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SHORT-TIME BEHAVIOR OF SOLUTIONS TO LÉVY-DRIVEN
STOCHASTIC DIFFERENTIAL EQUATIONS

JANA REKER,∗ Ulm University

Abstract

We consider solutions of Lévy-driven stochastic differential equations of the form dXt =
σ (Xt−)dLt, X0 = x, where the function σ is twice continuously differentiable and the
driving Lévy process L = (Lt)t≥0 is either vector or matrix valued. While the almost
sure short-time behavior of Lévy processes is well known and can be characterized in
terms of the characteristic triplet, there is no complete characterization of the behavior
of the solution X. Using methods from stochastic calculus, we derive limiting results
for stochastic integrals of the form t−p

∫ t
0+ σ (Xt−) dLt to show that the behavior of the

quantity t−p(Xt − X0) for t ↓ 0 almost surely reflects the behavior of t−pLt. Generalizing
t p to a suitable function f : [0,∞) →R then yields a tool to derive explicit law of the
iterated logarithm type results for the solution from the behavior of the driving Lévy
process.
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1. Introduction

This paper aims to study the almost sure short-time behavior of the solution (Xt)t≥0 to a
Lévy-driven stochastic differential equation (SDE) of the form

dXt = σ (Xt−)dLt, X0 = x ∈R
n (1)

by relating it to the behavior of the driving process. Here, L is an R
d-valued Lévy process and

the function σ : Rn →R
n×d is chosen to be twice continuously differentiable and at most of

linear growth. The latter conditions ensure that (1) has a unique strong solution (see, e.g., [12,
Theorem 7, p. 259]) and that Itō’s formula is applicable for σ (X). Since the short-time behavior
of a stochastic process is determined by its sample paths in an arbitrarily small neighborhood
of zero, the linear growth condition may be omitted whenever the solution of the SDE is well
defined on some interval [0, ε] with ε > 0.

We characterize the short-time behavior of X by comparing the sample paths of the pro-
cess to suitable functions. For real-valued Lévy processes, early results [14, 20] linked the
almost sure convergence of the quotient Lt/t for t ↓ 0 to the total variation of the sample
paths of the process. This was generalized to determining the behavior of Lt/t p for arbitrary
p> 0 from the characteristic triplet of L in [2, 3, 13]. The exact scaling function f for law of
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the iterated logarithm type (LIL-type) results of the form lim supt↓0 Lt/f (t) = c almost surely
(a.s.) with a deterministic constant c was determined by Khinchine for Lévy processes with a
Gaussian component (see, e.g., [15, Proposition 47.11]) and in, e.g., [16, 17] for more general
types of Lévy processes. The multivariate counterpart to these LIL-type results was derived
in [6], showing that the short-time behavior of the driving process in (1) is well understood
overall.

For the solution X, the situation becomes less transparent. It was shown in [9, 18] that,
under suitable conditions on the Lévy measure of L, the solution X is a Lévy-type Feller pro-
cess, i.e. the symbol of X can be expressed through a triplet (A(x), ν(x), γ (x)) that depends on
the characteristics of the driving process, the initial condition, and the function σ . The short-
and long-time behavior of these particular Feller processes can be characterized in terms of
power-law functions using a generalization of Blumenthal–Getoor indices (see [19]), where the
symbol now plays the role of the characteristic exponent. Using similar methods, an explicit
short-time LIL in one dimension was derived in [8], and the techniques have been explored
further in [10]. The definition of a Lévy-type Feller process suggests that we can think of X
as ‘locally Lévy’ and, since the short-time behavior of the process is determined by the sam-
ple paths in an arbitrarily small neighborhood of zero, the process X should directly reflect
the short-time behavior of the driving Lévy process. We confirm this hypothesis in terms of
power-law functions in Proposition 1 and Theorem 1 by showing that the almost sure finite-
ness of limt↓0 t−pLt implies the almost sure convergence of the quantity t−p(Xt − X0), and
that similar results hold for lim supt↓0 t−p(Xt − X0) and lim inft↓0 t−p(Xt − X0) with probabil-
ity 1 whenever limt↓0 t−p/2Lt exists almost surely. The conditions on the driving process are
readily checked from its characteristic triplet, e.g. from [2]. Using knowledge of the form of
the scaling function for the driving Lévy process from [6], the limit theorems can be gener-
alized to suitable functions f : [0,∞) →R to derive explicit LIL-type results for the solution
of (1) that cover many frequently used models. As an application, we also briefly study con-
vergence in distribution and in probability, showing that results on the short-time behavior
of the driving process translate here as well. The results given partially overlap with charac-
terizations obtained from other approaches such as the generalization of Blumenthal–Getoor
indices for Lévy-type Feller processes discussed, e.g., in [19], while also covering new cases
such as almost sure limits for t ↓ 0. Compared to methods that rely on the symbol, the approach
presented in this paper is less technical and more direct, as it only uses the behavior of the driv-
ing process as input. Whenever possible, we work with general semimartingales and include
converse results to recover the limiting behavior of the driving process from the solution.

2. Preliminaries

A Lévy process L = (Lt)t≥0 is a stochastic process with stationary and independent incre-
ments, the paths of which are almost surely càdlàg, i.e. right-continuous with finite left limits,
and start at zero with probability 1. In the following analysis, we consider both vector- and
matrix-valued Lévy processes, identifying an R

n×d-valued Lévy process with an R
nd-valued

one by vectorization if needed. We follow the convention that a matrix m is vectorized by writ-
ing its entries columnwise into a vector mvec. The symbols 〈·, ·〉 and ‖ · ‖ denote the Euclidean
scalar product and norm on R

d, respectively, and we write x� for the transpose of a vector or
matrix x.

