Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-25T06:53:47.680Z Has data issue: false hasContentIssue false

The lost Permo-Carboniferous vertebrate deposit of Horseshoe Bend near Danville, Vermilion County, Illinois

Published online by Cambridge University Press:  07 April 2025

Arjan Mann*
Affiliation:
Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois 60605, USA
W. John Nelson
Affiliation:
Illinois State Geological Survey, 615 East Peabody Drive, Champaign, Illinois 61820, USA
Robert W. Hook
Affiliation:
Vertebrate Paleontology Laboratory, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78758, USA
Scott D. Elrick
Affiliation:
Illinois State Geological Survey, 615 East Peabody Drive, Champaign, Illinois 61820, USA
*
*Corresponding author.

Abstract

One of the earliest discoveries of Permo-Carboniferous terrestrial vertebrates in North America occurred in 1875 along Horseshoe Bend, a cutbank on the Salt Fork of the Vermilion River west of Danville, Vermilion County, east-central Illinois. The discovery was soon eclipsed by the description of similar but much more complete remains from the Lower Permian of Texas in 1878. The deposit itself was obliterated by slumping and erosion in the earliest 1900s and has not been collected since despite repeated efforts. Previously unreported outcrop records and subsurface data indicate that the deposit originated as a paleochannel fill in the Inglefield Sandstone Member of the Patoka Formation, which underlies the Macoupin Limestone Member (early Missourian Stage of the Midcontinent, early Kasimovian Stage of global Carboniferous time scale). In addition to aquatic to terrestrial tetrapods, teeth of lungfishes (Sagenodus Owen, 1867, Conchopoma Cope, 1877a, Gnathorhiza Cope, 1883a) and teeth, occipital spines, and coprolites of a xenacanth shark (Orthacanthus Agassiz, 1838) are known from Horseshoe Bend. The teeth of the marine petalodont shark Janassa Münster, 1839, also are present in the collection but presumed to have been derived from one of the beds on the cutbank that produced brackish to marine invertebrate fossils. Alhough not diverse, the tetrapod assemblage is significant in that it contains the oldest diplocaulid amphibian (Diplocaulus salamandroides Cope, 1877a), fragmentary remains of the oldest diadectid and limnoscelid stem reptiles, and possibly the oldest captorhinid eureptile, all of which have not been adequately described. The ophiacodontid synapsid Clepsydrops Cope, 1875, is the most common fossil at Danville, which could be an artifact of primitive collecting methods that did not promote the recovery of articulated material. An accurate stratigraphic placement of the Horseshoe Bend deposit and a review of other late Carboniferous tetrapod localities reveals that this important Illinois locality combines an overlooked vanguard of terrestrial taxa regarded as Permo-Carboniferous (Kasimovian-Asselian) and amphibious to aquatic forms known from older, Moscovian deposits.

Type
Articles
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agassiz, L., 1833, Recherches sur les Poisons Fossils, Volume 2, Part 1: Neuchâtel, 310 p.Google Scholar
Agassiz, L., 1838, Recherches sur les Poisons Fossils, Volume 3: Neuchâtel, Switzerland, 390 p.Google Scholar
Andresen, M.J., 1961, Geology and petrology of the Trivoli Sandstone in the Illinois Basin: Illinois State Geological Survey, Circular 316, 31 p.Google Scholar
Aretz, M., Herbig, H.G., Wang, X.D., Gradstein, F.M., Agterberg, F.P., and Ogg, J.G., 2020, The Carboniferous Period, in Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., eds., The Geologic Time Scale 2020, Volume 2: Amsterdam, Elsevier, p. 811–874, https://doi.org/10.1016/B978-0-12-824360-2.00023-1.Google Scholar
Baird, D., 1952, Revision of the Pennsylvanian and Permian footprints Limnopus, Allopus and Baropus: Journal of Paleontology, v. 26, p. 122124.Google Scholar
Barrick, J.E., Alekseev, A.S., Blanco-Ferrera, S., Goreva, N.V., Hu, K., et al., 2021, Carboniferous conodont biostratigraphy: Geological Society of London, Special Publication 512, p. 695–768, https://doi.org/10.1144/SP512-2020-38.Google Scholar
Beck, K.G., Soler-Gijón, R., Carlucci, J.R., and Willis, R.E., 2016, Morphology and histology of dorsal spines of the xenacanthid shark Orthacanthus platypternus from the lower Permian of Texas, USA: palaeobiological and palaeoenvironmental implications: Acta Palaeontologica Polonica, v. 61, p. 97117, https://doi.org/10.4202/app.00126.2014.Google Scholar
