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Twisted algebras of geometric algebras

Masaki Matsuno

Abstract. A twisting system is one of the major tools to study graded algebras; however, it is often
difficult to construct a (nonalgebraic) twisting system if a graded algebra is given by generators and
relations. In this paper, we show that a twisted algebra of a geometric algebra is determined by a certain
automorphism of its point variety. As an application, we classify twisted algebras of three-dimensional
geometric Artin–Schelter regular algebras up to graded algebra isomorphism.

1 Introduction

The notion of twisting system was introduced by Zhang in [14]. If there is a twisting
system θ = {θn}n∈Z for a graded algebra A, then we can define a new graded algebra
Aθ , called a twisted algebra. Zhang gave a necessary and sufficient algebraic condition
via a twisting system when two categories of graded right modules are equivalent [14,
Theorem 3.5]. Although a twisting system plays an important role to study a graded
algebra, it is often difficult to construct a twisting system on a graded algebra if it is
given by generators and relations.

Mori introduced the notion of geometric algebra A(E , σ), which is determined by
geometric data which consist of a projective variety E, called the point variety, and its
automorphism σ . For these algebras, Mori gave a necessary and sufficient geometric
condition when two categories of graded right modules are equivalent [11, Theorem
4.7]. By using this geometric condition, we can easily construct a twisting system.

Cooney and Grabowski defined a groupoid whose objects are geometric noncom-
mutative projective spaces and whose morphisms are isomorphisms between them.
By studying a correspondence between the morphisms of this groupoid and a twisting
system, they showed that the morphisms of this groupoid are parametrized by a set
of certain automorphisms of the point variety [2, Theorem 28].

In this paper, we focus on studying a twisted algebra of a geometric algebra A =
A(E , σ). For a twisting system θ on A, we set Φ(θ) ∶= (θ1∣A1)∗ ∈ Autk P(A∗1 ) by dual-
ization and projectivization. We find a subset M(E , σ) of Autk P(A∗1 ) parametrizing
twisted algebras of A up to isomorphism. As an application to three-dimensional geo-
metric Artin–Schelter regular algebras, we will compute M(E , σ) (see Theorems 4.8
and 4.11), which completes the classification of twisted algebras of three-dimensional
geometric Artin–Schelter regular algebras.
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Itaba and the author showed that for any three-dimensional quadratic Artin–
Schelter regular algebra B, there are a three-dimensional quadratic Calabi–Yau Artin–
Schelter regular algebra S and a twisting system θ such that B ≅ Sθ [8, Theorem
4.4]. Except for one case, a twisting system θ can be induced by a graded algebra
automorphism of S. By using M(E , σ), we can recover this fact in the case that B is
geometric (see Corollary 4.12).

2 Preliminary

Throughout this paper, we fix an algebraically closed field k of characteristic zero
and assume that a graded algebra is an N-graded algebra A = ⊕i∈N A i over k. A
graded algebra A = ⊕i∈N A i is called connected if A0 = k. Let GrAutk A denote the
group of graded algebra automorphisms of A. We denote by GrModA the category of
graded right A-modules. We say that two graded algebras A and A′ are graded Morita
equivalent if two categories GrModA and GrModA′ are equivalent.

2.1 Twisting systems and twisted algebras

Definition 2.1 Let A be a graded algebra. A set of graded k-linear automorphisms
θ = {θn}n∈Z of A is called a twisting system on A if

θn(aθm(b)) = θn(a)θn+m(b)

for any l , m, n ∈ Z and a ∈ Am , b ∈ A l . The twisted algebra of A by θ, denoted by Aθ ,
is a graded algebra A with a new multiplication ∗ defined by

a ∗ b = aθm(b)

for any a ∈ Am , b ∈ A l . A twisting system θ = {θn}n∈Z is called algebraic if θm+n =
θm ○ θn for every m, n ∈ Z.

We denote by TSZ(A) the set of twisting systems on A. Zhang [14] found a
necessary and sufficient algebraic condition for GrModA ≅ GrModA′.

Theorem 2.2 [14, Theorem 3.5] Let A and A′ be graded algebras finitely generated in
degree 1 over k. Then GrModA ≅ GrModA′ if and only if A′ is isomorphic to a twisted
algebra Aθ by a twisting system θ ∈ TSZ(A).

Definition 2.3 For a graded algebra A, we define

TSZ0 (A) ∶= {θ ∈ TSZ(A) ∣ θ0 = idA},
TSZalg(A) ∶= {θ ∈ TSZ0 (A) ∣ θ is algebraic},

Twist(A) ∶= {Aθ ∣ θ ∈ TSZ(A)}/≅,

Twistalg(A) ∶= {Aθ ∣ θ ∈ TSZalg(A)}/≅.

Lemma 2.4 [14, Proposition 2.4] Let A be a graded algebra. For every θ ∈ TSZ(A),
there exists θ′ ∈ TSZ0 (A) such that Aθ ≅ Aθ′ .
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Twisted algebras of geometric algebras 717

It follows from Lemma 2.4 that Twist(A) = {Aθ ∣ θ ∈ TSZ0 (A)}/≅, so we may
assume that θ ∈ TSZ0 (A) to study Twist(A). By the definition of twisting system, it
follows that θ ∈ TSZalg(A) if and only if θn = θn

1 for every n ∈ Z and θ1 ∈ GrAutk A, so

Twistalg(A) = {Aϕ ∣ ϕ ∈ GrAutk A}/≅,

where Aϕ means the twisted algebra of A by {ϕn}n∈Z.