By the Lévy–Khintchine formula (see, e.g., [15, Theorem 8.1]), the characteristic function
of an R

d-valued Lévy process L is given by ϕL(z) =EeizLt = exp (tψL(z)), z ∈R
d, where ψL
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denotes the characteristic exponent satisfying

ψL(z) = −1

2
〈z, ALz〉 + i〈γL, z〉 +

∫
Rd

(
exp (i〈z, s〉) − 1 − i〈z, s〉1{‖s‖≤1}

)
νL(ds), z ∈R

d.

Here, AL ∈R
d×d is the Gaussian covariance matrix, νL is the Lévy measure, and γL ∈R

d is the
location parameter of L. The characteristic triplet of L is denoted by (AL, νL, γL). If AL = 0,
i.e. if the Lévy process has no Gaussian component, we refer to it as purely non-Gaussian.
Whenever the Lévy measure satisfies the condition

∫
{‖x‖≤1} ‖x‖νL(dx)<∞, we may also use

the Lévy–Khintchine formula in the form

ψL(z) = −1

2
〈z, ALz〉 + i〈γ0, z〉 +

∫
Rd

(
exp (i〈z, s〉) − 1

)
νL(ds), z ∈R

d,

and call γ0 the drift of L.
For any càdlàg process X, we denote by Xs− the left-hand limit of X at time s ∈ (0,∞),

and by �Xs = Xs − Xs− its jumps. The process Xs− is càglàd, i.e. left-continuous with finite
right limits. Any integrals are interpreted as integrals with respect to semimartingales as, e.g.,
in [12], and we generally consider a filtered probability space

(
	,F , (Ft)t≥0, P) satisfying

the usual hypotheses (see, e.g., [12, p. 3]). The integral bounds are assumed to be included
when the notation

∫ b
a is used, and the exclusion of the left or right bound is denoted by

∫ b
a+ or∫ b−

a . For semimartingales X, Y , and Z taking values in R
n×d, Rd×m, and R

m×d, respectively,
matrix-valued integrals are interpreted as

( ∫ b

a+
Xs− dYs

)
i,j

=
d∑

k=1

∫ b

a+
(Xi,k)s− d(Yk,j)s,

( ∫ b

a+
dZsXs−

)
i,j

=
d∑

k=1

∫ b

a+
(Xk,j)s− d(Zi,k)s,

and the integration by parts formula takes the form∫ t

0+
Xs− dYs = XtYt − X0Y0 −

∫ t

0+
dXsYs− − [X, Y]t

0+.

3. Main results and applications

The aim of this paper is a characterization of the almost sure short-time behavior of the solu-
tion to a Lévy-driven SDE by relating it to the behavior of the driving process. In Section 3.1,
we first consider the setting of general semimartingales to show that the solution of (1) a.s.
reflects the short-time behavior of the driving process. Specializing to Lévy processes in
Section 3.2 then allows us to strengthen the results and, by referring to the explicit scaling
functions obtained in [6], derive explicit LIL-type results for the solution process.

3.1. General SDEs

A key tool in the analysis is the following lemma, which gives the desired statement for a
stochastic integral when the behavior of the integrand is known. We state the result in terms
of power-law functions to match Proposition 1; however, the denominator t p may be replaced
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by an arbitrary continuous function f : [0,∞) →R that is increasing and satisfies f (0) = 0 and
f (t)> 0 for all t> 0. The proofs of this lemma and all following results are given in Section 4.

Lemma 1. Let X = (Xt)t≥0 be a real-valued semimartingale, p> 0, and ϕ = (ϕt)t≥0 an adapted
càglàd process such that limt↓0 t−pϕt exists and is finite with probability 1. Then

lim
t↓0

1

t p

∫ t

0+
ϕs dXs = 0 a.s. (2)

Lemma 1 naturally extends to multivariate stochastic integrals, with ϕ and X being R
n×d-

valued and R
d×m-valued, respectively. We thus obtain a tool to derive the almost sure short-

time behavior of the solution to (1) from the behavior of the driving process. Whenever we
can ensure that σ (Xs−) is invertible, this implication is an equivalence which allows us to
recover the behavior of the driving process from the solution. We hence get a counterpart to
[19, Theorem 4.4] for almost sure limits at zero.

Proposition 1. Let L be an R
d-valued semimartingale with L0 = 0 and limt↓0 t−pLt = v a.s.

for some v ∈R
d, p> 0. Further, let σ : Rd →R

n×d be twice continuously differentiable and at
most of linear growth, and denote the solution of (1) by X = (Xt)t≥0.

(i) The process X satisfies limt↓0 (Xt − x)/t p = σ (x)v a.s., and whenever σ (Xt−) with
X0− = x has a.s. full rank for all t in a neighborhood of zero, we have the equivalence

lim
t↓0

Lt

t p
= v a.s. ⇐⇒ lim

t↓0

Xt − x

t p
= σ (x)v a.s.

(ii) If, additionally, [Lk, Lk]t = o(t2p) a.s. for k = 1, . . . , d, then

lim
t↓0

1

t p

∫ t

0+
Ys− dLs = Y0v a.s.

for any R
n×d-valued semimartingale Y, and whenever limt↓0 t−pYt = w a.s. with

w ∈R
n×d satisfying wv = 0, we have the stronger statement

lim
t↓0

1

t2p

∫ t

0+
Ys− dLs = 0 a.s.

The above results naturally extend to matrix-valued L. Note that Proposition 1(ii) holds
in particular when Yt = σ (Lt), but the dependence on the driving process is not needed to
conclude the convergence. As an example, we apply Proposition 1 to matrix-valued stochastic
exponentials.

