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Abstract

Let ψ : N → [0, 1/2] be given. The Duffin–Schaeffer conjecture, recently resolved by
Koukoulopoulos and Maynard, asserts that for almost all reals α there are infinitely
many coprime solutions (p, q) to the inequality |α− p/q| < ψ(q)/q, provided that the
series

∑∞
q=1 ϕ(q)ψ(q)/q is divergent. In the present paper, we establish a quantitative

version of this result, by showing that for almost all α the number of coprime solutions
(p, q), subject to q ≤ Q, is of asymptotic order

∑Q
q=1 2ϕ(q)ψ(q)/q. The proof relies

on the method of GCD graphs as invented by Koukoulopoulos and Maynard, together
with a refined overlap estimate from sieve theory, and number-theoretic input on the
‘anatomy of integers’. The key phenomenon is that the system of approximation sets
exhibits ‘asymptotic independence on average’ as the total mass of the set system
increases.

1. Introduction and statement of results

A foundational result in Diophantine approximation is Dirichlet’s approximation theorem, which
asserts that for every real number α there are infinitely many coprime solutions (p, q) to the
inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1
q2
. (1)

It is well known that this result is optimal up to constant factors for numbers α whose partial
quotients in the continued fraction representation are bounded (so-called badly approximable
numbers). Metric number theory asks to what extent (1) can be improved for typical reals α, in
the sense that the exceptional set has vanishing Lebesgue measure.

One of the fundamental results of metric Diophantine approximation is Khintchine’s
theorem [Khi24]. Let ψ(q) be a non-negative sequence, and suppose that qψ(q) is non-increasing.
Then the inequality ∣∣∣∣α− p

q

∣∣∣∣ < ψ(q)
q

(2)

has infinitely many integer solutions (p, q) for almost all real numbers α, provided that the series∑∞
q=1 ψ(q) diverges. In contrast, inequality (2) has only finitely many solutions for almost all
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α if this series converges. Very roughly speaking, this says that for typical reals the Dirichlet
approximation theorem can be improved by a factor of logarithmic order. By periodicity, it is
sufficient to consider α ∈ [0, 1]. It can easily be seen that Khintchine’s theorem addresses the
question whether the set system

q⋃
p=0

(
p

q
− ψ(q)

q
,
p

q
+
ψ(q)
q

)
∩ [0, 1], q = 1, 2, . . . ,

contains a given real α for infinitely or only finitely many values of q. If we assume that ψ(q) ≤ 1/2
(as we will throughout this paper, to avoid degenerate situations), then the measure of such a set
is exactly 2ψ(q). Thus, the ‘only finitely many’ part of Khintchine’s theorem is a straightforward
application of the convergence part of the Borel–Cantelli lemma. The ‘infinitely many’ part of the
theorem, however, is much more delicate since the divergence part of the Borel–Cantelli lemma
requires some form of stochastic independence. The purpose of the monotonicity condition in
the statement of Khintchine’s theorem is to guarantee this stochastic independence property of
the set system.

Duffin and Schaeffer [DS41] showed that Khintchine’s theorem generally fails without the
monotonicity condition. More precisely, they constructed a function ψ which is supported on a
set of very smooth integers (having a large number of small prime factors), such that

∑∞
q=1 ψ(q)

diverges, but for almost all α there are only finitely many solutions to (2). From a probabilistic
perspective, the counterexample of Duffin and Schaeffer exploits the lack of stochastic indepen-
dence in the set system, by constructing a special configuration where the overlaps between
different sets of the system are too large; the crucial point here is that a fraction p/q can have
many different representations as a quotient of integers (as long as non-reduced representations
are allowed), and thus may appear in many different elements of the set system.

Duffin and Schaeffer suggested that this lack of independence could be overcome by switching
to the coprime setting. More precisely, the Duffin–Schaeffer conjecture asserted that for almost all
α there are infinitely many coprime solutions (p, q) to (2) if and only if the series

∑∞
q=1 ϕ(q)ψ(q)/q

diverges, where ϕ denotes the Euler totient function. Let

Aq :=
⋃

0≤p≤q,
gcd(p,q)=1

(
p

q
− ψ(q)

q
,
p

q
+
ψ(q)
q

)
∩ [0, 1], q = 1, 2, . . . . (3)

Then, writing λ for the Lebesgue measure and again assuming that ψ(q) ≤ 1/2 for all q, we have

λ(Aq) =
2ϕ(q)ψ(q)

q
.

Thus, the ‘only finitely many’ part of the Duffin–Schaeffer conjecture is again a direct conse-
quence of the convergence part of the Borel–Cantelli lemma. However, the divergence part of the
Duffin–Schaeffer conjecture has resisted resolution for many decades. After important contribu-
tions of Gallagher [Gal61], Erdős [Erd70], Vaaler [Vaa78], Pollington and Vaughan [PV90], and
Beresnevich and Velani [BV06], the Duffin–Schaeffer conjecture was finally solved in full gener-
ality by Koukoulopoulos and Maynard [KM20] in 2020. Their argument relies on an ingenious
construction of what they call ‘GCD graphs’. This allows them to implement a step-by-step
quality increment strategy until they finally arrive at a situation where they can completely
control the divisor structure which is at the heart of the problem. The final, number-theoretic,
input is an ‘anatomy of integers’ statement that quantifies the observation that there are only
few integers that have many small prime factors.
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In the present paper, we prove a quantitative version of the Koukoulopoulos–Maynard
theorem. Their result states that there are infinitely many coprime solutions to (2) for almost
all α if the sum of measures diverges. We show that for almost all α the number of solutions in
fact grows proportionally to the sum of measures.

Theorem 1. Let ψ : N → [0, 1/2] be a function such that
∑∞

q=1 ϕ(q)ψ(q)/q = ∞. Write S(Q) =
S(Q,α) for the number of coprime solutions (p, q) to the inequality∣∣∣∣α− p

q

∣∣∣∣ < ψ(q)
q

, subject to q ≤ Q,

and let

Ψ(Q) =
Q∑

q=1

2ϕ(q)ψ(q)
q

. (4)

Let C > 0 be arbitrary. Then, for almost all α,

S(Q) = Ψ(Q)
(

1 +O

(
1

(log Ψ(Q))C

))
as Q→ ∞.

It is not clear to what extent the error term in the theorem can be improved. It seems to
us that any result which contains a power saving, that is, has a multiplicative error of order
(1 +O(Ψ(Q)−ε)) for some ε > 0, would require a substantial improvement of the argument in
the present paper. By analogy with other results from metric number theory it is reasonable to
assume that Theorem 1 actually holds with an error term (1 +O(Ψ(Q)−1/2+ε)) for any ε > 0,
and probably even (1 +O(Ψ(Q)−1/2(log Ψ(Q))c)) for some appropriate c. We note in passing
that very precise metric estimates for the asymptotic order of S(Q) are known when an extra
monotonicity assumption is imposed upon ψ, in the spirit of Khintchine’s original result; see, for
example, Chapter 3 of [Phi71] and Chapter 4 of [Har98]. However, from a technical perspective,
the problem is of a very different nature when this extra monotonicity assumption is made. The
results for the monotonic case imply as a corollary that Theorem 1 above cannot hold in general
with a multiplicative error of order (1 +O(Ψ(Q)−1/2)) or less.

The key problem in the metric theory of approximations by reduced fractions is to control the
measure of the overlaps Aq ∩ Ar in some averaged sense. Pairwise independence λ(Aq ∩ Ar) =
λ(Aq)λ(Ar) would allow a direct application of the second Borel–Cantelli lemma, but it turns out
that λ(Aq ∩ Ar) can exceed λ(Aq)λ(Ar) by a factor as large as log log(qr) for some configurations
of q, r, ψ. Such an exceedingly large overlap can happen if there are many small prime factors
dividing q but not dividing r, or vice versa, and if simultaneously the greatest common divisor
of q and r lies in a certain critical range (which is determined by the values of ψ(q) and ψ(r)).
The crucial point then is to show that such large extra factors appear only for a small number
of pairs q, r. Consider the quotient∑

q,r≤Q λ(Aq ∩ Ar)( ∑Q
q=1 λ(Aq)

)2 =

∑
q,r≤Q λ(Aq ∩ Ar)

Ψ(Q)2
.

Without imposing an absolute lower bound on Ψ(Q), this quotient can be arbitrarily large. The
main breakthrough of Koukoulopoulos and Maynard was to prove that∑

q,r≤Q λ(Aq ∩ Ar)
Ψ(Q)2

� 1, provided that Ψ(Q) ≥ 1.

This property is called quasi-independence on average, and is sufficient for an application of the
second Borel–Cantelli lemma (in the Erdős–Rényi formulation of the lemma); cf. [BV23]. In the
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present paper, we show that even more is true: we have∑
q,r≤Q λ(Aq ∩ Ar)

Ψ(Q)2
→ 1 as Ψ(Q) → ∞.