2.2 Geometric algebra

Let V be a finite-dimensional k-vector space, and let A = T(V)/(R) be a quadratic
algebra where T(V) is a tensor algebra over k and R ⊂ V ⊗ V . Since an element of R
defines a multilinear function on V∗ × V∗, we can define a zero set associated with R
by

V(R) = {(p, q) ∈ P(V∗) × P(V∗) ∣ g(p, q) = 0 for any g ∈ R}.

Definition 2.5 Let A = T(V)/(R) be a quadratic algebra. A geometric pair (E , σ)
consists of a projective variety E ⊂ P(V∗) and σ ∈ Autk E.
(1) We say that A satisfies (G1) if there exists a geometric pair (E , σ) such that

V(R) = {(p, σ(p)) ∈ P(V∗) × P(V∗) ∣ p ∈ E}.

In this case, we write P(A) = (E , σ), and call E the point variety of A.
(2) We say that A satisfies (G2) if there exists a geometric pair (E , σ) such that

R = {g ∈ V ⊗ V ∣ g(p, σ(p)) = 0 for all p ∈ E}.

In this case, we write A = A(E , σ).
(3) We say that A is a geometric algebra if it satisfies both (G1) and (G2) with A =

A(P(A)).

For geometric algebras, Mori [11] found a necessary and sufficient geometric
condition for GrModA ≅ GrModA′.

Theorem 2.6 [11, Theorem 4.7] Let A = A(E , σ) and A′ = A(E′ , σ ′) be geometric
algebras. Then GrModA ≅ GrModA′ if and only if there exists a sequence of automor-
phisms {τn}n∈Z of P(V∗) for n ∈ Z, each of which sends E isomorphically onto E′, such
that the diagram

E
τn ∣E ��

σ
��

E′

σ ′

��
E

τn+1 ∣E
�� E′

commutes for every n ∈ Z.
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2.3 Artin–Schelter regular algebras and Calabi–Yau algebras

Definition 2.7 A connected graded algebra A is called a d-dimensional Artin–
Schelter regular algebra (simply AS-regular algebra) if A satisfies the following con-
ditions:
(1) gldimA = d < ∞,
(2) GKdimA ∶= inf{α ∈ R ∣ dimk(∑n

i=0 A i) ≤ nα for all n ≫ 0} < ∞, and

(3) Exti
A(k, A) =

⎧⎪⎪⎨⎪⎪⎩

k, if i = d ,
0, if i ≠ d .

Artin and Schelter proved that a three-dimensional AS-regular algebra A finitely
generated in degree 1 is isomorphic to one of the following forms:

k⟨x , y, z⟩/( f1 , f2 , f3) or k⟨x , y⟩/(g1 , g2),

where f i are homogeneous polynomials of degree 2 (the quadratic case) and g j are
homogeneous polynomials of degree 3 (the cubic case; see [1, Theorem 1.5]).

We recall the definition of Calabi–Yau algebra introduced by [4].

Definition 2.8 [4] A k-algebra S is called d-dimensional Calabi–Yau if S satisfies the
following conditions:
(1) pdS e S = d < ∞, and

(2) Exti
S e (S , Se) ≅

⎧⎪⎪⎨⎪⎪⎩

S , if i = d
0, if i ≠ d

(as right S e -modules),

where S e = Sop ⊗k S is the enveloping algebra of S.

The following theorem tells us that we may assume that three-dimensional
quadratic AS-regular algebra is Calabi–Yau up to graded Morita equivalence.

Theorem 2.9 [8, Theorem 4.4] For every three-dimensional quadratic AS-regular
algebra A, there exists a three-dimensional quadratic Calabi–Yau AS-regular algebra
S such that GrMod A ≅ GrMod S.

Lemma 2.10 ([6, Lemma 2.8], [7, Theorem 3.2], and [12, Lemma 3.8]) Every
three-dimensional geometric AS-regular algebra A is graded Morita equivalent to
S = k⟨x , y, z⟩/( f1 , f2 , f3) = A(E , σ) in Table 1.

Remark 2.11 The original definition of geometric algebra given by Mori [11] is
different from our definition. In the sense of Definition 2.5, there exists a three-
dimensional quadratic AS-regular algebra which is not a geometric algebra. Strictly
speaking, a three-dimensional quadratic AS-regular algebra is a geometric algebra in
our sense if and only if the “point scheme” is reduced.
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Table 1: Defining relations and geometric pairs.

Type f1 , f2 , f3 E σ

P

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

yz − z y

zx − xz

x y − yx

P
2 σ(a , b , c) = (a , b , c)

S

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

yz − αz y

zx − αxz α3 ≠ 0, 1

x y − α yx

V(x)

∪ V(y)

∪ V(z)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

σ(0, b , c) = (0, b , αc)

σ(a , 0, c) = (αa , 0, c)

σ(a , b , 0) = (a , αb , 0)

S′

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

yz − αz y + x2

zx − αxz α3 ≠ 0, 1

x y − α yx

V(x)

∪ V(x2 − λ yz)

λ = α3
−1

α

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ(0, b , c) = (0, b , αc)

σ(a , b , c) = (a , αb , α−1 c)

T

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

yz − z y + x2

zx − xz + y2

x y − yx

V(x + y)

∪ V(εx + y)

∪ V(ε2 x + y)

