−m−1

)
+

∑
A∈A(Gn)

β̃i−1
(
∆
(
Podd
Gn,A

))
.

Note that

βi−1(XR
Pn) + βi(XR

Pn) = βi(XR
Pn+1

) for 1 ≤ i <
n

2
, (7.7)

that is, si−1
1 (Gn) + si1(Gn) = si1(Gn+1) for 1 ≤ i < n

2 . Using Equations (7.5) and (7.7),

we also have si−1
2 (Gn) + si2(Gn) = si2(Gn+1) for 1 ≤ i < n

2 . Hence, for 1 ≤ i < n
2 , we

have

βi−1(XR
Gn) + βi(XR

Gn) = βi(XR
Gn+1

). (7.8)

For k = bn
2 c, plugging Equations (7.4) and (7.5) into sk1(Gn) + sk2(Gn), we see that

βk
(
XR

G2k

)
= βk+1

(
XR

G2k+1

)
=

6k

k + 2
Ck, (7.9)

which is known as the total number of nonempty subtrees over all binary trees having
k +1 internal vertices, see[22, A071721]. Table 5 shows the Betti numbers of XR

Gn
for

some small integers n.
On the other hand, it is not difficult to check {βi(XR

Pn
)}i≥0 in Equation (7.4) is log-

concave, and hence unimodal. For P̃n,2, we can also see that {βi(XR
P̃n,2

)}i≥0 is unimodal

from Equations (7.7) and (7.9). We remain the unimodality of βi(XR
P̃n,m

) for general n

and m, as an open problem.
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Appendix 1. Appendix: Proof of Proposition 3.4

In this appendix, we give a sketch of Proposition 3.4. Since the notation given in [8] is
not the same as this paper, we give the definitions used in [8].

Proof of Proposition 3.4. Let G be a graph and

2
CG
even = {C ⊂ CG | |C ∩ V |is even, |C ∩B|is even for every bundle B of G}.
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Section 3 of [8] is devoted to show that for each subset S in the set {1, 2, . . . , dimPG},
there exists C ∈ 2

CG
even such that KPG,S = Kodd

C,G. Hence, Equation (3.2) becomes

βi(XR
G) =

∑
C∈2

CG
even

β̃i−1(Kodd
C,G), (A.1)

where Kodd
C,G is the dual complex of the union of all facets FI of PG such that |I ∩ c is

odd. Then, for C ∈ 2
CG
even, we define Γ̃G(C) as the subgraph of G induced by the set

(V ∩ C) ∪ {v | v is an endpoint of some edge e ∈ C}.

�

Lemma 1.1. ([8, Lemmas 4.3 and 4.4]). Let K ′′
C,G be the subcomplex of Kodd

C,G

whose vertex set consists of vertices I satisfying the following:

(1) I ⊂ Γ̃G(C) and |I ∩ C| is odd.

(2) For each bundle B of Γ̃G(C) such that B ∩ C = ∅, if the endpoints of B are in I,
then B ⊂ I.

Then Kodd
C,G is homotopy equivalent to K ′′

C,G.

Then we get the following formula from Equation (A.1),

βi(XR
G) =

∑
C∈2

CG
even

β̃i−1(K ′′
C,G). (A.2)

Lemma 1.2. ([8, Lemma 4.5(i)]). For C ∈ 2
CG
even, if |I∩C| is odd for some connected

component I of Γ̃G(C), then K ′′
C,G is contractible.

The above lemma implies that, to compute βi(XR
G), it is enough to consider the col-

lection C in 2
CG
even such that the intersection of C and each of the connected components

of Γ̃G(C) belongs to 2
CG
even. Thus, we define

2
CG
even∗ := {C ∈ 2

CG
even | each connected component of Γ̃G(C) is even with respect to C}.

Note that for a collection C not in 2
CG
even∗, K

odd
C,G is contractible. For C ∈ 2

CG
even∗, we

let ΓG(C) be the graph from Γ̃G(C) by replacing each bundle B of Γ̃G(C), satisfying
C ∩B = ∅ with an (unlabelled) simple edge.
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Proposition 1.3. ([8, Proposition 4.7]). For C ∈ 2
CG
even∗, Kodd

C,G is homotopy

equivalent to Kodd
C,ΓG(C), and hence, the ith rational Betti number of XR

G is

βi(XR
G) =

∑
C∈2

CG
even∗

β̃i−1
(
Kodd

C,ΓG(C)

)
, (A.3)

Proof. Note that ΓG(C) is a PI-graph of G. Moreover, by definition, it holds that for
a PI-graph H of G, C ∈ A(H) if and only if H = ΓG(C). Thus,

βi(XR
G) =

∑
H:PI-graph

of G

∑
A∈A(H)

β̃i−1(Kodd
A,H).

It was also shown in [8, §5] that for each admissible collection A ∈ A(H), the simplicial
complex Kodd

A,H is homotopy equivalent to the order complex of the proper part of the

poset Podd
H,A.

8 This proves Proposition 3.4. �

8 In [8], the proper part of the poset Podd
H,A is denoted by Sodd

H,A.
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