Example 1. Recall that for an R
d×d-valued semimartingale L = (Lt)t≥0, the (strong) solution

to the stochastic differential equation dXt = Xt−dLt or dYt = dLtYt− with the initial condition
given by the identity matrix Id is referred to as left or right stochastic exponential, respectively.
Since the relevant properties of the process X carry over to Y by transposition, we restrict the
following discussion to X = E(L). Assuming that det (Id +�Ls) �= 0 for all s ≥ 0, the inverse
E(L)−1 is well defined [7] and Proposition 1 yields the equivalence

lim
t↓0

Lt

t p
= v a.s. ⇐⇒ lim

t↓0

E(L) − Id

t p
= v a.s. (3)
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whenever one of the limits exists for some v ∈R
d×d and p> 0. If L is a Lévy process, the

almost sure limit v appearing for p = 1 is the drift of L. A result in [14, 20] directly links
the existence of this limit to the total variation of the sample paths of L. Denoting the set of
stochastic processes having sample paths of bounded variation by BV , (3) allows us to extend
this connection to

lim
t↓0

E(L) − Id

t
exists a.s. ⇐⇒ lim

t↓0

Lt

t
exists a.s. ⇐⇒ L ∈ BV ⇐⇒ E(L) ∈ BV,

since E(L) has paths of bounded variation if and only if this holds for the paths of L.

Whenever L is a semimartingale satisfying both limt↓0 t−pLt = 0 and [Lk, Lk]t = o(t2p) a.s.
for k = 1, . . . , d, an inspection of the proof of Proposition 1 shows that

[σi,k(X), Lk]t = O([L1, L1]t + · · · + [Ld, Ld]t) a.s.

for t ↓ 0, which implies that [σ (X), L]t = o(t2p) a.s. in the limit t ↓ 0. We further use the
stronger assumption on the quadratic variation to consider the lim sup and lim inf behavior
of the quotient t−p(Xt − x), including the divergent case.

Theorem 1. Let L be an R
d-valued semimartingale such that limt↓0 t−p/2Lt = 0 a.s. for some

p> 0, and [Lk, Lk]t = o(t p) a.s. for k = 1, . . . , d. Further, let σ : Rn →R
n×d be twice contin-

uously differentiable and at most of linear growth, and denote by X the solution of the SDE (1).
Then, almost surely,

lim
t↓0

(
Xt − x

t p
− σ (Xt)Lt

t p

)
= lim

t↓0

(
Xt − x

t p
− σ (x)Lt

t p

)
= 0. (4)

In particular, if σ (x) has rank d, we have

lim
t↓0

‖Lt‖
t p

= ∞ a.s. =⇒ lim
t↓0

‖Xt − x‖
t p

= ∞ a.s. (5)

3.2. Lévy-driven SDEs

For the remainder of the section, we will assume that L is a Lévy process. In this case,
the assumptions of Proposition 1 and Theorem 1 can be checked directly from the charac-
teristic triplet of L. We give a brief overview of the behavior of t−pLt for real-valued Lévy
processes. Noting that the almost sure short-time behavior of L is dominated by Khintchine’s
LIL (see, e.g., [15, Proposition 47.11]) whenever L contains a Gaussian component, and that
the drift of L only occurs explicitly if p = 1 and the process is of finite variation [20], we can
further restrict the discussion to L being a pure-jump process and set its drift to zero when-
ever

∫
{‖x‖≤1} ‖x‖νL(dx)<∞. A first indicator of the behavior of t−pLt as t ↓ 0 is the (upper)

Blumenthal–Getoor index

β := inf

{
κ > 0:

∫
{|x|≤1}

|x|κνL(dx)<∞
}

∈ [0, 2]

introduced in [3], which yields

lim sup
t↓0

|Lt|
t p

=
⎧⎨
⎩

0 if p< 1/β,

∞ if p> 1/β
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with probability 1 (see, e.g., [13]). A more direct criterion is given in [2, Section 2], showing
that the condition limt↓0 t−pLt = 0 is a.s. satisfied for p> 1

2 whenever∫
[−1,1]

|x|1/pνL(dx)<∞, (6)

and for p = 1
2 whenever

λ∗ := inf

{
λ> 0:

∫ 1

0
x−1 exp

(
λ2

2
∫
{|y|≤x} y2νL(dy)

)
dx<∞

}
= 0. (7)

If (6) or (7) fails, we have lim supt↓0 t−p|Lt| = ∞ a.s. or lim supt↓0 t−1/2|Lt| = λ∗ ∈ (0,∞] a.s.,
respectively, instead.

Observe that the quadratic variation process of L is again a Lévy process, i.e. the integral
test (6) in particular applies to [L, L]. For d = 1 we have

[L, L]t = a2t +
∑

0<s≤t

(�Ls)
2, (8)

where a is the variance of the Gaussian part of L (if present). The additional assumption on
the quadratic variation in Proposition 1(ii) and in Theorem 1 is always satisfied if L is a Lévy
process.

Lemma 2. Let L be a real-valued Lévy process satisfying limt↓0 t−pLt = v a.s. for some v ∈R

and p> 0. Then, a.s., [L, L]t = o(t2p) as t ↓ 0.

Note that Lemma 2 readily extends to the multivariate case by the Kunita–Watanabe
inequality (see, e.g., [12, Theorem II.25]). So far, we have only characterized the almost sure
short-time behavior of the solution to (1) in terms of power-law functions. To derive precise
LIL-type results, we now consider more general scaling functions f : [0,∞) →R. Whenever
the driving Lévy process has a Gaussian component, its almost sure short-time behavior is
dominated by Khintchine’s LIL. In this setting, Lemma 2 directly generalizes to continuous
increasing functions f with f (0) = 0 and f (t)> 0 for all t> 0. This is because any function f
for which limt↓0 Lt/f (t) exists in R satisfies

√
2t ln ( ln (1/t))/f (t) → 0, implying

lim
t↓0

[L, L]t

(f (t))2
= lim

t↓0

(
[L, L]t

t

t

2t ln ( ln (1/t))

2t ln ( ln (1/t))

(f (t))2

)
= 0 a.s. (9)

by [20, Theorem 1]. Hence, [L, L]t = o(f (t)2) and we can replace the function tp/2 in Theorem 1
by f , obtaining a precise short-time behavior for the solution whenever (1) includes a diffusion
part. In the case that L does not include a Gaussian component, [L, L] is a finite variation
process without drift satisfying limt↓0 t−1[L, L]t = 0 a.s. by [20, Theorem 1], but an argument
similar to (9) is only applicable if f decays sufficiently fast as t ↓ 0. For the general case, we
combine Theorem 1 with the precise information on possible scaling functions derived in [6].
Note that the conditions of Corollary 1 immediately follow from Khintchine’s LIL whenever
h ≡ 1, as the process does not include a Gaussian component by assumption.