Thus, the set system (Aq)q≥1 moves towards pairwise independence on average as the total mass
of the set system (the sum of measures of the approximation sets) tends towards infinity. Since
we consider this fact, which is the key ingredient in our proof of Theorem 1, to be very interesting
in its own right, we state it below as a separate theorem.

Theorem 2. Let ψ : N → [0, 1/2] be a function. Let the sets Aq, q = 1, 2, . . . , be defined as
in (3), and let Ψ(Q) be defined as in (4). Let C > 0 be arbitrary. For any Q ∈ N such that
Ψ(Q) ≥ 3, we have ∑

q,r≤Q

λ(Aq ∩ Ar) − Ψ(Q)2 = O

(
Ψ(Q)2

(log Ψ(Q))C

)

with an implied constant depending only on C.

The rest of this paper is organized as follows. In § 2 we show how Theorem 2 implies
Theorem 1. The following seven sections are concerned with the proof of Theorem 2. Section 3
contains an estimate of the measure of the overlap Aq ∩ Ar for given q and r. This estimate
exploits information on the divisor structure of q and r in order to bound the difference between
λ
(Aq ∩ Ar

)
and λ(Aq)λ(Ar), thus addressing the issue of the ‘stochastic dependence’ between

Aq and Ar. In § 4 we reduce Theorem 2 to two second-moment bounds. Section 5 contains a brief
introduction to the ‘GCD graph’ machinery developed by Koukoulopoulos and Maynard [KM20].
In § 6 we show how the second-moment bounds follow from the existence of a ‘good’ GCD sub-
graph. In the final two sections, we establish the existence of such a good GCD subgraph, using
a modification of the iteration procedure of [KM20]. Our argument requires a careful balancing
of the ‘quality gain’ against the potential ‘density loss’ coming from this iterative procedure,
in such a way that information on the ‘anatomy of integers’ can be exploited beyond a certain
threshold. This threshold is determined by the order of the error terms coming from sieve theory
(which translate into the error terms of the overlap estimate in § 3).

For the rest of the paper, ψ : N → [0, 1/2] is an arbitrary function, Aq, q ∈ N, is as in (3),
and Ψ(Q), Q ∈ N, is as in (4).

2. Proof of Theorem 1

Let C > 4 be fixed, and assume that Theorem 2 holds. Let 1A denote the indicator function of
a set A. Formulated in probabilistic language, Theorem 2 controls the variance of the random
variables 1A1 , . . . ,1AQ

, and we obtain

∫ 1

0

( Q∑
q=1

1Aq(α) − Ψ(Q)
)2

dα =
∑

q,r≤Q

λ(Aq ∩ Ar) − Ψ(Q)2 = O

(
Ψ(Q)2

(log Ψ(Q))C

)
. (5)

Define
Qk = min

{
Q : Ψ(Q) ≥ ek

1/
√

C}
, k ≥ 1,

and let

Bk =
{
α ∈ [0, 1] :

∣∣∣∣
Qk∑
q=1

1Aq(α) − Ψ(Qk)
∣∣∣∣ ≥ Ψ(Qk)

(log Ψ(Qk))C/4

}
.
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By Chebyshev’s inequality and (5), we have

λ
(Bk

) � (log Ψ(Qk))−C/2 � k−
√

C/2.

Since we assumed that C > 4, we have
∑∞

k=1 λ(Bk) <∞, and the Borel–Cantelli lemma implies
that almost all α are contained in at most finitely many sets Bk. Thus, for almost all α,

∣∣∣∣
Qk∑
q=1

1Aq(α) − Ψ(Qk)
∣∣∣∣ ≤ Ψ(Qk)

(log Ψ(Qk))C/4

holds for all k ≥ k0(α). Clearly, for any Q ≥ 3 there exists a k such that Qk ≤ Q < Qk+1, which
also implies that

Qk∑
q=1

1Aq(α) ≤
Q∑

q=1

1Aq(α) ≤
Qk+1∑
q=1

1Aq(α).

Since ψ ≤ 1/2 by assumption, we have Ψ(Qk) ∈
[
ek

1/
√

C
, ek

1/
√

C
+ 1/2

]
, and so

Ψ(Qk+1)/Ψ(Qk) = 1 +O
(
k−1+1/

√
C
)

= 1 +O
((

log Ψ(Qk)
)−√

C+1
)
.

From the previous three formulas and the triangle inequality, we deduce that for almost all α
there exists a Q0 = Q0(α) such that for all Q ≥ Q0,∣∣∣∣

Q∑
q=1

1Aq(α) − Ψ(Q)
∣∣∣∣ = O

(
Ψ(Q)

(log Ψ(Q))
√

C−1

)
.

As C can be chosen arbitrarily large, this proves Theorem 1.

3. The overlap estimate

In this section we develop a new estimate for the measure of the overlaps Aq ∩ Ar. For the rest
of the paper, let

D(q, r) :=
max

(
rψ(q), qψ(r)

)
gcd(q, r)

, q, r ∈ N. (6)

The standard bound for the measure of Aq ∩ Ar is due to Pollington and Vaughan [PV90]: for
any q 	= r,

λ(Aq ∩ Ar) � λ(Aq)λ(Ar)
∏

p| qr

gcd(q,r)2
,

p>D(q,r)

(
1 +

1
p

)
, (7)

with an absolute implied constant. Clearly, because of the presence of the implied constant this
standard bound cannot be sufficient to deduce Theorem 2. Below we will use a more refined
argument from sieve theory which allows us to isolate a main term, and prove an upper bound
of the form

λ(Aq ∩ Ar) ≤ λ(Aq)λ(Ar)
(
1 + [error]

)
,

with an error term that becomes small if there are not too many small primes which divide q
and r with different multiplicities (see Lemma 5 below for details).

The following lemma is called the fundamental lemma of sieve theory. We state it in the
formulation of [Kou19, Theorem 18.11].
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Lemma 3 (Fundamental lemma of sieve theory). Let (an)n≥1 be non-negative reals, such that∑∞
n=1 an <∞. Let P be a finite set of primes, and write P =

∏
p∈P p. Set y = maxP and Ad =∑

n≡0 mod d an. Assume that there exist a multiplicative function g such that 0 ≤ g(p) < p for
all p ∈ P, a real number x, and positive constants κ,C such that

Ad =: x
g(d)
d

+ rd, d | P,
and ∏

p∈(y1,y2]∩P

(
1 − g(p)

p

)−1

<

(
log y2

log y1

)κ(
1 +

C

log y1

)
, 3/2 ≤ y1 ≤ y2 ≤ y.

Then, uniformly in u ≥ 1, we have
∑

(n,P )=1

an =
(
1 +O(u−u/2)

)
x

∏
p∈P

(
1 − g(p)

p

)
+O

( ∑
d≤yu, d|P

|rd|
)
.

We will also need an estimate for the order of the partial sums of a particular multiplicative
function.

Lemma 4. Let P be a set of odd primes, and define

f(n) =
∏
p|n,
p∈P

(
1 +

1
p− 2

)
.

Then, for any x ≥ 2, ∑
n≤x

f(n) = x
∏
p∈P

(
1 +

1
p(p− 2)

)
+O

(
log x

)
,

where the implied constant is absolute.

Proof. Define g(n) =
∑

d|n μ(d)f(n/d), where μ is the Möbius function. Note that f and g are
multiplicative functions. For p ∈ P,

g(p) = f(p) − 1 =
1

p− 2
and g(pm) = 0, m ≥ 2,

whereas for p 	∈ P, we have g(pm) = 0 for all m ≥ 1. By the definition of g,∑
n≤x

f(n) =
∑
n≤x

∑
d|n

g(d)

=
∑
d≤x

g(d)
⌊
x

d

⌋

= x
∑
d≤x

g(d)
d

+O

(∑
d≤x

g(d)
)

= x

∞∑
d=1

g(d)
d

+O

(
x

∑
d>x

g(d)
d

+
∑
d≤x

g(d)
)
. (8)

Here
∞∑

d=1

g(d)
d

=
∏
p∈P

(
1 +

1
p(p− 2)

)
,

and it remains to estimate the error term in (8).
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Note that pmg(pm) ≤ p/(p− 2) ≤ 3 for all prime powers pm. Hence, by a general upper bound
for the order of partial sums of multiplicative functions (see, for example, [Kou19, Theorem 14.2]),
the partial sums of dg(d) satisfy

∑
d≤x

dg(d) � x exp
( ∑

p≤x

pg(p) − 1
p

)
� x exp

( ∑
p>2

2
p(p− 2)

)
� x.