Beede, J.W., 1914, The Neva Limestone in northern Oklahoma, with remarks upon the correlation of the vertebrate fossil beds of the state: Oklahoma Geological Survey Bulletin, v. 21, 37 p.Google Scholar
Bell, W.A., 1938, Fossil flora of the Sydney Coalfield, Nova Scotia: Geological Survey of Canada, Memoir 215, 334 p.CrossRefGoogle Scholar
Berman, D.S., and Sumida, S.S., 1990, A new species of Limnoscelis (Amphibia, Diadectomorpha) from the late Pennsylvanian Sangre de Cristo Formation of central Colorado: Annals of Carnegie Museum, v. 59, p. 303341.Google Scholar
Berman, D.S., and Sumida, S.S., 1995, New cranial material of the rare diadectid Desmatodon hesperis (Diadectomorpha) from the late Pennsylvanian of central Colorado: Annals of Carnegie Museum, v. 64, p. 315336.CrossRefGoogle Scholar
Bowman, A. [compiler], 1867, Vermilion County Illinois 1867. Champaign City, A. Bowman Publisher, 27 p.Google Scholar
Bradley, F.H., 1870, Vermilion County: Geological Survey of Illinois, v. 4, p. 241265.Google Scholar
Broili, F., 1904, Permische Stegocephalen un Reptilien aus Texas: Palaeontographica, v. 51, 120 p.Google Scholar
Bruner, J.C., 1991, A catalogue of type specimens of fossil vertebrates in the Field Museum of Natural History: classes Amphibia, Reptilia, Aves, and ichnites: Fieldiana Geology, new ser., no. 22, 51 p.CrossRefGoogle Scholar
Bruner, J.C., 1992, A catalogue of type specimens of fossil fishes in the Field Museum of Natural History: Fieldiana Geology, new ser., no. 23, 54 p.CrossRefGoogle Scholar
Buckwitz, M., and Voight, S., 2018, On the morphological variability of Ichniotherium tracks and evolution of locomotion in the sistergroup of amniotes: PeerJ, v. 6, n. e4346, https://doi.org/10.7717/peerj.4346.Google Scholar
Callary, E., 2009, Place Names of Illinois: University of Illinois Press, Urbana, 425 p.Google Scholar
Carroll, R.L., 1967, A limnoscelid reptile from the middle Pennsylvanian: Journal of Paleontology, v. 41, p. 12561261.Google Scholar
Carroll, R.L., 1969, A middle Pennsylvanian captorhinomorph, and the interrelationships of primitive reptiles: Journal of Paleontology, v. 43, p. 151170.Google Scholar
Carroll, R.L., 1984, Problems in the use of terrestrial vertebrates for zoning of the Carboniferous, in Gordon, M. Jr., ed., Compte Rendu, Volume 2: International Congress on Carboniferous Stratigraphy and Geology, 9th: Washington and Champaign-Urbana, Illinois, University of Illinois, p. 135–147.Google Scholar
Carroll, R.L., and Gaskill, P., 1978, The order Microsauria: Memoirs of the American Philosophical Society, v. 126, 211 p.Google Scholar
Case, E.C., 1900, The vertebrates from the Permian bone bed of Vermilion County, Illinois: Journal of Geology, v. 8, p. 698729.CrossRefGoogle Scholar
Case, E.C., 1907, Revision of the Pelycosauria of North America: Carnegie Institution of Washington Publication 55, 176 p.Google Scholar
Case, E.C., 1908, Description of vertebrate fossils from the vicinity of Pittsburgh, Pennsylvania: Annals of the Carnegie Museum, v. 4, p. 234241.CrossRefGoogle Scholar
Case, E.C., 1910, New or little known reptiles and amphibians from the Permian(?) of Texas: Bulletin of the American Museum of Natural History, v. 28, p. 163181.Google Scholar
Case, E.C., 1911a, Revision of the Amphibia and Pisces of the Permian of North America: Carnegie Institution of Washington Publication 146, 148 p.Google Scholar
Case, E.C., 1911b, A revision of the Cotylosauria of North America: Carnegie Institution of Washington Publication 145, 122 p.Google Scholar
Case, E.C., 1915, The Permo-Carboniferous red beds of North America and their vertebrate fauna: Carnegie Institution of Washington Publication 207, 176 p.CrossRefGoogle Scholar
Chamberlin, R.T., 1944, Memorial to William Frank Eugene Gurley: Annual Report, Geological Society of America, for 1943, p. 135–140.Google Scholar
Collett, J., 1876, Geological report on Vanderburg, Owen and Montgomery Counties Indiana: Annual Report, Geological Survey of Indiana, 7th, p. 240–422.Google Scholar
Cope, E.D., 1868, Synopsis of the extinct Batrachia of North America: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 20, p. 208221.Google Scholar
Cope, E.D., 1875, On the fossil remains of Reptilia and fishes from Illinois: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 27, p. 404411.Google Scholar
Cope, E.D., 1877a, Descriptions of extinct Vertebrata from the Permian and Triassic formations of the United States: Proceedings of the American Philosophical Society, v. 17, p. 182193.Google Scholar