ε3 = 1, ε , ε2 ≠ 1

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

σ(a , −a , c) = (a , −a , a + c)

σ(a , −εa , c) = (a , −εa , ε2 a + c)

σ(a , −ε2 a , c) = (a , −ε2 a , εa + c)

T′

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

yz − z y + x y + yx

zx − xz + x2 − yz − z y + y2

x y − yx − y2

V(x)

∪ V(y2 − xz)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ(0, b , c) = (0, b , b + c)

σ(a , b , c) = (a , −a + b , a − 2b + c)

NC

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

yz − αz y + x2

zx − αxz + y2 α3 ≠ 0, 1

x y − α yx

V(x3 + y3 − λx yz)

λ = α3
−1

α

σ(a , b , c) =

(a , αb , − a2

b + α2 c)

CC

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

yz − z y + y2 + 3x2

zx − xz + yx + x y − yz − z y

x y − yx − y2

V(x3 − y2 z)
σ(a , b , c) =

(a − b , b , −3 a2

b + 3a − b + c)

EC

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

α yz + βz y + γx2

αzx + βxz + γ y2

αx y + β yx + γz2

(α3 + β3 + γ3)3 ≠ (3αβγ)3 , αβγ ≠ 0
V(x3 + y3 + z3 − λx yz),

λ = α3
+β3
+γ3

αβγ

σp where p = (α , β , γ) ∈ E
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3 Twisted algebras of geometric algebras

In this section, we study twisted algebras of geometric algebras. Let E ⊂ P(V∗) be a
projective variety where V is a finite-dimensional k-vector space. We use the following
notations introduced in [2].

Definition 3.1 Let E ⊂ P(V∗) be a projective variety and σ ∈ Autk E. We define

Autk(E ↑ P(V∗)) ∶= {τ ∈ Autk E ∣ τ = τ∣E for some τ ∈ Autk P(V∗)},
Autk(P(V∗) ↓ E) ∶= {τ ∈ Autk P(V∗) ∣ τ∣E ∈ Autk E},
Z(E , σ) ∶= {τ ∈ Autk(P(V∗) ↓ E) ∣ σ τ∣E σ−1 = τ∣E},
M(E , σ) ∶= {τ ∈ Autk(P(V∗) ↓ E) ∣ (τ∣E σ)i σ−i ∈ Autk(E ↑ P(V∗)) ∀i ∈ Z},
N(E , σ) ∶= {τ ∈ Autk(P(V∗) ↓ E) ∣ σ τ∣E σ−1 ∈ Autk(E ↑ P(V∗))}.

Note that Z(E , σ) ⊂ M(E , σ) ⊂ N(E , σ) ⊂ Autk(P(V∗) ↓ E), and Z(E , σ),
N(E , σ) are subgroups of Autk(P(V∗) ↓ E).

Lemma 3.2 Let E ⊂ P(V∗) be a projective variety and σ ∈ Autk E. If σAutk(E ↑
P(V∗)) = Autk(E ↑ P(V∗))σ, then M(E , σ) = N(E , σ) = Autk(P(V∗) ↓ E).

Proof Since M(E , σ) ⊂ N(E , σ) ⊂ Autk(P(V∗) ↓ E) in general, it is enough to
show that Autk(P(V∗) ↓ E) ⊂ M(E , σ). We will show that for any τ ∈ Autk(P(V∗) ↓
E), (τ∣E σ)i σ−i ∈ Autk(E ↑ P(V∗)) for every i ∈ Z by induction so that τ ∈ M(E , σ).
The claim is trivial for i = 0. If (τ∣E σ)i σ−i ∈ Autk(E ↑ P(V∗)) for some i ≥ 0,
then (τ∣E σ)i+1σ−i−1 = τ∣E σ((τ∣E σ)i σ−i)σ−1 ∈ Autk(E ↑ P(V∗)). If (τ∣E σ)−i σ i ∈
Autk(E ↑ P(V∗)) for some i ≥ 0, then

(τ∣E σ)−(i+1)σ i+1 = σ−1τ∣−1
E ((τ∣E σ)−i σ i)σ ∈ Autk(E ↑ P(V∗)). ∎

Let A = A(E , σ) be a geometric algebra. The map Φ ∶ TSZ0 (A) → Autk P(A∗1 ) is
defined by Φ(θ) ∶= (θ1∣A1)∗.

Lemma 3.3 Let A = A(E , σ) be a geometric algebra. Then

Φ(TSZ0 (A)) = M(E , σ).

Proof Let θ ∈ TSZ0 (A). We set V ∶= A1 = (Aθ)1. Then θn is also a graded
k-linear isomorphism from Aθ to A and satisfies θn(a ∗ b) = θn(a)θn+m(b) for
every n, m, l ∈ Z and a ∈ Aθ

m , b ∈ Aθ
l . Let τn ∶ P(V∗) → P(V∗) be automorphisms

induced by the duals of θn ∣V ∶ V → V . By [2, Remark 15], τn ∈ Autk(P(V∗) ↓ E) and
the diagram of automorphisms

E
τn ∣E ��

σ
��

E
τ1 ∣E σ
��

E
τn+1 ∣E

�� E
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commutes for every n ∈ Z. Then (τ1∣E σ)n σ−n = τn ∣E ∈ Autk(E ↑ P(V∗)) for every n ∈
Z, so it holds that Φ(θ) = τ1 ∈ M(E , σ).