In particular,
∑

x≤d≤2x g(d)/d� x−2
∑

d≤2x dg(d) � x−1, and the first error term in (8) is
x

∑
d>x g(d)/d� 1. Further,

∑
x≤d≤2x g(d) ≤ x−1

∑
d≤2x dg(d) � 1, and the second error term

in (8) is
∑

d≤x g(d) � log x, as claimed. All implied constants are absolute. �

Lemma 5 (Overlap estimate). Let ψ : N → [0, 1/2] be a function and Aq, q = 1, 2, . . . , be
defined as in (3). For any positive integers q 	= r and any reals u ≥ 1 and T ≥ 2, we have

λ(Aq ∩ Ar) ≤ λ(Aq)λ(Ar)
(

1 +O

(
u−u/2 +

T u log(D + 2) log T
D

)) ∏
p| qr

gcd(q,r)2
,

p>T

(
1 +

1
p− 1

)
(9)

with an absolute implied constant, where D = D(q, r) is as in (6). In particular, for any C ≥ 1,

λ(Aq ∩ Ar) ≤ λ(Aq)λ(Ar)
(
1 +O

(
(log(D + 2))−C

)) ∏
p| qr

gcd(q,r)2
,

p>A

(
1 +

1
p− 1

)

with an implied constant depending only on C, where

A = AC(q, r) := exp
(

log(D + 100) log log log(D + 100)
8C log log(D + 100)

+ 1
)
. (10)

Proof. We follow the general strategy of Pollington and Vaughan in [PV90, § 3]. If D < 1/2, then
ψ(q)/q + ψ(r)/r < 1/lcm(q, r), hence Aq ∩ Ar = ∅, and the claim trivially holds. We may thus
assume throughout the rest of the proof that D ≥ 1/2.

We set

δ = min
(
ψ(q)
q

,
ψ(r)
r

)
and Δ = max

(
ψ(q)
q

,
ψ(r)
r

)
,

and define the piecewise linear function

w(y) =

⎧⎪⎨
⎪⎩

2δ if 0 ≤ y ≤ Δ − δ,
Δ + δ − y if Δ − δ < y ≤ Δ + δ,
0 otherwise.

We can express the measure of Aq ∩ Ar as

λ(Aq ∩ Ar) =
∑

0≤a≤q,
gcd(a,q)=1

∑
0≤b≤r,

gcd(b,r)=1

w

(∣∣∣∣aq − b

r

∣∣∣∣
)
.

For any prime p, let u = u(p, q) and v = v(p, r) be defined by q =
∏

p p
u and r =

∏
p p

v, and let

l =
∏

p: u=v

pu, m =
∏

p: u 	=v

pmin(u,v), n =
∏

p: u 	=v

pmax(u,v).
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If q, r ≥ 2, we have

∑
0≤a≤q,

gcd(a,q)=1

∑
0≤b≤r,

gcd(b,r)=1

w

(∣∣∣∣aq − b

r

∣∣∣∣
)

=
∑

1≤a≤q,
gcd(a,q)=1

∑
1≤b≤r,

gcd(b,r)=1

w

(∥∥∥∥aq − b

r

∥∥∥∥
)
,

which follows from the assumption that ψ(q), ψ(r) ≤ 1
2 .

Following the argument on p. 195 of [PV90] (an application of the Chinese remainder theorem,
together with a simple counting argument) thus leads for q, r ≥ 2 to

λ(Aq ∩ Ar) =
∑

1≤c≤ln,
gcd(c,n)=1

2w
(
c

ln

)
ϕ(m)l

∏
p|gcd(l,c)

(
1 − 1

p

)∏
p|l,
p�c

(
1 − 2

p

)
,

and the formula above follows immediately also in the case q = 1 or r = 1.
Assume first that l is odd. By rewriting the right-hand side of the previous formula we see

that λ(Aq ∩ Ar) equals

2ϕ(m)
ϕ(l)2

l

∑
1≤c≤ln,

gcd(c,n)=1

w

(
c

ln

) ∏
p|gcd(l,c)

(
1 − 1

p

)−1 ∏
p|l,
p�c

((
1 − 2

p

)(
1 − 1

p

)−2)

= 2ϕ(m)
ϕ(l)2

l

∏
p|l

(
1 − 1

(p− 1)2

) ∑
1≤c≤ln,

gcd(c,n)=1

w

(
c

ln

) ∏
p|gcd(l,c)

(
1 +

1
p− 2

)
.

We now find an upper bound for this expression. First, we replace the condition gcd(c, n) = 1 by
gcd(c, n∗) = 1, where n∗ denotes the T -smooth part of n (i.e. n∗ =

∏
p≤T, u 	=v p

max(u,v)). Next,
we fix a large positive integer K, and divide [Δ − δ,Δ + δ] into K subintervals of equal length.
Observe that the piecewise constant function

w∗(y) =
2δ
K

(⌊
K(Δ + δ − y)

2δ

⌋
+ 1

)
=

2δ
K

K−1∑
k=0

1[0,Δ+δ−2kδ/K](y)

satisfies w(y) ≤ w∗(y) for all y ≥ 0. Therefore λ(Aq ∩ Ar) is bounded above by

2ϕ(m)
ϕ(l)2

l

∏
p|l

(
1 − 1

(p− 1)2

) ∑
1≤c≤ln,

gcd(c,n∗)=1

w∗
(
c

ln

) ∏
p|gcd(l,c)

(
1 +

1
p− 2

)
. (11)

Here

∑
1≤c≤ln,

gcd(c,n∗)=1

w∗
(
c

ln

) ∏
p|gcd(l,c)

(
1 +

1
p− 2

)
=

2δ
K

K−1∑
k=0

∑
1≤c≤ln(Δ+δ−2kδ/K),

gcd(c,n∗)=1

∏
p|gcd(l,c)

(
1 +

1
p− 2

)
.

Now fix k ∈ {0, . . . ,K − 1}, and set

ac =
∏

p|gcd(l,c)

(
1 +

1
p− 2

)
, 1 ≤ c ≤ ln(Δ + δ − 2kδ/K),
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and ac = 0 for c > ln(Δ + δ − 2kδ/K). Note that for d | n∗ we have adc = ac as long as dc ≤
ln(Δ + δ − 2kδ/K). By Lemma 4, for any d | n∗ we thus have

∑
c≡0 modd

ac =
∑

1≤c≤ln(Δ+δ−2kδ/K)/d

∏
p|gcd(l,c)

(
1 +

1
p− 2

)

=
ln(Δ + δ − 2kδ/K)

d

∏
p|l

(
1 +

1
p(p− 2)

)
+O(log(D + 2)).

We have ∑
gcd(c,n∗)=1

ac =
∑

1≤c≤ln(Δ+δ−2kδ/K),
gcd(c,n∗)=1

∏
p|gcd(l,c)

(
1 +

1
p− 2

)
,

and by an application of Lemma 3 (with P the set of prime divisors of n∗, maxP ≤ T and
|rd| � log(D + 2)) this is

(1 +O(u−u/2)) ln
(

Δ + δ − 2kδ
K

)
ϕ(n∗)
n∗

∏
p|l

(
1 +

1
p(p− 2)

)
+O

(
T u log(D + 2)

)
.

Since ∏
p|l

(
1 − 1

(p− 1)2

) ∏
p|l

(
1 +

1
p(p− 2)

)
= 1,

formula (11) thus yields that λ(Aq ∩ Ar) is bounded above by

2ϕ(m)
ϕ(l)2

l
· 2δ
K

K−1∑
k=0

((
(1 +O(u−u/2)) ln

(
Δ + δ − 2kδ

K

)
ϕ(n∗)
n∗

+O
(
T u log(D + 2)

)))
.

Letting K → ∞, and using D = Δln and ϕ(n∗)/n∗ ≥ ∏
p≤T (1 − 1/p) � 1/ log T , we obtain

λ(Aq ∩ Ar) ≤ 2ϕ(m)
ϕ(l)2

l
2δ

(
(1 +O(u−u/2)) ln Δ

ϕ(n∗)
n∗

+O
(
T u log(D + 2)

))

= 4ϕ(m)ϕ(l)2n
ϕ(n∗)
n∗

δΔ
(

1 +O

(
u−u/2 +

T u log(D + 2) log T
D

))

= λ(Aq)λ(Ar)
ϕ(n∗)/n∗

ϕ(n)/n

(
1 +O

(
u−u/2 +

T u log(D + 2) log T
D

))
.

Finally, observe that

ϕ(n∗)/n∗

ϕ(n)/n
=

1∏
p|n,
p>T

(
1 − 1

p

) =
∏
p|n,
p>T

(
1 +

1
p− 1

)
.

This establishes (9) for odd l.
Assume next that l is even. Then

∏
p|gcd(l,c)

(
1 − 1

p

) ∏
p|l,
p�c

(
1 − 2

p

)
=

1
2
1{2|c}

∏
p|gcd(l,c),

p>2

(
1 − 1

p

) ∏
p|l,
p�c,
p>2

(
1 − 2

p

)
,
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and similarly to before we obtain that λ(Aq ∩ Ar) equals

4ϕ(m)
ϕ(l)2

l

∏
p|l,
p>2

(
1 − 1

(p− 1)2

) ∑
1≤c≤ln,

gcd(c,n)=1,
2|c

w

(
c

ln

) ∏
p|gcd(l,c),

p>2

(
1 +

1
p− 2

)

= 4ϕ(m)
ϕ(l)2

l

∏
p|l,
p>2

(
1 − 1

(p− 1)2

) ∑
1≤c≤ln /2,
gcd(c,n)=1

w

(
c

ln /2

) ∏
p|gcd(l,c),

p>2

(
1 +

1
p− 2

)
.