Cope, E.D., 1877b, On the Vertebrata of the bone bed in eastern Illinois: Proceedings of the American Philosophical Society, v. 17, p. 5263.Google Scholar
Cope, E.D., 1878, Descriptions of extinct Batrachia and Reptilia from the Permian formation of Texas: Proceedings of the American Philosophical Society, v. 17, p. 505530.Google Scholar
Cope, E.D., 1881, Catalogue of Vertebrata of the Permian formation of the United States: American Naturalist, v. 15, p. 162164.Google Scholar
Cope, E.D., 1882, Third contribution to the history of the Vertebrata of the Permian formation of Texas: Proceedings of the American Philosophical Society, v. 20, p. 447461.Google Scholar
Cope, E.D., 1883a, Fourth contribution to the history of the Permian formation in Texas: Proceedings of the American Philosophical Society, v. 20, p. 628663.Google Scholar
Cope, E.D., 1883b, On some Vertebrata from the Permian of Illinois: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 1883, p. 108110.Google Scholar
Cope, E.D., and Matthew, W.D., 1915, Hitherto unpublished plates of Tertiary Mammalia and Permian Vertebrata: American Museum of Natural History Monograph 2, [unpaginated], 68 pl.CrossRefGoogle Scholar
Cunningham, C.R., Feldman, H.R., Franseen, E.K., Gastaldo, R.A., Mapes, G., Maples, C.G., and Schultze, H.-P., 1993, The upper Carboniferous Hamilton Fossil-Lagerstätte in Kansas: a valley-fill, tidally influenced deposit: Lethaia, v. 26, p. 225236.Google Scholar
DeMar, R., 1980, The Danville vertebrate locality, in Langenheim, R.L., Jr., and Mann, C.J., eds., Middle and Late Pennsylvanian Strata on Margin of Illinois Basin: Annual Field Conference, Great Lakes Section, Society of Economic Paleontologists and Mineralogists, 10th, Urbana, Illinois, p. 239–241.Google Scholar
Denison, R.H., 1969, New Pennsylvanian lungfishes from Illinois: Fieldiana Geology, v. 12, p. 193211.Google Scholar
Denison, R.H., 1974, The structure and evolution of teeth in lungfishes: Fieldiana Geology, v. 33, p. 3158.Google Scholar
DiMichele, W.A., Chaney, D.S, Kerp, H., and Lucas, S.G., 2010, Late Pennsylvanian floras in western equatorial Pangea, Cañon del Cobre, New Mexico: New Mexico Museum of Natural History and Science, Bulletin 49, p. 75–113.Google Scholar
DiMichele, W.A., Eble, C.F., Nelson, W.J., Pfefferkorn, H.W., and Elrick, S.D., 2023, Paleobotany of the Corinth Coal Bed, upper Pennsylvanian, southern Illinois: New Mexico Museum of Natural History and Science, Bulletin 94, p. 171–203.Google Scholar
Dimitrova, T.K., Zodrow, E.L., Cleal, C.J., and Thomas, B.A., 2009, Palynological evidence for Pennsylvanian (late Carboniferous) vegetation change in the Sydney Coalfield, eastern Canada: Geological Journal, v. 45, p. 388396, https://doi.org/10.1002/gj.1179.CrossRefGoogle Scholar
Dimitrova, T.K., Cleal, C.J., and Thomas, B.A., 2011, Palynological evidence for Pennsylvanian extra-basinal vegetation in Atlantic Canada: Journal of the Geological Society, London, v. 168, p. 559569, https://doi.org/10.1144/0016-76492010-028.CrossRefGoogle Scholar
Dolby, G., Falcon-Lang, H.J., and Gibling, M.R., 2011, A conifer-dominated palynological assemblage from Pennsylvanian (late Moscovian) alluvial drylands in Atlantic Canada: implications for the vegetation of tropical lowlands during the glacial phases: Journal of the Geological Society of London, v. 168, p. 571584, https://doi.org/10.1144/0016-76492010-061.CrossRefGoogle Scholar
Douthitt, H., 1917, The structure and relationships of Diplocaulus: Contributions from Walker Museum, no. 2, p. 1–41.Google Scholar
Eberth, D.A., Shannon, M., and Noland, B.G., 2007, A bonebeds database: classification, biases, and patterns of occurrence, in Rogers, R.R., Eberth, D.A., and Fiorillo, A.R., eds., Bonebeds: Genesis, Analysis, and Paleobiological Significance: Chicago, University of Chicago Press, p. 103219, https://doi.org/10.7208/chicago/9780226723730.003.0003.CrossRefGoogle Scholar
Ferguson, W.K., 1981, History of the Bureau of Economic Geology, 1909–1960: Austin, University of Texas at Austin, Bureau of Economic Geology, 329 p.Google Scholar
Fox, R.C., 1962, Two new pelycosaurs from the lower Permian of Oklahoma: University of Kansas Publications Museum of Natural History, v. 12, p. 297307.Google Scholar
Fox, R.C., and Bowman, M.C., 1966, Osteology and relationships of Captorhinus aguti (Cope) (Reptilia: Captorhinomorpha): University of Kansas Paleontological Contributions, Vertebrata, art. 11, p. 1–79.Google Scholar