Conversely, let τ ∈ M(E , σ). Since (τ∣E σ)n σ−n ∈ Autk(E ↑ P(V∗)), there is an
automorphism τn ∈ Autk P(V∗) such that τn ∣E = (τ∣E σ)n σ−n for every n ∈ Z. By [2,
Remark 15], there exists θ ∈ TSZ0 (A) such that (θn ∣A1)∗ = τn for every n ∈ Z. Hence,
it follows that Φ(θ) = (θ1∣A1)∗ = τ. ∎

Let A = T(V)/I be a connected graded algebra. Let Ψ ∶ GrAutk A → PGL(V) be a
group homomorphism defined by Ψ(ϕ) = ϕ∣V . We set

PGrAutk A ∶= GrAutk A/Ker Ψ.

Lemma 3.4 Let A = A(E , σ) be a geometric algebra.
(1) Φ(TSZalg(A)) = Z(E , σ).
(2) PGrAutk A ≅ Z(E , σ)op .

Proof (1) Let θ = {θn
1 }n∈Z ∈ TSZalg(A). We set V ∶= A1 = (Aθ)1. Let τn ∶ P(V∗) →

P(V∗) be automorphisms induced by the duals of θn
1 ∣V ∶ V → V . Then we can

write τn = τn
1 for every n ∈ Z. By the proof of Lemma 3.3, it follows that (τ1∣E)n =

(τ1∣E σ)n σ−n for every n ∈ Z. If n = 2, then τ1∣E σ = σ τ1∣E , so Φ(θ) = τ1 ∈ Z(E , σ).
Conversely, let τ ∈ Z(E , σ). Since τ∣E σ = σ τ∣E , (τ∣E σ)n σ−n = (τ∣E)n for every

n ∈ Z. By [2, Remark 15], there exists θ = {θn
1 }n∈Z ∈ TSZalg(A) such that (θ1∣V)∗

n
= τn

for every n ∈ Z. Hence, it follows that Φ(θ) = τ.
(2) By the following commutative diagram

TSZ0 (A)

⋃
Φ

����
���

���
���

GrAutk A
bij ��

Ψ
����

���
���

���
TSZalg(A) �� AutkP(V∗)op

PGL(V) ≅ �� PGL(V∗)op ,

it follows that PGrAutk A ≅ Φ(TSZalg(A)) = Z(E , σ)op. ∎

Theorem 3.5 Let A = A(E , σ) be a geometric algebra.
(1) Twist(A) = {A(E , τ∣E σ) ∣ τ ∈ M(E , σ)}/≅.
(2) Twistalg(A) = {A(E , τ∣E σ) ∣ τ ∈ Z(E , σ)}/≅.

Proof By [2, Proposition 13], for every θ ∈ TSZ0 (A), Aθ ≅ A(E , Φ(θ)∣E σ). By
Lemma 3.3, it follows that

Twist(A) ∶= {Aθ ∣ θ ∈ TSZ0 (A)}/≅
= {A(E , Φ(θ)∣E σ) ∣ θ ∈ TSZ0 (A)}/≅
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= {A(E , τ∣E σ) ∣ τ ∈ Φ(TSZ0 (A))}/≅
= {A(E , τ∣E σ) ∣ τ ∈ M(E , σ)}/≅ .

By Lemma 3.4, we can similarly show that

Twistalg(A) = {A(E , τ∣E σ) ∣ τ ∈ Z(E , σ)}/≅ . ∎

4 Twisted algebras of three-dimensional geometric
AS-regular algebras

In this section, we classify twisted algebras of three-dimensional geometric AS-
regular algebras. We recall that for connected graded algebras A and A′ generated
in degree 1, GrMod A ≅ GrMod A′ if and only if A′ ∈ Twist(A), so

Twist(A) = {A′ ∣ GrMod A′ ≅ GrMod A}/≅.

By Lemma 2.10, we may assume that A is a three-dimensional geometric Calabi–Yau
AS-regular algebra in Table 1 to compute Twist(A). The algebras in Table 1 are called
standard in this paper. For three-dimensional standard AS-regular algebras, we will
compute the subsets Z(E , σ) and M(E , σ) of Autk(P2 ↓ E). We remark that some of
the computations were given in [2, Section 4].

For a three-dimensional geometric AS-regular algebra A(E , σ), the map

Autk(P2 ↓ E) → Autk(E ↑ P2); τ ↦ τ∣E

is a bijection, so we identify τ ∈ Autk(P2 ↓ E) with τ∣E ∈ Autk(E ↑ P2) if there is no
potential confusion.

Let E be an elliptic curve in P
2. We use a Hesse form

E = V(x3 + y3 + z3 − 3λx yz),

where λ ∈ k with λ3 ≠ 1. It is known that every elliptic curve in P
2 can be written

in this form (see [3, Corollary 2.18]). The j-invariant of a Hesse form E is given by
j(E) = 27λ3(λ3+8)3

(λ3−1) (see [3, Proposition 2.16]). The j-invariant j(E) classifies elliptic
curves inP

2 up to projective equivalence (see [5, Theorem IV.4.1(b)]). We fix the group
structure on E with the zero element o ∶= (1,−1, 0) ∈ E (see [3, Theorem 2.11]). For a
point p ∈ E, a translation by p, denoted by σp , is an automorphism of E defined by
σp(q) = p + q for every q ∈ E. We define Autk(E , o) ∶= {σ ∈ Autk E ∣ σ(o) = o}. It is
known that Autk(E , o) is a finite cyclic subgroup of Autk E (see [5, Corollary IV.4.7]).