The rest of the proof for odd l applies mutatis mutandis to even l. This completes the proof
of (9).

Given C ≥ 1, let us choose

u = 4C
log log(D + 100)

log log log(D + 100)
and T = exp

(
log(D + 100) log log log(D + 100)

8C log log(D + 100)
+ 1

)
.

One can readily check that u−u/2 ≤ (log(D + 100))−C . Using 4/ log log log 100 < 10, we also have
T u ≤ (D + 100)1/2(log(D + 100))10C , hence

T u log(D + 2) log T
D

� (log(D + 100))12C

D1/2

is negligible compared to (log(D + 2))−C . �

4. Second-moment bounds

In this section we show how two second-moment bounds, stated as Propositions 6 and 7
below, together with the overlap estimate in Lemma 5, imply Theorem 2. These propositions
should be compared to the second-moment bound of Koukoulopoulos and Maynard [KM20,
Proposition 5.4], which, together with the overlap estimate of Pollington and Vaughan in (7),
implies the Duffin–Schaeffer conjecture.

Let D(q, r) be as in (6). For the sake of readability, let

Ls(q, r) :=
∑

p| qr

gcd(q,r)2
,

p≥s

1
p

(12)

and

F (x) = FC(x) := exp
(

log(x+ 100) log log log(x+ 100)
8C log log(x+ 100)

+ 1
)
. (13)

Proposition 6. For any Q ∈ N and any real t ≥ 1, the set

Et =
{

(q, r) ∈ [1, Q]2 : D(q, r) ≤ Ψ(Q)
t

}

satisfies ∑
(q,r)∈Et

ϕ(q)ψ(q)
q

· ϕ(r)ψ(r)
r

� Ψ(Q)2

t1/5
,

with an absolute implied constant.
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Proposition 7. Let C ≥ 1 be arbitrary. For any Q ∈ N and any real t ≥ 1, the set

Et =
{

(q, r) ∈ [1, Q]2 : D(q, r) ≤ tΨ(Q) and LF (t)(q, r) ≥
1

F (t)1/4

}

satisfies ∑
(q,r)∈Et

ϕ(q)ψ(q)
q

· ϕ(r)ψ(r)
r

� Ψ(Q)2

F (t)1/2

with an implied constant depending only on C.

We now present the proof of Theorem 2, assuming Propositions 6 and 7.

Proof of Theorem 2. Let Q ∈ N be such that Ψ(Q) ≥ 3. We may assume that C > 0 is greater
than any prescribed absolute constant. Let K > 1 be a large constant in terms of C, to be chosen.

We partition the index set [1, Q]2 into the sets

E1 =
{
(q, r) ∈ [1, Q]2 : q = r

}
,

E2 =
{

(q, r) ∈ [1, Q]2 : q 	= r, D(q, r) ≤ Ψ(Q)
(log Ψ(Q))C

, LF (Ψ(Q))(q, r) ≤ 1
}
,

E3 =
{

(q, r) ∈ [1, Q]2 : q 	= r, D(q, r) ≤ Ψ(Q)
(log Ψ(Q))C

, LF (Ψ(Q))(q, r) > 1
}
,

E4 =
{

(q, r) ∈ [1, Q]2 : q 	= r, D(q, r) >
Ψ(Q)

(log Ψ(Q))C
, LF (D(q,r))(q, r) ≤

K

(log Ψ(Q))C

}
,

E5 =
{

(q, r) ∈ [1, Q]2 : q 	= r, D(q, r) >
Ψ(Q)

(log Ψ(Q))C
, LF (D(q,r))(q, r) >

K

(log Ψ(Q))C

}
.

The contribution of E1 is clearly negligible:

∑
(q,r)∈E1

λ(Aq ∩ Ar) =
Q∑

q=1

λ(Aq) = Ψ(Q). (14)

Now we consider E2. For any (q, r) ∈ E2, the condition LF (Ψ(Q))(q, r) ≤ 1, together with
Mertens’s theorem, ensures that

∏
p| qr

gcd(q,r)2

(
1 +

1
p− 1

)
≤ exp

( ∑
p| qr

gcd(q,r)2
,

p<F (Ψ(Q))

2
p

+
∑

p| qr

gcd(q,r)2
,

p≥F (Ψ(Q))

2
p

)

� exp
(
2 log logF (Ψ(Q))

)
� (log Ψ(Q))2.

In the last step we used the rough estimate F (x) ≤ x for all x ≥ 3. The overlap estimate
(Lemma 5) thus shows that for any (q, r) ∈ E2,

λ(Aq ∩ Ar) � λ(Aq)λ(Ar)(log Ψ(Q))2.

Applying Proposition 6 with t = (log Ψ(Q))C leads to
∑

(q,r)∈E2

λ(Aq ∩ Ar) � Ψ(Q)2

(log Ψ(Q))C/5−2
. (15)
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Next we consider E3. For any (q, r) ∈ E3, let j(q, r) be the maximal integer j such that
LF (exp exp(j))(q, r) > 1; note that, by construction, j(q, r) ≥ �log log Ψ(Q). Let (q, r) ∈ E3 with
j(q, r) = j. By definition, LF (exp exp(j+1))(q, r) ≤ 1, hence Mertens’s theorem implies

∏
p| qr

gcd(q,r)2

(
1 +

1
p− 1

)
≤ exp

( ∑
p| qr

gcd(q,r)2
,

p<F (exp exp(j+1))

2
p

+
∑

p| qr

gcd(q,r)2
,

p≥F (exp exp(j+1))

2
p

)

� exp
(
2 log logF (exp exp(j + 1))

)
� exp(2j).

Thus, the overlap estimate gives

λ(Aq ∩ Ar) � λ(Aq)λ(Ar) exp(2j),

and applying Proposition 7 with t = exp exp(j) leads to∑
(q,r)∈E3

λ(Aq ∩ Ar) =
∑

j≥�log log Ψ(Q)�

∑
(q,r)∈E3,
j(q,r)=j

λ(Aq ∩ Ar)

�
∑

j≥�log log Ψ(Q)�
exp(2j)

Ψ(Q)2

F (exp exp(j))1/2

� Ψ(Q)2

(log Ψ(Q))C
. (16)

In the last step we used the fact that F (x) increases faster than any power of log x.
Now we consider E4. For any (q, r) ∈ E4,

∏
p| qr

gcd(q,r)2
,

p>F (D(q,r))

(
1 +

1
p− 1

)
≤ exp

(
2LF (D(q,r))(q, r)

)
= 1 +O

(
1

(log Ψ(Q))C

)
.

The overlap estimate thus gives

λ(Aq ∩ Ar) ≤ λ(Aq)λ(Ar)
(

1 +O

(
1

(log Ψ(Q))C

))
,

hence ∑
(q,r)∈E4

λ(Aq ∩ Ar) ≤ Ψ(Q)2 +O

(
Ψ(Q)2

(log Ψ(Q))C

)
. (17)

Finally, we consider E5. Set κ = 1
100(e/C)C . For any (q, r) ∈ E5, let i(q, r) be the maximal

integer i such that

LF (κ exp exp(i/(log Ψ(Q))C))(q, r) >
K/2

(log Ψ(Q))C
.

Note that

LF (Ψ(Q)/(log Ψ(Q))C)(q, r) ≥ LF (D(q,r))(q, r) >
K

(log Ψ(Q))C
,

therefore

i(q, r) ≥
⌊
(log Ψ(Q))C log log

Ψ(Q)
κ(log Ψ(Q))C

⌋
.
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Here
Ψ(Q)

κ(log Ψ(Q))C
≥ 1
κ

min
x≥3

x

(log x)C
= 100.

Let (q, r) ∈ E5 such that i(q, r) = i. By definition,

LF (κ exp exp((i+1)/(log Ψ(Q))C))(q, r) ≤
K/2

(log Ψ(Q))C
,

hence Mertens’s theorem shows that∏
p| qr

gcd(q,r)2

(
1 +

1
p− 1

)
≤ exp

( ∑
p| qr

gcd(q,r)2
,

p<F
(
κ exp exp

(i+1)

(log Ψ(Q))C

)
2
p

+
∑

p| qr

gcd(q,r)2
,

p≥F
(
κ exp exp

(i+1)

(log Ψ(Q))C

)
2
p

)

� exp
(

2 log logF
(
κ exp exp

(i+ 1)
(log Ψ(Q))C

))

� exp
(

2i
(log Ψ(Q))C

)
.

The overlap estimate thus gives

λ(Aq ∩ Ar) � λ(Aq)λ(Ar) exp
(

2i
(log Ψ(Q))C

)
.