Fracasso, M.A., 1980, Age of the Permo-Carboniferous Cutler Formation vertebrate fauna from El Cobre Canyon, New Mexico: Journal of Paleontology, v. 54, p. 12371244.Google Scholar
Fritsch, A., 1877, Zur Fauna der Gaskohle von Zabor bei Schlan, Kroučová bei Řeneč und Třemošná bei Pilsen, sowie über die Sphaerosideritkugeln von Žilov: Sitzungsberichte der K. Böhmischen Gesellschaft der Wissenschaften, 1877, p. 45–52.Google Scholar
Fuller, M.L., and Ashley, G.H., 1902, Ditney Folio: United States Geological Survey, Folio 84, 3 p.Google Scholar
Gibling, M.R., Saunders, K.I., Tibert, N.E., and White, J.A., 2004, Sequence sets, high-accommodation events, and the coal window in the Carboniferous Sydney Coalfield, Atlantic Canada: American Association of Petroleum Geologists, Studies in Geology, v. 51, p. 169197, https://doi.org/10.1306/St51982C8.Google Scholar
Hansen, M.C, 1985, Systematic relationships of petalodontiform chondrichthyans, in Gordon, M. Jr., ed., Compte Rendu, Volume 5, Paleontology, Paleoecology, Paleogeography: International Congress on Carboniferous Stratigraphy and Geology, 9th: Lund, Sweden, Lund Universitet, Geologisk-Mineralogiska Institutionen, p. 523–541.Google Scholar
Haridy, Y., MacDougall, M.J., and Reisz, R.R., 2018, The lower jaw of the early Permian parareptile Delorhynchus, first evidence of multiple denticulate coronoids in a reptile: Zoological Journal of the Linnean Society, v. 184, p. 791803, https://doi.org/10.1093/zoolinnean/zlx085.Google Scholar
Heaton, M.J., 1979, Cranial anatomy of primitive captorhinid reptiles from the late Pennsylvanian and early Permian Oklahoma and Texas: Oklahoma Geological Survey, Bulletin 127, 84 p.Google Scholar
Heckel, P.H., Boardman, D.R., and Barrick, J.E., 2002, Desmoinesian-Missourian regional stage boundary reference position for North America: Canadian Society of Petroleum Geologists, Memoir 19, p. 710–724.Google Scholar
Holmes, R., 1989, The skull and axial skeleton of the lower Permian anthracosauroid amphibian Archeria crassidisca Cope: Palaeontographica Abteilung A, v. 207, p. 161206.Google Scholar
Holmes, R., and Baird, D., 2011, The smaller embolomerous amphibians (Anthracosauria) from the middle Pennsylvanian (Desmoinesian) localities at Linton and Five Points coal mines, Ohio: Breviora, no. 523, p. 113, https://doi.org/10.3099/0006-9698-523.1.1.CrossRefGoogle Scholar
Hook, R.W., and Baird, D., 1986, The Diamond Coal Mine of Linton, Ohio, and its Pennsylvanian-aged vertebrates: Journal of Vertebrate Paleontology, v. 6, p. 174190.CrossRefGoogle Scholar
Hook, R.W., and Baird, D., 1993, A new fish and tetrapod assemblage from the Allegheny Group (late Westphalian, upper Carboniferous) of eastern Ohio, USA, in Heidtke, U.H.J., comp., New Research on Permo-Carboniferous Faunas: International POLLICHIA Symposium, 1st, Pfalzmuseum für Naturkunde, Bad Dürkheim, Germany, 24–28 September 1990: Bad Dürkheim, Germany, Pfalzmuseum für Naturkunde, v. 29, p. 143–154.Google Scholar
Hook, R.W., and Ferm, J.C., 1988, Paleoenvironmental controls on vertebrate-bearing abandoned channels in the upper Carboniferous: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 63, p. 159181.Google Scholar
Hussakof, L., 1911, The Permian fishes of North America: Carnegie Institution of Washington Publication 146, p. 153179.Google Scholar
Huttenlocker, A.K., Henrici, A., Nelson, W.J., Elrick, S., Berman, D.S., Schlotterbeck, T., and Sumida, S.S., 2018, A multitaxic bonebed near the Carboniferous-Permian boundary (Halgaito Formation, Cutler Group), in Valley of the Gods, Utah, USA: vertebrate paleontology and taphonomy: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 499, p. 7292, https://doi.org/10.1016/j.palaeo.2018.03.017.CrossRefGoogle Scholar
Huttenlocker, A.K., Henderson, C.M., Berman, D.S, Elrick, S.D., Henrici, A.C., and Nelson, W.J., 2021, Carboniferous-Permian conodonts and the age of the lower Cutler Group in the Bears Ears National Monument and vicinity, Utah, USA: Lethaia, v. 54, p. 330340, https://doi.org/10.1111/let.12405.Google Scholar
Jones, L.E., 1911, History of Vermilion County Illinois, Volume 1: Chicago, Pioneer Publishing, 436 p.Google Scholar
Kampmeier, O.F., 1934, Roy Lee Moodie (1880–1934): Sigma Xi Quarterly, v. 22, p. 6973.Google Scholar
King, N.R., 1994, Stratigraphy and depositional history of the West Franklin Limestone (Pennsylvanian) in the southernmost part of the Illinois Basin, western Kentucky: Geological Society of America, Abstracts with Programs, v. 26, no. 5, p. 23.Google Scholar