Lemma 4.1 [7, Theorem 4.6] A generator of Autk(E , o) is given by:
(1) τE(a, b, c) ∶= (b, a, c) if j(E) ≠ 0, 123,
(2) τE(a, b, c) ∶= (b, a, εc) if λ = 0 (so that j(E) = 0),
(3) τE(a, b, c) ∶= (ε2a + εb + c, εa + ε2b + c, a + b + c) if λ = 1 +

√
3 (so that

j(E) = 123),
where ε is a primitive third root of unity. In particular, Autk(E , o) is a subgroup of
Autk(E ↑ P2) = Autk(P2 ↓ E).
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Table 2: The list of Z(E) and G(E).
Type Z(E) G(E)

P PGL3(k) {id}

S
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 e 0
0 0 i

⎞
⎟
⎠

%%%%%%%%%%%%%
ei ≠ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋊ ⟨

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
⟩ ⟨

⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠
⟩

S’
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 e 0
0 0 e−1

⎞
⎟
⎠

%%%%%%%%%%%%%
e ≠ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟨
⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠
⟩

T
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 e 0
g h e2

⎞
⎟
⎠

%%%%%%%%%%%%%
e3 = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋊ ⟨

⎛
⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟
⎠
⟩

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 1 0
0 0 i

⎞
⎟
⎠

%%%%%%%%%%%%%
i ≠ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

T’
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
d 1 0
d2 2d 1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 e 0
0 0 e2

⎞
⎟
⎠

%%%%%%%%%%%%%
e ≠ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

NC ⟨
⎛
⎜
⎝

1 0 0
0 ε 0
0 0 ε2

⎞
⎟
⎠
⟩ ⟨

⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠
⟩

CC {id}
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 e 0
0 0 e2

⎞
⎟
⎠

%%%%%%%%%%%%%
e ≠ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
EC T[3] Autk(E , o)

Remark 4.2 When j(E) = 0, 123, we may fix λ = 0, 1 +
√

3, respectively, as in Lemma
4.1, because if two elliptic curves E and E′ in P

2 are projectively equivalent, then
for every A(E , σ), there exists an automorphism σ ′ ∈ Autk E′ such that A(E , σ) ≅
A(E′ , σ ′) (see [12, Lemma 2.6]).

It follows from [7, Proposition 4.5] that every automorphism σ ∈ Autk E can be
written as σ = σpτ i

E where σp is a translation by a point p ∈ E, τE is a generator of
Autk(E , o), and i ∈ Z∣τE ∣. For any n ≥ 1, we call a point p ∈ E n-torsion if np = o. We
set E[n] ∶= {p ∈ E ∣ np = o} and T[n] ∶= {σp ∈ Autk E ∣ p ∈ E[n]}.

If A = A(E , σ) is a three-dimensional standard AS-regular algebra, we write

Autk(P2 ↓ E) = Z(E) ⋊G(E)
as in Table 2 where Z(E) ≤ Autk(P2 ↓ E) with Z(E) ⊂ Z(E , σ) and G(E) ≤
Autk(P2 ↓ E) so that

N(E , σ) = Z(E) ⋊ (G(E) ∩ N(E , σ)).

Table 2 can be checked by the following three steps:
• Step 1: Calculate Autk(P2 ↓ E).
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• Step 2: Find Z(E) ≤ Autk(P2 ↓ E) with Z(E) ⊂ Z(E , σ) ≅ (PGrAutk A)op (see
Lemma 3.4(2)).

• Step 3: Find G(E) ≤ Autk(P2 ↓ E).
Autk(P2 ↓ E) and PGrAutk A were computed in [13]. We explain these steps for Type
S. By Lemma 2.10, E = V(x) ∪V(y) ∪V(z) and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ(0, b, c) = (0, b, αc),
σ(a, 0, c) = (αa, 0, c),
σ(a, b, 0) = (a, αb, 0),

where α3 ≠ 0, 1. By [13, Lemma 3.2.1],

Autk(P2 ↓ E) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 e 0
0 0 i

⎞
⎟
⎠

%%%%%%%%%%%%%
ei ≠ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋊ ⟨

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

,
⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠
⟩ .

By [13, Theorem 3.3.1],

Z(E , σ) = (PGrAutk A)op

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0 0
0 e 0
0 0 i

⎞
⎟⎟
⎠

%%%%%%%%%%%%%%%%

ei ≠ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⋊ ⟨

⎛
⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎟
⎠
⟩ , if σ 2 ≠ id,

Autk(P2 ↓ E), if σ 2 = id,

so we may take

Z(E) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 e 0
0 0 i

⎞
⎟
⎠

%%%%%%%%%%%%%
ei ≠ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋊ ⟨

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
⟩ and G(E) = ⟨

⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠
⟩ .

Remark 4.3 By Table 2:
(1) ∣G(E)∣ < ∞ if and only if A is of Types P, S, S’, NC, and EC, and, in this case,

there exists τE ∈ Autk(P2 ↓ E) such that G(E) = ⟨τE⟩ is a finite cyclic group.
(2) ∣G(E)∣ < ∞ but ∣G(E)∣ ≠ 2 if and only if A is of Type P (∣G(E)∣ = 1), or Type EC

with j(E) = 0 (∣G(E) = 6∣), or Type EC with j(E) = 123 (∣G(E)∣ = 4).