Another application of Mertens’s theorem, this time with the error term O((log x)−C) due to
Landau [Lan09, p. 201], leads to

∑
F
(
κ exp exp i

(log Ψ(Q))C

)
≤p≤F

(
κ exp exp

(i+1)

(log Ψ(Q))C

)
1
p

= log logF
(
κ exp exp

(i+ 1)
(log Ψ(Q))C

)

− log logF
(
κ exp exp

i

(log Ψ(Q))C

)

+O

((
logF

(
κ exp exp

i

(log Ψ(Q))C

))−C)

� 1
(log Ψ(Q))C

.

In the last step we used the facts that h(x) := log logF (κ exp exp(x)) satisfies h′(x) � 1, and

logF
(
κ exp exp

i

(log Ψ(Q))C

)
≥ logF

(
κ1/2Ψ(Q)1/2

(log Ψ(Q))C/2

)
� log Ψ(Q).

Choosing K > 1 large enough in terms of C, it follows that

LF (κ exp exp(i/(log Ψ(Q))C))(q, r) ≤ LF (κ exp exp((i+1)/(log Ψ(Q))C))(q, r) +
K/2

(log Ψ(Q))C
≤ K

(log Ψ(Q))C
,

hence D(q, r) ≤ κ exp exp(i/(log Ψ(Q))C). Applying Proposition 7 with t = κ exp exp(i/(log
Ψ(Q))C) thus leads to

∑
(q,r)∈E5,
i(q,r)=i

λ(Aq ∩ Ar) � exp
(

2i
(log Ψ(Q))C

)
Ψ(Q)2

F
(
κ exp exp(i/(log Ψ(Q))C)

)1/2
,
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and by summing over all possible values of i,

∑
(q,r)∈E5

λ(Aq ∩ Ar) �
∑

i≥
⌊
(log Ψ(Q))C log log(Ψ(Q)/κ(log Ψ(Q))C)

⌋
exp

(
2i/(log Ψ(Q))C

)
Ψ(Q)2

F
(
κ exp exp(i/(log Ψ(Q))C)

)1/2

�
∑

m≥log log(Ψ(Q)/κ(log Ψ(Q))C)

e2mΨ(Q)2(log Ψ(Q))C

F
(
κ exp expm

)1/2

� Ψ(Q)2(log Ψ(Q))C+2

F
(
Ψ(Q)/(log Ψ(Q))C

)

� Ψ(Q)2

(log Ψ(Q))C
. (18)

Combining formulas (14)–(18) shows that

Q∑
q,r=1

λ(Aq ∩ Ar) ≤ Ψ(Q)2 +O

(
Ψ(Q)2

(log Ψ(Q))C/5−2

)
,

as claimed. �

5. GCD graphs: notation and basic properties

The proof of the Duffin–Schaeffer conjecture given by Koukoulopoulos and Maynard in [KM20]
is based on a concept called ‘GCD graphs’, which they introduced in that paper. Very roughly
speaking, a GCD graph encodes information on the divisor structure of a set of integers. To
each GCD graph a ‘quality’ can be assigned, and the key argument in [KM20] is that one can
iteratively pass to subgraphs of the original GCD graph in such a way that in each step the quality
increases and/or the divisor structure becomes more regular. At the end of this procedure, one
has a graph that has either particularly high quality or a very regular divisor structure. High
quality directly implies that the density of the edge set, essentially controlling the influence of
the bad pairs (q, r) in such sets as E1, . . . , E5 of the previous section, is small, leading to the
desired result. If one cannot achieve high quality, then one obtains a GCD subgraph that has
perfect control of the divisor structure of the underlying set of integers; in this case, results on
the ‘anatomy of integers’ can be used to show that the problematic factor

∏
p| qr

gcd(q,r)2

(
1 +

1
p

)

in the overlap estimate can only be large for a very small proportion of pairs (q, r), again leading
to the desired result.

We do not give a fully detailed presentation of the notion of a GCD graph here, and refer
the reader to § 6 of [KM20] instead. However, for the convenience of the reader, we will recall
the basic definitions and some of the basic properties of GCD graphs.

A GCD graph is a septuple G = (μ,V,W, E ,P, f, g), for which the following properties
hold.
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(a) μ is a measure on N for which μ(n) <∞ for all n. This measure is extended to N2 by
defining

μ(N ) =
∑

(n1,n2)∈N
μ(n1)μ(n2), N ⊆ N2.

(b) The vertex sets V and W are finite sets of positive integers.
(c) The edge set E is a subset of V ×W.
(d) P is a set of primes.
(e) f and g are functions from P to Z≥0 such that for all p ∈ P:

(i) pf(p) | v for all v ∈ V and pg(p) | w for all w ∈ W;
(ii) if (v, w) ∈ E , then pmin(f(p),g(p)) ‖ gcd(v, w);
(iii) if f(p) 	= g(p), then pf(p) ‖ v for all v ∈ V and pg(p) ‖ w for all w ∈ W.

For two GCD graphs G = (μ,V,W, E ,P, f, g) and G′ = (μ′,V ′,W ′, E ′,P ′, f ′, g′) we say that
G′ is a GCD subgraph of G, and write G′ � G, if

μ′ = μ, V ′ ⊆ V, W ′ ⊆ W, E ′ ⊆ E , P ′ ⊇ P,
and if f (respectively, g) coincides with f ′ (respectively, g′) on P.

For given V and k ≥ 0 we define Vpk = {v ∈ V : pk ‖ v}. We write Epk,p� = E ∩ (Vpk ×Wp�).
It turns out that for p 	∈ P, the GCD graph

Gpk,p� := (μ,Vpk ,Wp� , Epk,p� ,P ∪ {p}, fpk , gp�)

is a GCD subgraph of G (where fpk and gp� are defined in such a way that they respectively
coincide with f and g on P, and fpk(p) = k and gp�(p) = 	).

For a GCD graph G = (μ,V,W, E ,P, f, g) we make the following definitions.

(i) The edge density

δ(G) =
μ(E)

μ(V)μ(W)
,

provided that μ(V)μ(W) 	= 0. If μ(V)μ(W) = 0, we define δ(G) to be 0.
(ii) The neighborhood sets

ΓG(v) = {w ∈ W : (v, w) ∈ E} , v ∈ V,
and

ΓG(w) = {v ∈ V : (v, w) ∈ E}, w ∈ W.

(iii) The set R(G) of primes that have not (yet) been accounted for in the GCD graph:

R(G) = {p 	∈ P : ∃(v, w) ∈ E such that p | gcd(v, w)}.
(iv) The quality

q(G) = δ(G)10μ(V)μ(W)
∏
p∈P

p|f(p)−g(p)|(
1 − 1f(p)=g(p)≥1/p

)2(1 − p−31/30
)10 .

This notion of quality of a GCD graph is an ad-hoc definition, which turns out to serve the
required purpose for the argument of [KM20]. We refer to [KM20] for the heuristic reasoning
which led to this particular definition. It is possible that a modified notion of quality would be
better suited to the argument in the present paper. However, we prefer to stick to the original
definition of quality from [KM20], since this allows us to directly use a large part of the iteration
procedure from [KM20] without the need to adapt it to a modified framework.
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We also introduce

R�(G) :=
{
p ∈ R(G) : ∀k ≥ 0 min

{
μ(Vpk)
μ(V)

,
μ(Wpk)
μ(W)

}
≤ 1 − 1√

p

}
.

This should be compared to the sets R�(G) and R�(G) used in [KM20], the latter of which is
defined analogous to our R�(G) but with 1 − 1040/p instead of 1 − 1/

√
p. Finally, we define

Pdiff(G) := {p ∈ P : f(p) 	= g(p)}.
Among the basic properties of GCD graphs are the facts that G1 � G2 and G2 � G3 together
imply G1 � G3 (transitivity), and that G1 � G2 implies R(G1) ⊆ R(G2). However, in general
G1 � G2 does not imply that R�(G1) ⊆ R�(G2).

6. Good GCD subgraphs

In this section we state two results on the existence of a ‘good’ GCD subgraph of an arbitrary
GCD graph with trivial multiplicative data (i.e. P = ∅) in the form of Propositions 8 and 9
below; these should be compared to [KM20, Proposition 7.1]. We then show how Proposition 6
(respectively, 7) follows from Proposition 8 (respectively, 9).

Proposition 8. Let G = (μ,V,W, E , ∅, f∅, g∅) be a GCD graph with trivial set of primes and
edge density δ(G) > 0. Then there exists a GCD subgraph G′ = (μ,V ′,W ′, E ′,P ′, f ′, g′) of G such
that the following assertions hold.

(a) R(G′) = ∅.
(b) For all v ∈ V ′, we have μ(ΓG′(v)) ≥ (9δ(G′)/10)μ(W ′).
(c) For all w ∈ W ′, we have μ(ΓG′(w)) ≥ (9δ(G′)/10)μ(V ′).
(d) q(G′) � q(G) with an absolute implied constant.