Kissel, R.A., and Lehman, T.M., 2002, Upper Pennsylvanian tetrapods from the Ada Formation of Seminole County, Oklahoma: Journal of Paleontology, v. 76, p. 529545.2.0.CO;2>CrossRefGoogle Scholar
Kissel, R.A., and Reisz, R.R., 2004, Synapsid fauna of the upper Pennsylvanian Rock Lake Shale near Garnett, Kansas and the diversity pattern of early amniotes, in Arratia, G., Wilson, M.V.H., and Cloutier, R., eds., Recent Advances in the Origin and Early Radiation of Vertebrates: Munich, Verlag Dr. Friedrich Pfeil, p. 409428.Google Scholar
Lane, H.H., 1945, New mid-Pennsylvanian reptiles from Kansas: Transactions, Kansas Academy of Science, v. 47, p. 381390.CrossRefGoogle Scholar
Langenheim, R.L. Jr., Mann, C.J., and Beresky, N.A., 1980, Roadlogs, Tenth Annual Field Conference, Great Lakes Section, Society of Economic Paleontologists and Mineralogists, in Langenheim, R.L. Jr., and Mann, C.J., eds., Middle and Late Pennsylvanian Strata on Margin of Illinois Basin: Annual Field Conference, Great Lakes Section, Society of Economic Paleontologists and Mineralogists, 10th, Danville, 26–28 September 1980: Urbana, Illinois, University of Illinois, p. 1–78.Google Scholar
Laurin, M., and de Buffrénil, V., 2016, Microstructural features of the femur in early ophiacodontids: a reappraisal of ancestral habitat use and lifestyle of amniotes: Comptes Rendus Palevol, v. 15, p. 115127.CrossRefGoogle Scholar
Louchios, A., Elrick, S., Korose, C., and Morse, D., 2009, Danville coal elevation, Vermilion County: Illinois State Geological Survey County Coal Map Series, scale 1:100,000, 1 sheet.Google Scholar
Lucas, S.G., 2022, Carboniferous tetrapod biostratigraphy, biochronology, and evolutionary events: Geological Society London, Special Publication 512, p. 965–1001, https://doi.org/10.1144/SP512-2021-5.CrossRefGoogle Scholar
Lucas, S.G., Harris, S.K., Spielmann, J.A., Rinehart, L.F., Berman, D.S, Henrici, A., and Krainer, K., 2010, Vertebrate paleontology, biostratigraphy and biochronology of the Pennsylvanian-Permian: Cutler Group, Cañon del Cobre, northern New Mexico: New Mexico Museum of Natural History and Science, Bulletin 49, p. 115–123.Google Scholar
Maddin, H.C., Mann, A., and Herbert, B., 2020, Varanopid from the Carboniferous of Nova Scotia reveals evidence of parental care in amniotes: Nature Ecology & Evolution, v. 4, p. 5056, https://doi.org/10.1038/s41559-019-1030-z.CrossRefGoogle ScholarPubMed
Mann, A., and Paterson, R.S., 2019, Cranial osteology and systematics of the enigmatic early ‘sail-backed’ synapsid Echinerpeton intermedium Reisz, 1972, and a review of the earliest ‘pelycosaurs’: Journal of Systematic Paleontology, v. 18, p. 529539, https://doi.org/10.1080/14772019.2019.1648323.Google Scholar
Mann, A., McDaniel, E.J., McColville, E.R., and Maddin, H.C., 2019a, Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles: Royal Society Open Science, v. 6, n. 191191, http://dx.doi.org/10.1098/rsos.191191.Google ScholarPubMed
Mann, A., Pardo, J.D., and Maddin, H.C., 2019b, Infernovenator steenae, a new serpentine recumbirostran from the ‘Mazon Creek’ Lagerstätte further clarifies lysorophians origins: Zoological Journal of the Linnean Society, v. 187, p. 506517, https://doi.org/10.1093/zoolinnean/zlz026.CrossRefGoogle Scholar
Mann, A., Pardo, J.D., and Sues, H.-D., 2022, Osteology and phylogenetic position of the diminutive ‘microsaur’ Odonterpeton triangulare from the Pennsylvanian of Linton, Ohio, and major features of recumbirostran phylogeny: Zoological Journal of the Linnean Society, v. 20, p. 115, https://doi.org/10.1093/zoolinnean/zlac043.Google Scholar
Mann, A., Hook, R.W., and Pierce, S.E., 2023a, First cranial remains of the ophiacodontid ‘Clepsydrops’ from the upper Carboniferous of Linton, Ohio, and the deposit's precocious amniote record, in Program Guide, Annual Meeting, Society of Vertebrate Paleontology, 83nd, Duke University Convention Center, Cincinnati, Ohio, 18–21 October 2023: Journal of Vertebrate Paleontology, supplement 2023, p. 287, 288.Google Scholar
Mann, A., Henrici, A.C., Sues, H.-D., and Pierce, S.E., 2023b, A new Carboniferous edaphosaurid and the origin of herbivory in mammal forerunners: Scientific Reports, v. 13, n. 4459, https://doi.org/10.1038/s41598-023-30626-8.Google ScholarPubMed
Manos, C.T., 1963, Petrography and depositional environment of the Sparland cyclothem (Pennsylvanian) [Ph. D. dissertation]: Urbana, University of Illinois, 110 p.Google Scholar