Theorem 4.4 If A = A(E , σ) is a three-dimensional quadratic AS-regular algebra of
Types T, T’, and CC (so that ∣σ ∣ = ∞ (cf. [9])), then Z(E , σ) = M(E , σ) = N(E , σ).

Proof Writing Autk(P2 ↓ E) = Z(E) ⋊G(E) as in Table 2, it is enough to show that
G(E) ∩ N(E , σ) = {id}.
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Type T: For every τ =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 i

⎞
⎟
⎠
∈ G(E),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ τ∣E σ−1(a,−a, c) = (a,−a, (1 − i)a + ic),
σ τ∣E σ−1(a,−εa, c) = (a,−εa, ε2(1 − i)a + ic),
σ τ∣E σ−1(a,−ε2a, c) = (a,−ε2a, ε(1 − i)a + ic).

If τ ∈ N(E , σ), then there exists τ ∈ Autk P
2 such that σ τ∣E σ−1 = τ∣E . Then 1 − i =

ε2(1 − i) = ε(1 − i), so i = 1.

Type T′: For every τ =
⎛
⎜
⎝

1 0 0
0 e 0
0 0 e2

⎞
⎟
⎠
∈ G(E),

⎧⎪⎪⎨⎪⎪⎩

σ τ∣E σ−1(0, b, c) = (0, eb, e(1 − e)b + e2c),
σ τ∣E σ−1(a, b, c) = (a, (e − 1)a + eb, (e − 1)2a + 2e(e − 1)b + e2c).

If τ ∈ N(E , σ), then there exists τ ∈ Autk P
2 such that σ τ∣E σ−1 = τ∣E . Then e(1 − e) =

2e(e − 1), so e = 1.

Type CC: For every τ =
⎛
⎜
⎝

1 0 0
0 e 0
0 0 e2

⎞
⎟
⎠
∈ G(E) = Autk(P2 ↓ E),

σ τ∣E σ−1(a, b, c)

= (a + (1 − e)b, eb,−3(a + b)2

eb
+ 3(a + b) − eb + e−2 (3 a2

b
+ 3a + b + c)) .

If τ ∈ N(E , σ), then there exists τ ∈ Autk P
2 such that σ τ∣E σ−1 = τ∣E . Then there exists

0 ≠ e′ ∈ k such that

(1 + (1 − e)b, eb) = (1, e′b) in P
1

for every (1, b, c) ∈ E, so e′ = e = 1. ∎

Lemma 4.5 Let A = A(E , σ) be a three-dimensional standard AS-regular algebra of
Type S, S’, NC, or EC. For every i ≥ 1, σ i ∈ Autk(E ↑ P2) = Autk(P2 ↓ E) if and only if
σ 3i = id.

Proof This lemma follows from [9, Theorem 3.4]. ∎

Lemma 4.6 Let A = A(E , σ) be a three-dimensional standard AS-regular algebra.
If σ τσ−1 , σ−1τσ ∈ Autk(E ↑ P2) for every τ ∈ G(E), then M(E , σ) = N(E , σ) =
Autk(P2 ↓ E).

Proof Every τ ∈ Autk(P2 ↓ E) can be written as τ = τ1τ2 where τ1 ∈ Z(E), τ2 ∈
G(E). Since σ τσ−1 = σ τ1τ2σ−1 = τ1σ τ2σ−1, it holds that σ τσ−1 ∈ Autk(E ↑ P2). Sim-
ilarly, every τ ∈ Autk(P2 ↓ E) can be written as τ = τ2τ1 where τ1 ∈ Z(E), τ2 ∈ G(E),
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so σ−1τσ = σ−1τ2τ1σ = σ−1τ2σ τ1, and hence σ−1τσ ∈ Autk(E ↑ P2). The result now
follows from Lemma 3.2. ∎

Theorem 4.7 Let A = A(E , σ) be a three-dimensional standard AS-regular algebra
such that ∣G(E)∣ = 2.
(1) If σ 2 = id, then Z(E , σ) = M(E , σ) = N(E , σ) = Autk(P2 ↓ E).
(2) If σ 6 = id, then M(E , σ) = N(E , σ) = Autk(P2 ↓ E).
(3) If σ 6 ≠ id, then Z(E) = Z(E , σ) = M(E , σ) = N(E , σ).

Proof (1) We will give a proof for Type S’. The other types are proved similarly. By
Lemma 2.10 and Table 2, E = V(x) ∪V(x2 − λyz),

⎧⎪⎪⎨⎪⎪⎩

σ(0, b, c) = (0, b, αc),
σ(a, b, c) = (a, αb, α−1c),

where λ = α3−1
α and α3 ≠ 0, 1, and τE =

⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠

. In general, Z(E) ⊂ Z(E , σ) ⊂

M(E , σ) ⊂ N(E , σ) ⊂ Autk(P2 ↓ E). In this case, σ 2 = id if and only if α2 = 1. Since

⎧⎪⎪⎨⎪⎪⎩

σ τE σ−1(0, b, c) = (0, c, α2b),
σ τE σ−1(a, b, c) = (a, α2c, α−2b),

if σ 2 = id, then σ τE σ−1 = τE . Since τE ∈ Z(E , σ), Z(E , σ) = Autk(P2 ↓ E).
(2) By direct calculations, (τE σ)2 = id, so σ τE σ−1τ−1

E = σ 2 = τ−1
E σ−1τE σ . By

Lemma 4.5, σ τE σ−1τ−1
E , τ−1

E σ−1τE σ ∈ Autk(P2 ↓ E) if and only if σ 6 = id. In
particular, if σ 6 = id, then σ τE σ−1 , σ−1τE σ ∈ Autk(P2 ↓ E). By Lemma 4.6, M(E , σ) =
N(E , σ) = Autk(P2 ↓ E), and hence (2) holds.