Proposition 9. Let G = (μ,V,W, E , ∅, f∅, g∅) be a GCD graph with trivial set of primes, and
let C ≥ 1. Assume that

E ⊆
{

(v, w) ∈ V ×W : LF (t)(v, w) ≥ 1
F (t)1/4

}
and δ(G) ≥ 1

F (t)1/2

with some t ≥ 1 sufficiently large in terms of C. Then there exists a GCD subgraph G′ =
(μ,V ′,W ′, E ′,P ′, f ′, g′) of G such that the following assertions hold.

(a) R(G′) = ∅.
(b) For all v ∈ V ′, we have μ(ΓG′(v)) ≥ (9δ(G′)/10)μ(W ′).
(c) For all w ∈ W ′, we have μ(ΓG′(w)) ≥ (9δ(G′)/10)μ(V ′).
(d) One of the following assertions holds.

(i) q(G′) � t3q(G) with an implied constant depending only on C.
(ii) q(G′) � q(G) with an implied constant depending only on C, and for any (v, w) ∈ E ′,

if we write v = v′
∏

p∈P ′ pf ′(p) and w = w′ ∏
p∈P ′ pg′(p), then LF (t)(v′, w′) ≥ 1/2F (t)1/4.

Proof of Proposition 6. Let ψ : N → [0, 1/2] be a function, let Q ∈ N and let t ≥ 1. Consider
the GCD graph G = (μ,V,W, E , ∅, f∅, g∅) with the measure μ(v) = ϕ(v)ψ(v)/v, the vertex sets
V = W = [1, Q]2, and the edge set

E =
{

(v, w) ∈ [1, Q]2 : D(v, w) ≤ Ψ(Q)
t

}
.
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Note that μ(V) = μ(W) = Ψ(Q)/2. In the language of GCD graphs, the claim of Proposition 6
can equivalently be written as μ(E) � Ψ(Q)2/t1/5, that is, δ(G) � t−1/5.

By Proposition 8, there exists a GCD subgraph G′ = (μ,V ′,W ′, E ′,P ′, f ′, g′) of G having
properties (a)–(d) of the proposition. Following the steps in [KM20, Proof of Proposition 6.3
assuming Proposition 7.1], from properties (a)–(c) we deduce q(G′) � Ψ(Q)2/t2. Since G has
trivial set of primes, by the definition of quality and property (d),

δ(G)10μ(V)μ(W) = q(G) � q(G′) � Ψ(Q)2

t2
.

Therefore δ(G) � t−1/5, as claimed. �
For the proof of Proposition 7 we will need the following fact about the ‘anatomy of integers’;

compare this to [KM20, Lemma 7.3], which is a similar result for a fixed value of c on the right-
hand side, rather than allowing c→ 0 as, in view of Lemma 5 above, will be necessary for our
application.

Lemma 10. For any real x, t ≥ 1 and c > 0,∣∣∣∣
{
n ≤ x :

∑
p|n,
p≥t

1
p
≥ c

}∣∣∣∣ � xe−100ct

with an absolute implied constant.

Proof. An application of the Markov inequality gives∣∣∣∣
{
n ≤ x :

∑
p|n,
p≥t

1
p
≥ c

}∣∣∣∣ =
∣∣∣∣
{
n ≤ x : exp

(
100t

∑
p|n,
p≥t

1
p

)
≥ exp

(
100ct

)}∣∣∣∣

≤ e−100ct
∑
n≤x

∏
p|n,
p≥t

e100t/p.

Now let f be the multiplicative function defined at prime powers as f(pm) = e100t/p if p ≥ t, and
f(pm) = 1 if p < t. Note that f(pm) ≤ e100 at all prime powers. Hence, by [Kou19, Theorem 14.2]
the partial sums of f satisfy

∑
n≤x

∏
p|n,
p≥t

e100t/p =
∑
n≤x

f(n) � x exp
( ∑

p≤x

f(p) − 1
p

)
= x exp

( ∑
t≤p≤x

e100t/p − 1
p

)

= x exp
(
O

(∑
p≥t

t

p2

))

� x,

where the implied constants are absolute. �
Proof of Proposition 7. Let ψ : N → [0, 1/2] be a function, let Q ∈ N and let t ≥ 1. Consider
the GCD graph G = (μ,V,W, E , ∅, f∅, g∅) with the measure μ(v) = ϕ(v)ψ(v)/v, the vertex sets
V = W = [1, Q]2, and the edge set

E =
{

(v, w) ∈ [1, Q]2 : D(v, w) ≤ tΨ(Q)and LF (t)(v, w) ≥ 1
F (t)1/4

}
.
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Note that μ(V) = μ(W) = Ψ(Q)/2. In the language of GCD graphs, the claim can equivalently
be written as μ(E) � Ψ(Q)2/F (t)1/2, that is, δ(G) � F (t)−1/2. We may assume in the sequel
that δ(G) ≥ F (t)−1/2 and that t and F (t) are large enough in terms of C, since otherwise the
claim trivially holds.

By Proposition 9, there exists a GCD subgraph G′ = (μ,V ′,W ′, E ′,P ′, f ′, g′) of G having
properties (a)–(d) of the proposition. Let a =

∏
p∈P ′ pf ′(p) and b =

∏
p∈P ′ pg′(p). By the definition

of a GCD graph, a | v for all v ∈ V ′ and b | w for all w ∈ W ′. Since R(G′) = ∅, we also have
gcd(v, w) = gcd(a, b) for all (v, w) ∈ E ′. Following the steps in [KM20, Proof of Proposition 6.3
assuming Proposition 7.1], we deduce from properties (a)–(c) of Proposition 9 that

q(G′) � abΨ(Q)2t2
∑

(v,w)∈E ′

1
w0vmax(w)

≤ Ψ(Q)2t2, (19)

where w0 = maxW ′ and vmax(w) = max{v ∈ V ′ : (v, w) ∈ E ′}.
Assume first that G′ satisfies property (d)(i) in Proposition 9, that is, q(G′) � t3q(G). Since

G has trivial set of primes, by the definition of quality and (19) we obtain

δ(G)10μ(V)μ(W) = q(G) � t−3q(G′) � Ψ(Q)2

t
.

Therefore δ(G) � t−1/10 � F (t)−1/2, as claimed.
Assume next that G′ satisfies property d)(ii) in Proposition 9, that is, q(G′) � q(G), and for

any (v, w) ∈ E ′, if we write v = av′ and w = bw′, then LF (t)(v′, w′) ≥ 1/2F (t)1/4. Note that here
gcd(v′, w′) = 1. As in the first case, we have

δ(G)10μ(V)μ(W) = q(G) � q(G′) � abΨ(Q)2t2
∑

(v,w)∈E ′

1
w0vmax(w)

≤ abΨ(Q)2t2

w0

∑
1≤w′≤w0/b

1
vmax(bw′)

∑
1≤v′≤vmax(bw′)/a,

LF (t)(v
′,w′)≥1/(2F (t)1/4)

1.

For the sake of readability, define Rs(n) =
∑

p|n, p≥s 1/p for any n ∈ N and s ≥ 1. Then
1/(2F (t)1/4) ≤ LF (t)(v′, w′) = RF (t)(v′) +RF (t)(w′) implies that RF (t)(v′) ≥ 1/(4F (t)1/4) or
RF (t)(w′) ≥ 1/(4F (t)1/4). The previous formula thus shows that δ(G)10 � S1 + S2 with

S1 =
abt2

w0

∑
1≤w′≤w0/b

1
vmax(bw′)

∑
1≤v′≤vmax(bw′)/a,

RF (t)(v
′)≥1/(4F (t)1/4)

1,

S2 =
abt2

w0

∑
1≤w′≤w0/b,

RF (t)(w
′)≥1/(4F (t)1/4)

1
vmax(bw′)

∑
1≤v′≤vmax(bw′)/a

1.

An application of Lemma 10 with x = vmax(bw′)/a and c = 1/(4F (t)1/4) yields

S1 � bt2

w0

∑
1≤w′≤w0/b

exp
(−25F (t)3/4

)
= t2 exp

(−25F (t)3/4
) � t−100.
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Another application of Lemma 10 with x = w0/b and c = 1/(4F (t)1/4) similarly yields

S2 =
bt2

w0

∑
1≤w′≤w0/b,

RF (t)(w
′)≥1/(4F (t)1/4)

1 � t2 exp
(−25F (t)3/4

) � t−100.

Therefore δ(G) � (S1 + S2)1/10 � t−10 � F (t)−10, as claimed. �

7. Four technical lemmas

In this section we state four lemmas on GCD subgraphs, and show that Propositions 8 and 9
follow from these four lemmas. The key technical improvement in comparison with the iteration
argument of [KM20] is in Lemma 11 below, which more carefully balances the quality gain versus
the potential density loss of the iteration procedure. The ratio of quality gain to density loss
which is necessary for the proof of Theorem 2 is determined by the range of admissible parameters
u and A in Lemma 5, and what Lemma 11 provides is just enough for a successful completion of
the proof. Lemma 12, which should be compared to [KM20, Lemma 8.4], and Lemma 13 follow
from results in [KM20] in a more or less straightforward way. Finally, for the convenience of the
reader, we cite [KM20, Lemma 8.5] in the form of Lemma 14.