Corollary 1. Let L be a purely non-Gaussian R
d-valued Lévy process and f : [0,∞) →R be of

the form f (t) = √
t ln ( ln (1/t))h(1/t)−1, where h : [0,∞) → [0,∞) is a continuous and non-

decreasing slowly varying function such that the set of cluster points of Lt/f (t) as t ↓ 0 is
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bounded with probability 1. Further, let σ : Rd →R
n×d be twice continuously differentiable

and at most of linear growth, and denote by X = (Xt)t≥0 the solution of (1). Then, a.s.,

lim
t↓0

(
Xt − x

f (t)
− σ (Xt)Lt

f (t)

)
= lim

t↓0

(
Xt − x

f (t)
− σ (x)Lt

f (t)

)
= 0. (10)

In particular, if σ (x) has rank d, we have

lim
t↓0

‖Lt‖
f (t)

= ∞ a.s. =⇒ lim
t↓0

‖Xt − x‖
f (t)

= ∞ a.s.

The above results show that the almost sure short-time LIL-type behavior of the driving
Lévy process directly translates to the solution of the SDE (1). We also note the following
statement for the corresponding cluster set.

Corollary 2. Under the assumptions of Corollary 1, let lim supt↓0 ‖Lt‖/f (t) be bounded with
probability 1. Then there exists an almost sure cluster set CX = C({Xt/f (t) : t ↓ 0}) for the solu-
tion X of (1) which is obtained from the cluster set of CL = C({Lt/f (t) : t ↓ 0}) of the driving
Lévy process L via CX = σ (x)CL.

Corollary 2 implies in particular that CX shares the properties of CL derived in
[6, Theorem 2.4], and that there is a one-to-one correspondence between the cluster sets when-
ever σ (x) has rank d, e.g. CX = CL for the stochastic exponential in Example 1. Another
important special case is stable Lévy processes.

Example 2. Recall that a Lévy process L is called (strictly) stable with index α ∈ (0, 2] if
and only if the random variables Lt and t1/αL1 have the same law for each t> 0. For the
following discussion, let α �= 2, i.e. L is a non-Gaussian Lévy process, and pick d = 1. In this
case, the short-time behavior of Lt/f (t) with f : (0,∞) → (0,∞) is determined by the behavior
of the integral

∫ 1
0 f (t)−α dt in the sense that limt↓0 Lt/f (t) = 0 a.s. if the integral converges, and

lim supt↓0 |Lt|/f (t) = ∞ a.s. if it does not (see [1, Chapter VIII, Theorem 5]). Hence, Lemma 2
yields [L, L]t = o(t2p) a.s., 0< p< 1/α, and Corollary 1 implies that the almost sure short-time
behavior of the solution to (1) can be determined by the same integral criterion as the behavior
of the driving Lévy process whenever f : (0,∞) → (0,∞) is of the specified form. For power
functions, we get a strong resemblance to the Blumenthal–Getoor index, as

lim
t↓0

|Xt − x|
t p

= 0 a.s., p< 1/α,

by Proposition 1, while Theorem 1 implies that the alnmost sure lim sup behavior for p> 1/α
translates as well. See also [10] for generalizations of the above integral criterion which allow
us to apply similar reasoning to a larger class of processes.

As an application of Theorem 1, we consider two similar statements concerning con-

vergence in distribution and convergence in probability, which are denoted by
D→ and

P→,
respectively. Since the short-time behavior of Brownian motion is well known, we can assume
that L does not have a Gaussian component. We further set the drift of L, whenever it exists,
to zero. Sufficient conditions for the attraction of a Lévy process to a stable law are given,
e.g., in [11, Theorem 2.3], and the conditions for the driving process in Corollary 3 are thus
readily checked from the characteristic triplet. The special case of attraction to normality is,
e.g., considered in [5, Theorem 2.5], with the condition being satisfied in particular for a Lévy
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process with a symmetric Lévy measure such as νL(dx) = exp ( − |x|)1[−1,1](x) dx. Attraction
of Lévy processes to a stable law with index α < 2 is studied in [4].

Corollary 3. Let L be a real-valued non-Gaussian Lévy process such that the drift of L is
equal to zero whenever it exists. Further, assume that there is a continuous increasing function

f : [0,∞) → [0,∞) such that f (t)−1Lt
D→ Y as t ↓ 0, where the random variable Y follows a

non-degenerate stable law with index α ∈ (0, 2]. Also let σ : R→R be twice continuously
differentiable and at most of linear growth, and choose x ∈R

n such that σ (x) �= 0. If X is the

solution of (1) with initial condition x, then (Xt − x)/f (t)
D→ σ (x)Y. Whenever f is regularly

varying with index r ∈ (0, 1
2

]
at zero, this result also holds if the random variable Y is a.s.

constant.

We give a further result for convergence in probability. The assumptions are again readily
checked from the characteristic triplet of the driving Lévy process using [5, Theorem 2.2] and
are, e.g., satisfied for finite variation Lévy processes. As the limiting random variable obtained
is a.s. constant, the proof is immediate from Corollary 3.

Corollary 4. Let d = 1, L be as in Corollary 3, and assume that there is a continuous increas-
ing function f : [0,∞) → [0,∞) that is regularly varying with index r ∈ (0, 1

2

]
at zero and

satisfies f (t)−1Lt
P→ v for some finite value v ∈R as t ↓ 0. Also, let σ : R→R be twice contin-

uously differentiable and at most of linear growth, and denote by X the solution of (1). Then

(Xt − x)/f (t)
P→ σ (x)v.