(3) If σ 6 ≠ id, then τE ∉ N(E , σ). Since G(E) ∩ N(E , σ) = {id}, N(E , σ) = Z(E),
and hence (3) holds. ∎

Theorem 4.8 Let A = A(E , σ) be a three-dimensional standard AS-regular algebra
except for Type EC. Then Table 3 gives Z(E , σ) and M(E , σ) for each type.

Proof By Theorems 4.4 and 4.7, the result holds. ∎

Definition 4.9 Let E = V(x3 + y3 + z3) ⊂ P
2 so that j(E) = 0, and define

E ∶= {(a, b, c) ∈ E ∣ a9 = b9 = c9} ⊂ E[9]/E[6].

In this paper, we say that a three-dimensional quadratic AS-regular algebra is excep-
tional if it is graded Morita equivalent to A(E , σp) for some p ∈ E.

Lemma 4.10 Let A = A(E , σp) be a three-dimensional standard AS-regular algebra
of Type EC and σq τ i

E ∈ Autk(P2 ↓ E) where q ∈ E[3], i ∈ Z∣τE ∣. Then:
(1) σq τ i

E ∈ Z(E , σp) if and only if p − τ i
E(p) = o,
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Table 3: Z(E , σ) and M(E , σ) except for Type EC.
Type Z(E , σ) M(E , σ)
P PGL3(k) PGL3(k)

T

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0 0
0 e 0
g h 1

⎞
⎟⎟
⎠

���������������
e3 = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⋊ ⟨
⎛
⎜⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟⎟
⎠
⟩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0 0
0 e 0
g h 1

⎞
⎟⎟
⎠

���������������
e3 = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⋊ ⟨
⎛
⎜⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟⎟
⎠
⟩

T′
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0 0
d 1 0
d2 2d 1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0 0
d 1 0
d2 2d 1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

CC

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

S

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D ⋊ ⟨
⎛
⎜⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎟⎟
⎠
⟩ if σ 2 ≠ id,

Autk(P2 ↓ E) if σ 2 = id.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D ⋊ ⟨
⎛
⎜⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎟⎟
⎠
⟩ if σ 6 ≠ id,

Autk(P2 ↓ E) if σ 6 = id.

S′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1 0 0
0 e 0
0 0 e−1

⎞
⎟⎟⎟
⎠

������������������

e ≠ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

if σ 2 ≠ id

Autk(P2 ↓ E) if σ 2 = id.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1 0 0
0 e 0
0 0 e−1

⎞
⎟⎟⎟
⎠

������������������

e ≠ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

if σ 6 ≠ id

Autk(P2 ↓ E) if σ 6 = id.

NC

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨
⎛
⎜⎜⎜
⎝

1 0 0
0 ε 0
0 0 ε2

⎞
⎟⎟⎟
⎠
⟩ if σ 2 ≠ id

Autk(P2 ↓ E) if σ 2 = id

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨
⎛
⎜⎜⎜
⎝

1 0 0
0 ε 0
0 0 ε2

⎞
⎟⎟⎟
⎠
⟩ if σ 6 ≠ id

Autk(P2 ↓ E) if σ 6 = id

where D ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0 0
0 e 0
0 0 i

⎞
⎟⎟
⎠

���������������
ei ≠ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

(2) σq τ i
E ∈ N(E , σp) if and only if p − τ i

E(p) ∈ E[3], and
(3) M(E , σp) = N(E , σp).

Proof (1) Since σp(σq τ i
E)σ−1

p = σq+p−τ i
E(p)τ i

E , σq τ i
E ∈ Z(E , σp) if and only if p −

τ i
E(p) = o.

(2) Since σp(σq τ i
E)σ−1

p = σq+p−τ i
E(p)τ i

E , by [11, Lemma 5.3], σq τ i
E ∈ N(E , σp) if and

only if p − τ i
E(p) ∈ E[3].

(3) In general, M(E , σp) ⊂ N(E , σp), so it is enough to show that N(E , σp) ⊂
M(E , σp). Let σq τ i

E ∈ N(E , σp) ⊂ Autk(P2 ↓ E) where q ∈ E[3] and i ∈ Z∣τE ∣. Since
σp(σq τ i

E)σ−1
p = σq+p−τ i

E(p)τ i
E ∈ Autk(P2 ↓ E), p − τ i

E(p) ∈ E[3]. For any j ≥ 1, we can
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Table 4: Z(E , σ) and M(E , σ) for Type EC.
Type j(E) Z(E , σp) M(E , σp)

j(E) ≠ 0, 123
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T[3], if p ∉ E[2]

Autk(P
2 ↓ E), if p ∈ E[2]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T[3], if p ∉ E[6]

Autk(P
2 ↓ E), if p ∈ E[6]

EC j(E) = 0
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T[3], if p ∉ E[2]

T[3] ⋊ ⟨τ3
E⟩, if p ∈ E[2]

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

T[3], if p ∉ E ∪ E[6]