Marsh, O.C., 1878, Notice of new fossil reptiles: American Journal of Science, ser. 3, v. 15, p. 409411.CrossRefGoogle Scholar
May, W., Huttenlocker, A.K., Pardo, J.D., Benca, J., and Small, B.J., 2011, New upper Pennsylvanian armored dissorophid records (Temnospondyli, Dissorophoidea) from the U.S. Midcontinent and the stratigraphic distributions of dissorophids: Journal of Vertebrate Paleontology, v. 31, p. 907912, https://doi.org/10.1080/02724634.2011.582532.Google Scholar
Milner, A.C., 1998, Family Diplocaulidae Cope 1881, in Carroll, R.L., Bossy, K.A., Milner, A.C., Andrews, S.M., and Wellstead, C.F., Handbuch der Paläoherpetologie, Part 1, Lepospondyli: Munich, Verlag Dr. Frederich Pfeil, p. 122128.Google Scholar
Milner, A.R., and Panchen, A.L., 1973, Geographical variation in the tetrapod faunas of the upper Carboniferous and lower Permian, in Tarling, D.H., and Runcorn, S.K., eds., Implications of Continental Drift to the Earth Sciences, Volume 1: London, Academic Press, p. 353368.Google Scholar
Modesto, S.P., Scott, D.M., MacDougall, M.J., Sues, H.-D., Evans, D.C., and Reisz, R.R., 2015, The oldest parareptile and the early diversification of reptiles: Proceedings of the Royal Society B, v. 282, n. 20141912, https://doi.org/10.1098/rspb.2014.1912.Google ScholarPubMed
Moodie, R.L., 1909, Vertebrate paleontology: the Lysorophidae: American Naturalist, v. 43, p. 116119.Google Scholar
Moodie, R.L., 1916, The Coal Measures Amphibia of North America: Carnegie Institution of Washington Publication 238, 222 p.CrossRefGoogle Scholar
Müller, J., and Reisz, R.R., 2005, An early captorhinid reptile (Amniota, Eureptilia) from the upper Carboniferous of Hamilton, Kansas: Journal of Vertebrate Paleontology, v. 25, p. 561568, https://doi.org/10.1671/0272-4634(2005)025[0561:AECRAE]2.0.CO;2.CrossRefGoogle Scholar
Müller, J., and Reisz, R.R., 2006, The phylogeny of early eureptiles: comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade: Systematic Biology, v. 55, p. 503511, https://doi.org/10.1080/10635150600755396.Google ScholarPubMed
Münster, G., 1839, Beschreibung einiger seltenen Versteinerungen des Zechsteins: Beiträge zur Petrefactenkunde, v. 1, p. 114122.Google Scholar
Nelson, W.J., Hook, R.W., and Chaney, D.S., 2013, Lithostratigraphy of the lower Permian (Leonardian) Clear Fork Formation of north-central Texas: New Mexico Museum of Natural History and Science, Bulletin 60, p. 286–311.Google Scholar
Nelson, W.J., Lucas, S.G., and Elrick, S.D., 2023, The Cantabrian substage should be abandoned: revised chronostratigraphy of the middle-late Pennsylvanian boundary, in Lucas, S.G., DiMichele, W.A., Opluštil, , and Wang, X., eds., Ice Ages, Climate Dynamics and Biotic Events: the Late Pennsylvanian World: Geological Society, London, Special Publication 535, p. 7389, https://doi.org/10.1144/SP535-2022-252.Google Scholar
Newberry, J.S., 1856, Description of several new genera and species of fossil fishes from the Carboniferous strata of Ohio: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 8, p. 96100.Google Scholar
Newberry, J.S., 1875, Descriptions of fossil fishes: Report of the Geological Survey of Ohio, v. 2, pt. 2, Palaeontology, p. 4561.Google Scholar
Olson, E.C., 1946, Fresh- and brackish-water vertebrate-bearing deposits of the Pennsylvanian of Illinois: Journal of Geology, v. 54, p. 281305.CrossRefGoogle Scholar
Olson, E.C., 1951, Diplocaulus: a study in growth and variation: Fieldiana Geology, v. 11, p. 55154.Google Scholar
Olson, E.C., 1985, Permo-Carboniferous vertebrate communities, in Gordon, M. Jr., ed., Compte Rendu, Volume 5, Paleontology, Paleoecology, Paleogeography: International Congress on Carboniferous Stratigraphy and Geology, 9th: Lund, Sweden, Lund Universitet, Geologisk-Mineralogiska Institutionen, p. 331–345.Google Scholar
Owen, R., 1867, On the dental characters of genera and species, chiefly of fishes, from the Low Main Seam of shales of coal, Northumberland: Transactions of the Odontological Society of Great Britain, v. 5, p. 323392.Google Scholar
Pardo, J.D., Szostakiwskyj, M., Ahlberg, P.E., and Anderson, J.S., 2017, Hidden morphological diversity among early tetrapods: Nature, v. 546, p. 642645, https://doi.org/10.1038/nature22966.CrossRefGoogle ScholarPubMed
Pardo, J.D., Small, B.J., Milner, A.R., and Huttenlocker, A.K., 2019, Carboniferous-Permian climate change constrained early land vertebrate radiations: Nature Ecology & Evolution, v. 3, p. 200206, https://doi.org/10.1038/s41559-018-0776-z.CrossRefGoogle ScholarPubMed