4. Proof of Section 3

Proof of Lemma 1. Define the process ψ (ω-wise) by

ψt :=
⎧⎨
⎩

t−pϕt, t> 0,

lims↓0 s−pϕs, t = 0,

possibly setting ψ0(ω) = 0 on the null set where the limit does not exist. By definition, ψ is
càglàd, and, as limt↓ t−pϕt exists a.s. in R, F0 contains all null sets by assumption, and the
filtration is right-continuous, ψ0 is F0-measurable. Therefore, ψ is also adapted. This implies
that the semimartingale Yt := ∫ t

0+ ψs dXs is well defined, allowing us to rewrite the process
considered in (2) as ∫ t

0+
ϕs dXs =

∫ t

0+
spψs dXs =

∫ t

0+
sp dYs,

using the associativity of the stochastic integral. Applying integration by parts, we get

1

t p

∫ t

0+
ϕs dXs = 1

t p

(
t pYt −

∫ t

0+
Ys d(sp)

)
= Yt − 1

t p

∫ t

0+
Ys d(sp).

As Y has almost sure càdlàg paths and satisfies Y0 = 0 by definition, it follows that
limt↓0 Yt = 0 with probability 1. The term remaining on the right-hand side is a path-by-path
Lebesgue–Stieltjes integral. Note that, as p> 0, the integrator is increasing, which implies the
monotonicity of the corresponding integral. Hence,

inf
0<s≤t

Ys ≤ 1

t p

∫ t

0+
Ys d(sp) ≤ sup

0<s≤t
Ys.

Recalling that limt↓0 Yt = 0 a.s., the claim follows.
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Proof of Proposition 1. (i) Let limt↓0 t−pLt = v with probability 1. Rearranging the integral
equation for X and applying integration by parts to the components yields(

Xt − x

t p

)
i
= 1

t p

d∑
k=1

(
σi,k(Xt)(Lk)t − σi,k(x)(Lk)0 −

∫ t

0+
(Lk)s− dσi,k(Xs) − [

σi,k(X), Lk
]

t

)
.

(11)

As limt↓0 t−pLt = v a.s. by assumption, and limt↓0 Xt = x = X0 a.s. since X solves (1), the first
term on the right-hand side of (11) converges a.s. to the desired limit. It thus remains to show
that the other terms a.s. vanish as t ↓ 0. For the second and third terms of (11), this follows
from the assumption and Lemma 1, respectively. Finally, applying Itō’s formula for X in the
quadratic covariation appearing in the last term yields

[
σi,k(X), Lk

]
t =

[
σi,k(x) +

n∑
j=1

∫ ·

0+
∂σi,k

∂xj
(Xs−) d(Xj)s

+ 1

2

n∑
j1,j2=1

∫ ·

0+
∂2σi,k

∂xj1∂xj2
(Xs−) d

[
Xj1 , Xj2

]c
s

+
∑

0<s≤·

(
σi,k(Xs) − σi,k(Xs−) −

n∑
j=1

∂σi,k

∂xj
(Xs−)�(Xj)s

)
, Lk

]
t

.

By linearity, we can treat the terms on the right-hand side here separately. Using the asso-
ciativity of the stochastic integral and noting that the continuous finite variation terms do not
contribute to the quadratic covariation, we are left with

[
σi,k(X), L

]
t =

n∑
j=1

∫ t

0+
∂σi,k

∂xj
(Xs−) d[Xj, Lk]s

+
[ ∑

0<s≤·

(
σi,k(Xs) − σi,k(Xs−) −

n∑
j=1

∂σi,k

∂xj
(Xs−)�(Xj)s

)
, Lk

]
t

. (12)

As the integrators in the first term on the right-hand side of (12) are of finite variation, the
corresponding integrals are path-by-path Lebesgue–Stieltjes integrals. Writing out

[Xj, Lk]t =
d∑

l=1

∫ t

0+
σj,l(Xs−) d[Ll, Lk]s,

and denoting integration with respect to the total variation measure of a process Y as dTVY , the
individual integrals can be estimated by∣∣∣∣
∫ t

0+
σj,l(Xs−) d[Ll, Lk]s

∣∣∣∣≤
∫ t

0+
∣∣σj,l(Xs−)| dTV[Ll,Lk](s)

≤
( ∫ t

0+
∣∣σj,l(Xs−)

∣∣2 d[Ll, Ll]s

) 1
2
( ∫ t

0+
∣∣σj,l(Xs−)

∣∣2 d[Lk, Lk]s

) 1
2

≤ sup
0<s≤t

∣∣σj,l(Xs−)
∣∣2√[Ll, Ll]t

√
[Lk, Lk]t,
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using the Kunita–Watanabe inequality and noting that the resulting integrals have increas-
ing integrators. The above estimates show that the total variation of

∫ t
0+ σj,l(Xs−) d[Ll, Lk]s

also satisfies this estimate. For the quadratic variation terms, note that since (L0)k,l = 0 a.s., it
follows from the assumption and the one-dimensional version of Lemma 1 that

lim
t↓0

1

t p

(
(Lk)2

t − 2
∫ t

0+
(Lk)s− d(Lk)s

)
= lim

t↓0

1

t p

√
[Lk, Lk]t

√
[Lk, Lk]t = 0 a.s.