Lemma 11. Let G = (μ,V,W, E , ∅, f∅, g∅) be a GCD graph with trivial set of primes and δ(G) >
0. Let C ≥ 1, and let t ≥ 1 be sufficiently large in terms of C. Then there exists a GCD subgraph

G′ � G such that R�(G′) = ∅, and at least one of the following two statements hold.

(a) q(G′) ≥ t3q(G).
(b) q(G′) � q(G), δ(G′)/δ(G) ≥ 1/F (t)1/4, |Pdiff(G′)| ≤ log t with an implied constant

depending only on C.

Lemma 12. Let G = (μ,V,W, E ,P, f, g) be a GCD graph. Assume that

δ(G) ≥ 1
s1/4

, R�(G) = ∅, E ⊆
{

(v, w) ∈ V ×W : Ls(v, w) ≥ 1
s1/4

}

with a sufficiently large s ≥ 1. Then there exists a GCD subgraph G′ = (μ,V,W, E ′,P, f, g) of
G such that

q(G′) ≥ q(G)
2

and E ′ ⊆
{

(v, w) ∈ V ×W :
∑

p| vw
gcd(v,w)2

,

p≥s, p/∈R(G)

1
p
≥ 3

4s1/4

}
.

Lemma 13. Let G = (μ,V,W, E ,P, f, g) be a GCD graph with δ(G) > 0. Then there exists a
GCD subgraph G′ = (μ,V ′,W ′, E ′,P ′, f ′, g′) of G such that

P ′ ⊆ P ∪R(G), R(G′) = ∅, q(G′) � q(G)

with an absolute implied constant.

Lemma 14 [KM20, Lemma 8.5]. Let G = (μ,V,W, E ,P, f, g) be a GCD graph with δ(G) > 0.
Then there exists a GCD subgraph G′ = (μ,V,W, E ′,P, f, g) of G such that the following
assertions hold.

(a) q(G′) ≥ q(G).
(b) δ(G′) ≥ δ(G).
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(c) For all v ∈ V ′ and w ∈ W ′, we have

μ(ΓG′(v)) ≥ 9δ(G′)
10

μ(W ′) and μ(ΓG′(w)) ≥ 9δ(G′)
10

μ(V ′).

We now show how Lemmas 11–14 imply Propositions 8 and 9.

Proof of Proposition 8. Apply Lemma 13 to G to obtain a GCD subgraph G(1) � G with
R(G(1)) = ∅ and q(G(1)) � q(G), satisfying properties (a) and (d). Next, apply Lemma 14 to G(1)

to obtain a GCD subgraph G(2) � G(1) which additionally satisfies properties (b) and (c). �

Proof of Proposition 9. We follow [KM20, Proof of Proposition 7.1], although the ordering of
the different stages needs to be changed. It suffices to prove the existence of a GCD subgraph
which satisfies properties (a) and (d). Indeed, applying Lemma 14 to such a subgraph, we obtain
a GCD subgraph that satisfies all required properties (a)–(d).

We start by applying Lemma 11 to G, and obtain a GCD subgraph G(1) � G such that
R�(G(1)) = ∅ and G(1) satisfies at least one of the following properties:

(A) q(G(1)) ≥ t3q(G);
(B) q(G(1)) � q(G), δ(G(1))/δ(G) ≥ 1/F (t)1/4, |Pdiff(G(1))| ≤ log t.

We distinguish between two cases depending on whether (A) or (B) is satisfied.
Case (A). Assume that q(G(1)) ≥ t3q(G). We apply Lemma 13 to obtain a GCD subgraph

G(2A) � G(1) with R(G(2A)) = ∅ and q(G(2A)) � q(G(1)). Then G(2A) satisfies properties (a) and
(d)(i) in Proposition 9. This finishes the proof for case (A).

Case (B). Assume that q(G(1)) � q(G), δ(G(1))/δ(G) ≥ 1/F (t)1/4, |Pdiff(G(1))| ≤ log t. First,
we remove the effect of the large primes in R(G(1)) on LF (t)(v, w). By the assumption δ(G) ≥
1/F (t)1/2, we have δ(G(1)) ≥ 1/F (t)1/4. We can thus apply Lemma 12 to G(1) with s = F (t) to
obtain a GCD subgraph G(2B) � G(1) with edge set E(2B) such that

q(G(2B)) ≥ q(G(1))
2

and E(2B) ⊆
{

(v, w) ∈ V ×W :
∑

p| vw
gcd(v,w)2

,

p≥F (t), p/∈R(G(1))

1
p
≥ 3

4F (t)1/4

}
.

Now we remove the contribution of the primes in Pdiff(G(1)). Using |Pdiff(G(1))| ≤ log t, we obtain
that for any (v, w) ∈ E(2B),

∑
p| vw

gcd(v,w)2
,

p≥F (t), p∈Pdiff(G(1))

1
p
≤ log t
F (t)

≤ 1
4F (t)1/4

for large enough t. Hence, for any (v, w) ∈ E(2B),

∑
p| vw

gcd(v,w)2
,

p≥F (t), p/∈R(G(1))∪Pdiff(G(1))

1
p
≥ 1

2F (t)1/4
. (20)

Finally, we apply Lemma 13 to G(2B) to obtain a GCD subgraph G(3B) � G(2B) such that

R(G(3B)) = ∅ and q(G(3B)) � q(G(2B)) � q(G).
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Thus, G(3B) satisfies property (a) in Proposition 9. Following the steps in stage 4b of [KM20,
Proof of Proposition 7.1], we deduce from (20) that G(3B) satisfies property (d)(ii) as well. This
finishes the proof for case (B). �

8. Proof of Lemmas 12 and 13

Proof of Lemma 12. Define

S(v, w) =
∑

p| vw
gcd(v,w)2

,

p≥s, p∈R(G)

1
p
.

Following the steps in [KM20, Proof of Lemma 8.4], from the assumptions R�(G) = ∅ and
δ(G) ≥ 1/s1/4 we deduce that

∑
(v,w)∈E

μ(v)μ(w)S(v, w) ≤
∑
p≥s

2μ(V)μ(W)
p3/2

≤ μ(E)
100s1/4

for large enough s. Consider the edge set

E ′ :=
{

(v, w) ∈ E : S(v, w) ≤ 1
4s1/4

}
.

An application of the Markov inequality gives

μ(E\E ′) ≤ 4s1/4
∑

(v,w)∈E
μ(v)μ(w)S(v, w) ≤ μ(E)

25
,

that is, μ(E ′) ≥ 24
25μ(E). By the definition of quality, the GCD subgraphG′ := (μ,V,W, E ′,P, f, g)

thus satisfies
q(G′)
q(G)

=
(
μ(E ′)
μ(E)

)10

≥ 1
2
.

Further, for any (v, w) ∈ E ′ we have
∑

p| vw
gcd(v,w)2

,

p≥s, p/∈R(G)

1
p

= Ls(v, w) − S(v, w) ≥ 3
4s1/4

,

as claimed. �

To prove Lemma 13, we will iteratively apply the following two propositions.

Proposition 15. Let G = (μ,V,W, E ,P, f, g) be a GCD graph with δ(G) > 0. Then there is a
GCD subgraph G′ = (μ,V ′,W ′, E ′,P ′, f ′, g′) of G such that

P ′ ⊆ P ∪ (R(G) ∩ {p ≤ 102000}), R(G′) ⊆ {p > 102000}, q(G′)
q(G)

≥ 1
10103000 .

Proof. This is a slight modification of [KM20, Proposition 8.3], the only difference being that
in our formulation the set P can be non-empty. The proof given in [KM20] actually covers the
formulation stated above, since it only relies on the iterative application of [KM20, Lemma 13.2],
which holds for GCD graphs with an arbitrary set of primes. �
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Proposition 16. Let G = (μ,V,W, E ,P, f, g) be a GCD graph with δ(G) > 0 such that ∅ 	=
R(G) ⊆ {p > 102000}. Then there is a GCD subgraph G′ = (μ,V ′,W ′, E ′,P ′, f ′, g′) of G such
that

P � P ′ ⊆ P ∪R(G), R(G′) � R(G), q(G′) ≥ q(G).

Proof. This follows directly from [KM20, Propositions 8.1 and 8.2]. �

Proof of Lemma 13. First, we apply Proposition 15 to obtain a GCD subgraph G(1) � G with

R(G(1)) ⊆ {p > 102000} and q(G(1)) � q(G).