Peabody, F.E., 1957, Pennsylvanian reptiles of Garnett, Kansas: edaphosaurs: Journal of Paleontology, v. 57, p. 947949.Google Scholar
Peppers, R.A., 1996, Palynological correlation of major Pennsylvanian (middle and upper Carboniferous) chronostratigraphic boundaries in the Illinois and other coal basins: Geological Society of America, Memoir 188, 111 p.CrossRefGoogle Scholar
Pohlig, H., 1892, Altpermische Saurierfährten, Fische und Medusen der Gegend von Friedrichroda i. Thüringen, in Anonymous, ed., Festschrift zum 70. Geburtstag von Rudolf Leuckardt: Leipzig, Germany, Englemann, p. 59–64.Google Scholar
Reisz, R.R., 1972, Pelycosaurian reptiles from the middle Pennsylvanian of North America: Bulletin of the Museum of Comparative Zoology, v. 144, p. 2762.Google Scholar
Reisz, R.R., 1981, A diapsid reptile from the Pennsylvanian of Kansas: University of Kansas, Museum of Natural History, Special Publication 7, p. 1–74.CrossRefGoogle Scholar
Reisz, R.R., and Fröbisch, J., 2014, The oldest caseid synapsid from the late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates: PLoS ONE, v. 9, no. 4, n. e94518, https://doi.org/10.1371/journal.pone.0094518.CrossRefGoogle ScholarPubMed
Reisz, R.R., Heaton, M.J., and Pynn, B.R., 1982, Vertebrate fauna of late Pennsylvanian Rock Lake Shale near Garnett, Kansas: Pelycosauria: Journal of Paleontology, v. 56, p. 741750.Google Scholar
Reisz, R.R., LeBlanc, A.R.H., Sidor, C.A., Scott, D., and May, W., 2015, A new captorhinid reptile from the lower Permian of Oklahoma showing remarkable dental and mandibular convergence with microsaurian tetrapods: The Science of Nature, v. 102, n. 1299, https://doi.org/10.1007/s00114-015-1299-y.Google ScholarPubMed
Reisz, R.R., Haridy, Y., and Müller, J., 2016, Euconcordia nom. nov., a replacement name for the captorhinid eureptile Concordia Müller and Reisz, 2005 (non Kingsley, 1880), with new data on its dentition: Vertebrate Anatomy Morphology Palaeontology, v. 3, p. 16, https://doi.org/10.18435/B53W22.Google Scholar
Romer, A.S., 1928, Vertebrate faunal horizons in the Texas Permo-Carboniferous red beds: University of Texas Bulletin 2801, p. 67–108.Google Scholar
Romer, A.S., 1935, Early history of Texas redbeds vertebrates: Bulletin of the Geological Society of America, v. 46, p. 15971658.CrossRefGoogle Scholar
Romer, A.S., 1936, Studies on American Permo-Carboniferous tetrapods: Problems of Paleontology, v. 1, p. 8593.Google Scholar
Romer, A.S., 1945, The late Carboniferous vertebrate fauna of Kounova (Bohemia) compared with that of the Texas redbeds: American Journal of Science, v. 243, p. 417442.CrossRefGoogle Scholar
Romer, A.S., 1957, The appendicular skeleton of the Permian embolomerous amphibian Archeria: Contributions from the Museum of Paleontology University of Michigan, v. 13, p. 103159.Google Scholar
Romer, A.S., and Price, L.I., 1940, Review of the Pelycosauria: Geological Society of America Special Paper 28, 538 p.CrossRefGoogle Scholar
Romer, A.S., and Smith, H.J., 1934, American Carboniferous dipnoans: Journal of Geology, v. 42, p. 700719.CrossRefGoogle Scholar
Rosenau, N.A., Tabor, N.J., Elrick, S.D., and Nelson, W.J., 2013, Polygenetic history of paleosols in the middle-upper Pennsylvanian cyclothems of the Illinois Basin, U.S.A.: Part 1, Characterization of paleosol types and interpretation of pedogenic processes: Journal of Sedimentary Research, v. 83, p. 606636, https://doi.org/10.2110/jsr.2013.50.Google Scholar
Salley, S., Morales, M., and Sleezer, R.O., 2005, Surficial geology of the Hamilton Quarry area, Greenwood County, Kansas: Kansas Geological Survey Open-file Report 2005-13, 1 p., https://www.kgs.ku.edu/Publications/OFR/2005/OFR05_13/index.html.Google Scholar
Schultze, H.-P., 1975, Die Lungenfisch-Gattung Conchopoma (Pisces, Dipnoi): Senckenbergiana Lethaea, v. 56, p. 191231.Google Scholar
Schultze, H.-P., and Chorn, J., 1997, The Permo-Carboniferous genus Sagenodus and the beginning of modern lungfish: Contributions to Zoology, v. 67, p. 970.CrossRefGoogle Scholar
Shaver, R.H., Ault, C.H., Burger, A.M., Carr, D.D., Droste, J.B., et al., 1986, Compendium of Paleozoic rock-unit stratigraphy in Indiana—a revision: Indiana Department of Natural Resources, Geological Survey Bulletin 59, 209 p.Google Scholar
Soler-Gijón, R., 1995, Evidence of predator-prey relationship in xenacanth sharks of the upper Carboniferous (Stephanian C) from Puertollano, Spain: Geobios Mémoire Spécial, v. 19, p. 151156.CrossRefGoogle Scholar