T[3] ⋊ ⟨τ2
E⟩, if p ∈ E

T[3] ⋊ ⟨τ3
E⟩, if p ∈ E[6]

j(E) = 123

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

T[3], if p ∉ E[2]

T[3] ⋊ ⟨τ2
E⟩, if p ∈ E[2]/⟨(1, 1, λ)⟩

Autk(P2 ↓ E), if p = (1, 1, λ)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

T[3], if p ∉ E[6]

T[3] ⋊ ⟨τ2
E⟩, if p ∈ E[6]/F

Autk(P2 ↓ E), if p ∈ F

where F ∶= ⟨(1, 1, λ)⟩ ⊕ E[3].

write

(σq τ i
E σp) j(σp)− j = σr j τ

ji
E ,

where r j = ∑ j−1
l=0 τ l i

E (q) +∑ j
l=1 τ l i

E (p − τ( j−l)i
E (p)), and

(σq τ i
E σp)− j(σp) j = σs j τ

− ji
E ,

where s j = ∑ j
l=1(−τ−l i

E (q)) +∑ j−1
l=0 τ−l i

E (p − τ(l− j)i
E (p)). By [7, Lemma 4.19], for any

j ≥ 1, r j , s j ∈ E[3], so

(σq τ i
E σp) j(σp)− j , (σq τ i

E σp)− j(σp) j ∈ Autk(P2 ↓ E),

and hence (3) holds. ∎

Theorem 4.11 Let A = A(E , σp) be a three-dimensional standard AS-regular algebra
of Type EC. Then Table 4 gives Z(E , σp) and M(E , σp).

Proof By Lemma 4.10(3), it is enough to calculate Z(E , σp) and N(E , σp). By
Lemma 3.4(2), Z(E , σp)was given in [10, Proposition 4.7]. The set of points satisfying
p − τ i

E(p) ∈ E[3]was given in [10, Theorem 3.8]. By Lemma 4.10(1) and (2), the result
follows. ∎

Corollary 4.12 shows that in most cases a twisting system can be replaced by an
automorphism to compute a twisted algebra.

Corollary 4.12 Let A = A(E , σ) be a three-dimensional nonexceptional standard
AS-regular algebra. If σ 6 ≠ id or σ 2 = id, then Z(E , σ) = M(E , σ), so Twistalg(A) =
Twist(A).

Proof By Theorems 4.4 and 4.7, it is enough to show the case that A = A(E , σp) is
of Type EC such that j(E) = 0, p ∉ E, or j(E) = 123.
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(1) j(E) = 0, p ∉ E: Let E = V(x3 + y3 + z3) ⊂ P
2. By Theorem 4.11, if p ∈ E[2] or

p ∉ E[6], then N(E , σp) = M(E , σp) = Z(E , σp).
(2) j(E) = 123: Let E = V(x3 + y3 + z3 − 3λx yz) ⊂ P

2 where λ = 1 +
√

3. By
Theorem 4.11, if p ∈ E[2] or p ∉ E[6], then N(E , σp) = M(E , σp) = Z(E , σp). ∎

Let E ⊂ P
2 be a projective variety. For τ ∈ Autk E, we define

∣∣τ∣∣ ∶= inf{i ∈ N+ ∣ τ i ∈ Autk(E ↑ P2)}.

Corollary 4.13 For every three-dimensional nonexceptional geometric AS-regular
algebra B, there exists a three-dimensional standard AS-regular algebra S such that
Twist(B) = Twistalg(S).

Proof By Lemma 2.10, there exists a three-dimensional nonexceptional standard
AS-regular algebra A = A(E , σ) such that GrMod B ≅ GrMod A. If σ 6 ≠ id, then
Twist(B) = Twist(A) = Twistalg(A) by Corollary 4.12, so we assume that σ 6 = id. Set
τ ∶= σ 2 ∈ Autk E and S ∶= A(E , σ 3). Since ∣∣τ∣∣ = ∣∣σ 2∣∣ = ∣σ 6∣ = 1 by [9, Theorem 3.4],
τ ∈ Autk(E ↑ P2). Since τ i+1σ = σ 2i+3 = σ 3τ i for every i ∈ Z, GrMod A ≅ GrMod S
by Theorem 2.6. Since (σ 3)2 = id, Twist(B) = Twist(A) = Twist(S) = Twistalg(S) by
Corollary 4.12. ∎

Example 4.14 shows that even if B ≅ Sθ for some three-dimensional quadratic
Calabi–Yau AS-regular algebra S, there may be no ϕ ∈ GrAutk S such that B ≅ Sϕ . We
need to carefully choose S in order that B ≅ Sϕ for some ϕ ∈ GrAutk S.

Example 4.14 Let E ⊂ P
2 be an elliptic curve. Assume that j(E) ≠ 0, 123. We

set three geometric algebras of Type EC; B ∶= A(E , τE σp), A ∶= A(E , σp), and
S ∶= A(E , σ3p), where p ∈ E[6]/(E[2] ∪ E[3]). By [8, Theorem 4.3], these algebras
are three-dimensional quadratic AS-regular algebras. Moreover, A and S are
standard. By [7, Theorem 4.20], GrMod B ≅ GrMod A ≅ GrMod S. Since ∣σp ∣ = 6 and
∣σ3p ∣ = 2, M(E , σ3p) = Z(E , σ3p) ≠ Z(E , σp) by Table 4, so Twist(B) = Twistalg(S) ≠
Twistalg(A).
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