If R(G(1)) = ∅, we are done. Otherwise, we apply Proposition 16 to obtain a GCD subgraph
H1 � G(1) with R(H1) � R(G(1)) and q(H1) ≥ q(G(1)). By iterating this argument, we obtain a
chain of GCD subgraphs G(1) � H1 � H2 � · · · with

R(G(1)) � R(H1) � R(H2) � · · · and q(G(1)) ≤ q(H1) ≤ q(H2) ≤ · · · .
Since R(G(1)) is a finite set, we arrive after finitely many steps at a GCD subgraph G′ � G
with R(G′) = ∅ and q(G′) ≥ q(G(1)) � q(G). Furthermore, we have P ′ ⊆ P ∪R(G) since this
property is preserved at each step. �

9. Quality increment versus density loss

The goal of this section is to prove Lemma 11. We start with three preliminary results.

Lemma 17. Let G = (μ,V,W, E ,P, f, g) be a GCD graph with δ(G) > 0, let p ∈ R(G), and let

αk =
μ(Vpk)
μ(V)

and βl =
μ(Wpl)
μ(W)

.

Then there exists a pair of non-negative integers (k, l) = (kp, lp) such that αk, βl > 0, and

μ(Epk,pl)
μ(E)

≥
⎧⎨
⎩

(αkβk)9/10 if k = l,

αk(1 − βk) + βk(1 − αk) + αl(1 − βl) + βl(1 − αl)
40|k − l|2 if k 	= l.

Proof. This follows from a straightforward modification of the proof of [KM20, Lemma 12.1],
replacing the estimate 1

1000

∑
|j|≥1 2−|j|/20 ≤ 1

10 by
∑

|j|≥1 1/40j2 ≤ 1
10 in one of the steps. �

Lemma 18. Let αk, βk, αl, βl ∈ [0, 1] with αk, βl > 0 be such that αk + αl ≤ 1 and βk + βl ≤ 1,
and let

S = αk(1 − βk) + βk(1 − αk) + αl(1 − βl) + βl(1 − αl).

If min{αk, βk} ≤ 1 −R and min{αl, βl} ≤ 1 −R with some R ∈ [
0, 1/

√
2
]
, then S2/αkβl ≥ R/2.

Proof. Clearly,

S ≥ αk(1 − βk) + βl(1 − αl) ≥ αkβl + βlαk = 2αkβl. (21)

Since the conditions of the lemma and S are invariant under switching αk with βl and αl with
βk, respectively, we may assume that αk ≥ βl.

Assume first that αk ≤ 1/2. Then βl ≤ 1/2 as well, hence

S = βk(1 − 2αk) + αk + αl(1 − 2βl) + βl ≥ αk + βl ≥ 2
√
αkβl.

Therefore S2/(αkβl) ≥ 4 > R/2, as claimed.
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Assume next that αk > 1/2. Formula (21) then gives

1 − βk ≤ 2αk(1 − βk) ≤ 2S ≤ S2

αkβl
.

If βk ≤ 1 −R, then R ≤ 1 − βk ≤ S2/(αkβl), as claimed. If βk > 1 −R > 1/4, then by the
assumption min{αk, βk} ≤ 1 −R we have αk ≤ 1 −R, and we similarly deduce

R ≤ 1 − αk ≤ 4βk(1 − αk) ≤ 4S ≤ 2
S2

αkβl
,

which finishes the proof of the statement. �
The following lemma is a variant of [KM20, Lemma 12.2].

Lemma 19. Consider a GCD graph G = (μ,V,W, E ,P, f, g) with δ(G) > 0 and a prime p ∈
R�(G). Let (k, l) = (kp, lp) be a pair of non-negative integers which satisfies the conclusion of
Lemma 17. Then there is a GCD subgraph G′ = (μ,V ′,W ′, E ′,P ′, f ′, g′) of G with P ′ = P ∪ {p}
and R(G′) ⊆ R(G)\{p} such that

δ(G′)
δ(G)

≥
⎧⎨
⎩

1 if k = l,

1
20|k − l|2 if k 	= l,

and

q(G′)
q(G)

≥

⎧⎪⎨
⎪⎩

1 if k = l,

p|k−l|−1/2

1015|k − l|20 if k 	= l.

Proof. We claim that G′ = Gpk,pl satisfies all required properties. Note that P ′ = P ∪ {p} and
R(G′) ⊆ R(G)\{p} hold by the definition of Gpk,pl . If k = l, then by Lemma 17 and the definition
of quality,

δ(G′)
δ(G)

=
μ(Epk,pk)
μ(E)

· 1
αkβk

≥ 1,

and
q(G′)
q(G)

=
(
μ(Epk,pk)
μ(E)

)10

(αkβk)−9 1
(1 − 1k≥1/p)2(1 − 1/p31/30)10

≥ 1,

as claimed. Let S be as in Lemma 18. If k 	= l, then by Lemma 17 together with (21),

δ(G′)
δ(G)

=
μ(Epk,pl)
μ(E)

· 1
αkβl

≥ S

40|k − l|2αkβl
≥ 1

20|k − l|2 .

Furthermore,

q(G′)
q(G)

=
(
μ(Epk,pl)
μ(E)

)10

(αkβl)−9 p|k−l|

(1 − 1/p31/30)10
≥ S10

(40|k − l|2)10 · 1
(αkβl)9

p|k−l|

≥ 28p|k−l|

4010|k − l|20 · S2

αkβl
.

The assumption p ∈ R�(G) ensures that min{αk, βk} ≤ 1 − 1/
√
p and min{αl, βl} ≤ 1 − 1/

√
p.

Hence, we can apply Lemma 18 with R = 1/
√
p, which shows that

q(G′)
q(G)

≥ 27p|k−l|−1/2

4010|k − l|20 >
p|k−l|−1/2

1015|k − l|20 ,

as claimed. �
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Proof of Lemma 11. We apply Lemma 19 iteratively to G until we obtain a GCD subgraph
G′ = (μ,V ′,W ′, E ′,P ′, f ′, g′) of G such that R�(G′) = ∅. Note that each prime p is used at most
once, and P ′ is precisely the set of primes to which Lemma 19 was applied. For each p ∈ P ′, let
(kp, lp) be the pair of non-negative integers with which Lemma 19 is applied.1 Since the original
graph G had an empty set of primes, we have Pdiff(G′) = {p ∈ P ′ : kp 	= lp}. By Lemma 19, the
resulting graph G′ satisfies

δ(G′)
δ(G)

≥
∏

p∈Pdiff(G′)

1
20|kp − lp|2 and

q(G′)
q(G)

≥
∏

p∈Pdiff(G′)

p|kp−lp|−1/2

1015|kp − lp|20 .

In particular,
q(G′)
q(G)

�
∏

p∈Pdiff(G′)

p|kp−lp|/4 � 1. (22)

Fix C ≥ 1, and let t ≥ 1 be large enough in terms of C. Let N = |Pdiff(G′)|, and, for the
sake of readability, in the sequel let logi denote the i-fold iterated logarithm. It will be enough
to show that if q(G′) < t3q(G) (i.e. property (a) does not hold), then δ(G′)/δ(G) ≥ 1/F (t)1/4,
and N ≤ log t (i.e. property (b) holds). The latter follows easily from (22) and q(G′) < t3q(G):

(N !)1/4 ≤
∏

p∈Pdiff(G′)

p|kp−lp|/4 � q(G′)
q(G)

< t3.

Hence, N � (log t)/ log2 t, and, in particular, N ≤ log t for large enough t, as claimed. It remains
to show that q(G′) < t3q(G) implies δ(G′)/δ(G) ≥ 1/F (t)1/4.

Let Y = {p ∈ Pdiff(G′) : |kp − lp| ≥ log3 t}. Bounding the sum term by term gives
∑
p 	∈Y

log(20|kp − lp|2) � N log4 t�
log t log4 t

log2 t
. (23)

On the other hand, (22) and the assumption q(G′) < t3q(G) lead to

log t�
∑

p∈Pdiff(G′)

|kp − lp| log p ≥ log3 t
∑
p∈Y

log p� (log3 t)|Y | log |Y |,

hence |Y | � (log t)/(log2 t log3 t). The previous formula also shows that
∑

p∈Y |kp − lp| � log t.
An application of the inequality of arithmetic and geometric means thus yields

∑
p∈Y

log(20|kp − lp|2) ≤ 2
∑
p∈Y

log(20|kp − lp|) ≤ 2|Y | log

∑
p∈Y 20|kp − lp|

|Y |

� |Y | log
(

log t
|Y |

)

� log t
log2 t

.

The previous formula and (23) thus give

− log
δ(G′)
δ(G)

≤
∑

p∈Pdiff(G′)

log(20|kp − lp|2) � log t log4 t

log2 t
.

1 We might use primes p �∈ R�(G) of the original GCD graph G, since R� does not necessarily decrease at each
step. However, R decreases by at least one element at each step, hence the algorithm terminates.
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Hence, − log(δ(G′)/δ(G)) ≤ 1
4 logF (t) for large enough t, that is, δ(G′)/δ(G) ≥ 1/F (t)1/4, and

we obtain the desired result. �
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