Soler-Gijón, R., 1999, Occipital spine of Orthacanthus (Xenacanthidae, Elasmobranchii): structure and growth: Journal of Morphology, v. 242, p. 145.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Štamberg, S., 2013, Knowledge of the Carboniferous and Permian actinopterygian fishes of the Bohemian Massif—100 years after Antonín Frič: Acta Musei Nationalis Pragae, ser. B, v. 69, p. 159182, https://doi.org/10.14446/AMNP.2013.159.Google Scholar
Sumida, S.S., and Berman, D.S., 1993, The pelycosaurian (Amniota: Synapsida) assemblage from the late Pennsylvanian Sangre de Cristo Formation of central Colorado: Annals of Carnegie Museum, v. 62, p. 293310.Google Scholar
Sumida, S.S., Lombard, R.E., Berman, D.S., and Henrici, A.C., 1999a, Late Paleozoic amniotes and their near relatives from Utah and northeastern Arizona, with comments on the Permian-Pennsylvanian boundary in Utah and northern Arizona: Utah Geological Survey, Miscellaneous Publication 99-1, p. 31–43.Google Scholar
Sumida, S.S., Walliser, J.B.D., and Lombard, R.E., 1999b, Late Paleozoic amphibian-grade tetrapods of Utah: Utah Geological Survey, Miscellaneous Publication 99-1, p. 21–30.Google Scholar
Utting, J., and Lucas, S.G., 2010, Palynological investigation of the upper Pennsylvanian (Carboniferous) El Cobre Canyon Formation, Cutler Group, Cañon del Cobre, Rio Arriba County, New Mexico, U.S.A.: New Mexico Museum of Natural History and Science Bulletin 49, p. 71–73.Google Scholar
Vaughn, P.P., 1962, Vertebrates from the Halgaito tongue of the Cutler Formation, Permian of San Juan County, Utah: Journal of Paleontology, v. 36, p. 529539.Google Scholar
Vaughn, P.P., 1969, Upper Pennsylvanian vertebrates from the Sangre de Cristo Formation of central Colorado: Los Angeles County Museum Contributions in Science, no. 164, 28 p.CrossRefGoogle Scholar
Vaughn, P.P., 1972, More vertebrates, including a new microsaur, from the upper Pennsylvanian of central Colorado.: Los Angeles County Museum Contributions in Science, no. 223, 30 p.CrossRefGoogle Scholar
Wanless, H.R., 1957, Geology and mineral resources of the Beardstown, Glasford, Havana, and Vermont Quadrangles: Illinois State Geological Survey Bulletin 82, 233 p.Google Scholar
Wellstead, C.F., 1991, Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians: Bulletin of the American Museum of Natural History, no. 209, 90 p.Google Scholar
Whybrow, P.J., 1985, A history of fossil collecting and preparation techniques: Curator, v. 28, p. 526.Google Scholar
Wideman, N.K., and Sumida, S.S., 2004, Taxonomic status of the tetrapod Lymnostygis relictus and its bearing on the temporal distribution of basal amniotes: Journal of Vertebrate Paleontology, v. 24, no. 3 (abstract supplement), p. 129A.Google Scholar
Williston, S.W., 1910, Cacops, Desmospondylus; new genera of Permian vertebrates: Bulletin of the Geological Society of America, v. 21, p. 249284.Google Scholar
Williston, S.W., 1911a, American Permian Vertebrates: Chicago, University of Chicago Press, 145 p.Google Scholar
Williston, S.W., 1911b, A new family of reptiles from the Permian of New Mexico: American Journal of Science, v. 31, p. 378398.CrossRefGoogle Scholar
Willman, H.B., Atherton, E., Buschbach, T.C., Collinson, C., Frye, J.C., Hopkins, M.E., Lineback, J.A., and Simon, J.A., 1975, Handbook of Illinois stratigraphy: Illinois State Geological Survey Bulletin 95, 261 p.Google Scholar
Winston, R.B., 1983, A late Pennsylvanian upland flora in Kansas: systematics and environmental implications: Review of Palaeobotany and Palynology, v. 40, p. 531.CrossRefGoogle Scholar
Woodward, A.S., 1891, Catalogue of the Fossil Fishes of the British Museum, Part 2: London, British Museum of Natural History, 576 p.Google Scholar
Zidek, J., 1967, Janassa lacustris sp. n., a new species of bradydont fish from the lower Permian of Czechoslovakia: Časopis Národniho Musea, Oddil Přírodovědný, v. 136, p. 201207.Google Scholar
Zodrow, E.L., 1986, Succession of paleobotanical events: evidence for mid-Westphalian D floral changes, Morien Group (late Pennsylvanian, Nova Scotia): Review of Palaeobotany and Palynology, v. 47, p. 293326.CrossRefGoogle Scholar
Zodrow, E.L., 1989, Summary of macrofloral biostratigraphy of Sydney Coalfield, Nova Scotia, Canada (Carboniferous, Westphalian/Cantabrian age): Atlantic Geology, v. 25, p. 7379.CrossRefGoogle Scholar
Zodrow, E.L., 2006, Reconstructed tree fern Alethopteris zeilleri (Carboniferous, Medullosales): International Journal of Coal Geology, v. 69, p. 6989, https://doi.org/10.1016/j.coal.2006.03.009.Google Scholar