Therefore,

0 ≤ lim
t↓0

sup

∣∣∣∣ 1

t p

∫ t

0+
σj,l(Xs−) d[Ll, Lk]s

∣∣∣∣= 0 a.s.,

and a similar estimate holds true for the total variation of
∫ t

0+ σj,l(Xs−) d[Ll, Lk]s. Denoting the
total variation process of a process Y at t by TV(Y)t, we obtain the bound

1

t p

∣∣∣∣∣
n∑

j=1

∫ t

0+
∂σi,k

∂xj
(Xs−) d[Xj, Lk]s

∣∣∣∣∣≤
n∑

j=1

sup
0<s≤t

∣∣∣∣∂σi,k

∂xj
(Xs−)

∣∣∣∣ 1

t p
TV
(
[Xj, Lk]

)
t

for the first term on the right-hand side of (12), showing that it a.s. vanishes in the limit t ↓ 0.
Lastly, denote by[ ∑

0<s≤t

(
σi,k(Xs) − σi,k(Xs−) −

n∑
j=1

∂σi,k

∂xj
(Xs−)�(Xj)s

)
, Lk

]
t

=: [J, Lk]t

the jump term remaining in (12). Using the Kunita–Watanabe inequality and recalling that
[Lk, Lk] = o(t p) by the previous estimate, it remains to consider the quadratic variation of J.
Evaluating

[J, J]t =
∑

0<s≤t

(�Js)
2 =

∑
0<s≤t

(
σi,k(Xs) − σi,k(Xs−) −

n∑
j=1

∂σi,k

∂xj
(Xs−)�(Xj)s

)2

,

and noting that

sup
0<s≤t

∣∣∣∣ ∂2σi,k

∂xj1∂xj2
(Xs−)

∣∣∣∣<∞

for all j1, j2 = 1, . . . , n and a fixed t ≥ 0 due to the càdlàg paths of X, it follows that

[J, J]t ≤ C
∑

0<s≤t

‖�Xs‖4 ≤ C

( ∑
0<s≤t

‖�Xs‖2

)2

by Taylor’s formula. Noting further that

∑
0<s≤t

‖�Xs‖2 = C′ ∑
0<s≤t

‖σ (Xs−)�Ls‖2 ≤ C′′ ∑
0<s≤t

‖�Ls‖2 ≤ C′′
d∑

k=1

[Lk, Lk]t

for some finite (random) constants C′,C′′, we can estimate [J, J]t in terms of the quadratic
variation of L. In particular, both terms in (12) are a.s. of order o(t p) and vanish when the limit
t ↓ 0 is considered in (11).
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Next, let limt↓0 t−p(Xt − x) = σ (x)v with probability 1. As σ (Xs−) has a.s. full rank
for all s in a neighborhood of zero, we can recover Lt for small values of t through
Lt = ∫ t

0+
(
σ (Xs−)

)−1 dXs. Since ‖σ (Xt) − σ (x)‖< 1 a.s. for sufficiently small t> 0, it follows
that

σ (x)σ (Xt)
−1 = (

Id − (Id − σ (Xt)σ (x)−1)
)−1

=
∞∑

k=0

(
Id − σ (Xt)σ (x)−1)k = Id + (

Id − σ (Xt)σ (x)−1)+ Rt,

where the Neumann series converges a.s. in norm. By Taylor’s formula we have

1

t p
(σ (Xt) − σ (x))i,j = 1

t p

n∑
k=1

∂σi,j

∂xk
(x)(Xt − x)i,j + 1

t p
ri,j(t),

with a remainder that satisfies ri,j(t) = O((Xt − x)2) = o(t p). Thus,

lim
t↓0

1

t p
(Id − σ (Xt)σ (x)−1)= lim

t↓0

1

t p
(σ (x) − σ (Xt)

)
σ (x)−1

exists a.s., and it follows that also Rt = o(t p) as t ↓ 0 with probability 1. Rewriting

σ (x)
1

t p
Lt = 1

t p

∫ t

0+
(
σ (x)(σ (Xs−))−1 − Id

)
dXs + 1

t p

∫ t

0+
Id dXs

= 1

t p

∫ t

0+
(
σ (x)(σ (Xs−))−1 − Id

)
dXs + t−p(Xt − x

)
,

we conclude from Lemma 1 and the almost sure short-time behavior of X that the limit t ↓ 0
exists a.s. and is equal to σ (x)v. In particular, the continuity of σ and the assumption on the
rank of σ (Xs−) ensure that the integrand σ (x)(σ (Xs−))−1 − Id converges a.s. as t ↓ 0. Since
σ (x) is invertible, we recover the short-time behavior of L from the above convergence result
for σ (x)L, completing the proof of (i).

(ii) As limt↓0 t−pYtLt = Y0v a.s. by assumption, consider Yt − Y0 and let Y0 = 0 a.s. with-
out loss of generality. Applying integration by parts to t−p

∫ t
0+ Ys− dLs, we can estimate the

covariation using the Kunita–Watanabe inequality. This yields∣∣∣∣
(

1

t p
[Y, L]t

)
i

∣∣∣∣≤
d∑

k=1

∣∣∣∣ 1

t p
[Yk, Lk]t

∣∣∣∣≤
d∑

k=1

1

t p

√
[Yk, Yk]t

√
[Lk, Lk]t.

By assumption, we have [Lk, Lk]t = o(t2p). This implies that t−p[Y, L]t → 0 a.s. for t ↓ 0, yield-
ing the first part of the proposition. Assume next that, additionally, limt↓0 t−pYt = w for some
w ∈R

n×d with wv = 0. Similar to the proof of Lemma 1, define an adapted stochastic process
ψ (ω-wise) by

ψt :=
⎧⎨
⎩

t−pYt, t> 0,

lims↓0 s−pYs, t = 0,

possibly setting ψ0(ω) = 0 on the null set where the limit does not exist. Rewriting the integral
using Zt = ∫ t

0+ ψs− dLs and applying integration by parts yields

1

t2p

∫ t

0+
Ys− dLs = 1

t2p

(
t pZt −

∫ t

0+
Zs d(sp)

)
= 1

t p
Zt − 1

t2p

∫ t

0+
Zs d(sp). (13)
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By the first part of the proposition we have

lim
t↓0

1

t p
Zt = lim

t↓0

1

t p

∫ t

0+
ψs− dLs =ψ0v = wv = 0 a.s.,

while the pathwise Lebesgue–Stieltjes integral can be estimated by

1

t p
inf

0<s≤t
(Zs)i ≤ 1

t2p

∫ t

0+
(Zs)i d(sp) ≤ 1

t p
sup

0<s≤t
(Zs)i, i = 1, . . . , d.

As wv = 0, both bounds converge to zero with probability 1, and hence

lim
t↓0

1

t2p

∫ t

0+
Zs d(sp) = 0 a.s.

Thus, the limit for t ↓ 0 of (13) exists a.s. and is equal to zero.

Proof of Theorem 1. Similar to the proof of Proposition 1, we use integration by parts and
rewrite

Xt − x

t p
− σ (Xt)Lt

t p
= − 1

t p

∫ t

0+
dσ (Xs)Ls− − 1

t p
[σ (X), L]t.

The claim follows by showing the desired limiting behavior for the right-hand side. For the
covariation, this is immediate from the assumption and the previous calculations. Hence, it
remains to study the behavior of the integral. Using Itō’s formula yields

( ∫ t

0+
dσ (Xs)Ls−

)
i
=

d∑
k=1

∫ t

0+
(Lk)s−d

(
σi,k(x) +

n∑
j=1

∫ s

0+
∂σi,k

∂xj
(Xr−) d(Xj)r

+ 1

2

n∑
j1,j2=1

∫ s

0+
∂2σi,k

∂xj1∂xj2
(Xr−) d

[
Xj1 , Xj2

]c
r + (Ji,k)s

)
,

where the jump term is again denoted by J and the component of σ included in it is carried as
a subscript. Observe that, by associativity, it follows that∫ t

0+
(Lk)s− d

( ∫ s

0+
∂2σi,k

∂xj1∂xj2
(Xr−) d

[
Xj1 , Xj2

]c
r

)

=
n∑

l1=1

n∑
l2=1

∫ t

0+
(Lk)s−

∂2σi,k

∂xj1∂xj2
(Xs−)σj1,l1 (Xs−)σj2,l2 (Xs−) d[Ll1 , Ll2 ]c

s

=:
n∑

l1=1

n∑
l2=1

∫ t

0+
(Lk)s−Ms− d[Ll1 , Ll2 ]c

s,

which is a sum of pathwise Lebesgue–Stieltjes integrals. Thus,

1

t p

∣∣∣∣
∫ t

0+
(Lk)s− d

( ∫ s

0+
∂2σi,k

∂xj1∂xj2
(Xr−) d

[
Xj1 , Xj2

]c
r

)∣∣∣∣
≤ 1

t p

d∑
l1=1

d∑
l2=1

sup
0<s≤t

∣∣(Lk)s−Ms−
∣∣√[Ll1 , Ll1 ]t

√
[Ll2 , Ll2 ]t.
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As σ is twice continuously differentiable, sup0<s≤t

∣∣(Lk)s−Ms−
∣∣ is bounded and the right-hand

side of this inequality converges a.s. to zero. For the jump term we have

1

t p

∣∣∣∣
∫ t

0+
(Lk)s− d(Ji,k)s

∣∣∣∣≤ 1

t p

∑
0<s≤t

|(Lk)s−| · |�(Ji,k)s|

by definition. Using the assumption on σ , it follows from Taylor’s formula that

|�(Ji,k)s| =
∣∣∣∣∣σi,k(Xs) − σi,k(Xs−) −

n∑
j=1

∂σi,k

∂xj
(Xs−)�(Xj)s

∣∣∣∣∣≤ C‖�Xs‖2 ≤ C′‖�Ls‖2

for some finite (random) constants C,C′ ≥ 0. Thus,

1

t p

∣∣∣∣
∫ t

0+
(Lk)s− d(Ji,k)s

∣∣∣∣≤ 1

t p
C′ sup

0<s≤t
|(Lk)s|

d∑
j=1

[Lj, Lj]t,

which also converges a.s. to zero as t ↓ 0. For the last term, observe first that

∫ t

0+
(Lk)s− d

( ∫ s

0+
∂σi,k

∂xj
(Xr−)d(Xj)r

)
=

d∑
l=1

∫ t

0+
(Lk)s−

∂σi,k

∂xj
(Xs−)σj,l(Xs−) d(Ll)s

by associativity. This allows us to rewrite

d∑
k=1

d∑
l=1

∫ t

0+
(Lk)s−

(
d∑

j=1

∂σi,k

∂xj
(Xs−)σj,l(Xs−)

)
d(Ll)s =

d∑
k=1

d∑
l=1

∫ t

0+
(Lk)s−(Mi,k,l)s− d(Ll)s.

Note that sup0<s≤t |(Mi,k,l)s| is bounded for any fixed small t ≥ 0 and continuous at zero
due to the continuity of σ and its derivatives. Since limt↓0 t−p/2Lt = 0 a.s., it follows
that limt↓0 t−p/2(Lk)t(Mi,k,l)t exists with probability 1. Thus, Proposition 1(ii) is applicable,
implying that the integral a.s. vanishes in the limit. Since limt↓0 t−p/2Lt = 0 a.s., we have

0 ≤
∥∥∥∥σ (Xt)Lt

t p
− σ (x)Lt

t p

∥∥∥∥≤
∥∥∥∥σ (Xt) − σ (x)

tp/2

∥∥∥∥ ·
∥∥∥∥ Lt

tp/2

∥∥∥∥
≤

n∑
j=1

sup
0<s≤t

∥∥∥∥ ∂σ∂xj
(Xs)

∥∥∥∥ ·
∥∥∥∥Xt − x

tp/2

∥∥∥∥ ·
∥∥∥∥ Lt

tp/2

∥∥∥∥. (14)

The assumptions on σ ensure that the supremum on the right-hand side of (14) stays bounded
as t ↓ 0, while Proposition 1(i) applies for t−p/2(Xt − x). Since limt↓0 t−p/2Lt = 0 a.s., the right-
hand side of (14) converges to zero a.s. as t ↓ 0. In particular, the limits in (4) are indeed a.s.
equal. If σ (x) has rank d, (5) follows immediately from the convergence result in (4).

Proof of Lemma 2. Note that ([L, L]t)t≥0 always has sample paths of bounded variation. We
distinguish three cases for p> 0. Recall that a denotes the diffusion coefficient of L.

Case 1 (p< 1
2 ): Applying Khintchine’s LIL implies that limt↓0 t−pLt = 0 a.s. holds for any

Lévy process. Since we also have 2p< 1, [20, Theorem 1] yields, regardless of the value of a,

lim
t↓0

1

t2p
[L, L]t = lim

t↓0

(
1

t
[L, L]t · t1−2p

)
= 0 a.s.
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Case 2 (p = 1
2 ): Here, Khinchine’s LIL yields lim supt↓0 Lt/

√
t = ∞ a.s. if the Gaussian

part of L is non-zero. As the limit is assumed to be finite, the process L must satisfy a = 0.
This implies that the quadratic variation process in (8) has no drift, so [L, L]t = o(t) a.s. by [20,
Theorem 1].

Case 3 (p> 1
2 ): Consider L with its drift (if present) subtracted from the process. This

neither changes the structure of the quadratic variation nor the assumption on the almost sure
convergence, but ensures that [2, Theorem 2.1] is applicable. Note that, whenever p> 1 and
L is of finite variation with non-zero drift, we have limt↓0 t−p|Lt| = ∞ by [14], showing that
this case is excluded by the assumption. The almost sure existence of limt↓0 t−pLt further
implies that the Lévy measure νL of L satisfies

∫
[−1,1] |x|1/pνL(dx)<∞ (cf. [2]). Noting that

�[L, L]t = f (�Lt) for f (x) = x2, it follows that ν[L,L](B) = νL(f −1(B)) for all sets B ⊆ [ − 1, 1].
As we can now treat ν[L,L] as an image measure, it is∫

[−1,1]
|x|1/2pν[L,L](dx) =

∫
[0,1]

|x|1/2pν[L,L](dx) =
∫

[−1,1]
|x|1/pνL(dx)<∞.

Thus, the quadratic variation satisfies the same integral condition with 2p instead of p. As
[L, L]t is a bounded variation Lévy process without drift, part (i) of [2, Theorem 2.1] yields the
claim in the last case.

Proof of Corollary 1. As the scaling function is of the form f (t) = t1/2�(1/t) with a slowly
varying function � by assumption, the almost sure boundedness of the cluster points of Lt/f (t)
in R

d implies that, for all ε ∈ (0, 1
2

)
,

lim
t↓0

Lt

t(1/2−ε) = lim
t↓0

Lt

f (t)
· �(1/t)tε = 0 a.s.

Thus, Theorem 1 is applicable with p/2 = 1
2 − ε, yielding

lim
t↓0

(
Xt − x

t1−2ε
− σ (x)Lt

t1−2ε

)
= 0 a.s.

Using the explicit form of f and choosing ε ∈ (0, 1/4), it follows that

lim
t↓0

(
Xt − x − σ (x)Lt

f (t)

)
= lim

t↓0

(
Xt − x − σ (x)Lt

t1−2ε
· t1−2ε

f (t)

)
= 0 a.s.,

which is (10), and the remaining claims follow by analogy with the proof of Theorem 1.

Now let L be a real-valued Lévy process with Lévy measure νL. For x> 0, we write

�
(+)
L (x) = νL((x,∞)), �

(−)
L (x) = νL(( − ∞,−x)), and �L(x) =�

(+)
L (x) +�

(−)
L (x) for the tail

function of νL.

Proof of Corollary 3. If α= 2, i.e. Y is normally distributed, the convergence of Lt/f (t)
implies that

lim
t↓0

t�
(#)
L (xf (t)) = 0 (15)

for all x> 0 and # ∈ {+,−} by [11, Proposition 4.1]. Choosing x = 1, note that the condition

(15) is not sufficient to imply the integrability of �
(#)
L (f (t)) over [0,1]. However, since the

distribution of Y is non-degenerate, the scaling function f is regularly varying with index 1
2
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at zero (see [5, Theorem 2.5]). Thus, we also have limt↓0 t�
#
L(t1/2−ε) = 0. This yields the

estimate

�
#
L

(
t(1/2−ε)k)≤ Ct

tk
, (16)

where Ct is bounded as t ↓ 0 and the function is thus integrable over [0,1] for 0 ≤ k< 1. By
assumption, L does not have a Gaussian component and the drift of the process is equal to zero

whenever it is defined. Hence,
∫ t

0+ �
#(

t(1/2−ε)k) dt<∞ for both # = + and # = −, and thus
limt↓0 t−(1/2−ε)kLt = 0 a.s. by [2, Theorem 2.1]. Applying Theorem 1, we obtain

lim
t↓0

(
Xt − x

tk−2εk
− σ (x)Lt

tk−2εk

)
= 0 a.s.

It now follows for k − 2εk> 1
2 that

lim
t↓0

(
Xt − x − σ (x)Lt

f (t)

)
= lim

t↓0

(
Xt − x − σ (x)Lt

tk−2εk
· tk−2εk

f (t)

)
= 0 a.s.,

which yields the desired convergence of f (t)−1(Xt − x). If Y follows a non-degenerate stable

law with index α ∈ (0, 2), the right-hand side of (15) is replaced by the tail function �
#
Y (x)

(see [11, Proposition 4.1]), and it follows from the proof of [11, Theorem 2.3] that the scaling
function f is regularly varying with index 1/α at zero in this case. Thus, we can derive a bound
similar to (16) and argue as before. Noting that [11, Proposition 4.1] does not require the law
of the limiting random variable to be non-degenerate, the argument is also applicable if Y is
a.s. constant and f is regularly varying with index r ∈ (0, 1

2

]
at zero.
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