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Abstract

In a series of three earlier papers, we considered a family of restriction problems for
classical groups (over local and global fields) and proposed precise answers to these
problems using the local and global Langlands correspondence. These restriction prob-
lems were formulated in terms of a pair W ⊂ V of orthogonal, Hermitian, symplectic, or
skew-Hermitian spaces. In this paper, we consider a twisted variant of these conjectures
in one particular case: that of a pair of skew-Hermitian spaces W = V .
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1. Introduction

In [GGP12b], we considered a family of restriction problems for classical groups (over local
and global fields) and proposed precise answers to these problems using the local and global
Langlands correspondence. These restriction problems were formulated in terms of a pair W ⊂ V
of orthogonal, Hermitian, symplectic, or skew-Hermitian spaces. In this paper, we consider a
twisted variant of these conjectures in one particular case: that of a pair of skew-Hermitian
spaces W = V .

Let F be a non-archimedean local field and let E be a separable quadratic algebra over F
with σ ∈ Gal(E/F ), the non-trivial element of the Galois group. Let V be a non-degenerate
skew-Hermitian space of dimension n over E, with pairing 〈v, w〉. We may choose an orthogonal
basis {v1, v2, . . . , vn} of V over E and define the determinant

det(V ) =
∏
i

〈vi, vi〉,

in which each term 〈vi, vi〉 lies in E×
0 , where E0 is the F -subspace of E consisting of elements of

trace 0 and E×
0 = E0 � {0}. Since the product of two elements in E×

0 lies in F×, the determinant
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lies in E×
0 when n is odd and in F× when n is even. Both E×

0 and F× are principal homogeneous
spaces for the group F×, and the orbit spaces E×

0 /NE
× and F×/NE× have cardinality 2 if E

is a field, and have cardinality 1 otherwise. The determinant, as an element of one of these orbit
spaces E×

0 /NE
× or F×/NE×, is independent of the choice of an orthogonal basis, and gives a

complete isomorphism invariant of the skew-Hermitian space V over E.
The isometry group U(V ) has associated to it the Weil representation ωV,ψ,μ (see [GGP12b,

pp. 47–50]). If E is a field, then this complex representation of U(V ) depends on a non-trivial
additive character ψ of F and a conjugate-symplectic character μ of E× (i.e. the restriction of μ
to F× is the quadratic character ωE/F associated to E/F by the local class field theory, so that
ωE/F : F×/N(E×) ∼= {±1}). For an irreducible representation π1 ⊗ π2 of U(V )×U(V ) with a
generic L-parameter, we had considered the problem of determining

dim HomU(V )(π1 ⊗ π2, ωV,ψ,μ),

in [GGP12b]. It is known by the work [Sun12] that this dimension is 0 or 1, and the conjecture
in [GGP12b] (proved in [GI16]) determines precisely when this dimension is equal to 1.

If E = F × F , U(V ) ∼= GLn(F ), the Weil representation ωV,ψ,μ could be taken to be S(Fn)
with the natural action of GLn(F ) on it, and the resulting Hom space HomGLn(F )(π1 ⊗ π2,S(Fn))
is the one which intervenes in the local Rankin–Selberg integral for GLn(F )×GLn(F ).

Here is the simplest twisted variant of the above question that we consider in this paper.
Instead of considering U(V ) as a subgroup of U(V )(F × F ) = U(V )×U(V ), we consider it as
a subgroup of U(V )(E) ∼= GLn(E). For an irreducible generic representation Π of GLn(E), we
consider the problem of determining

dim HomU(V )(Π, ωV,ψ,μ).

We conjecture that this dimension is equal to 1 for a unique (up to isomorphism) skew-Hermitian
space V of dimension n over E, whose determinant is related to a local epsilon factor that we
describe now.

Let M be the Langlands parameter of Π, thus M is an n-dimensional representation of the
Weil–Deligne group WDE of E. Associated to M , let σM∨ be the conjugate-dual representation
of WDE , so that M ⊗ σM∨ is a conjugate-orthogonal representation of WDE of dimension
n2. Since μ|F× = ωE/F , μ is a conjugate-symplectic character of E×, and hence M ⊗ σM∨ ⊗
μ−1 is a conjugate-symplectic representation of WDE . In this paper, we conjecture that the
skew-Hermitian space V for which HomU(V )(Π, ωV,ψ,μ) �= 0 is determined by the identity

μ(det(V )) = ε(1/2,M ⊗ σM∨ ⊗ μ−1, ψE) · det(M)(−1)n · ωE/F (−1)n(n−1)/2,

where ψE is the additive character of E obtained by composing ψ with the trace from E to F .
For the other skew-Hermitian space V ′ of rank n over E, we conjecture that

HomU(V ′)(Π, ωV ′,ψ,μ) = 0.

We note that when n is even so that det(V ) ∈ F×, μ(det(V )) = ωE/F (det(V )) = ±1, and
μ(det(V )) = +1 if and only if the group U(V ) is quasi-split. When n is odd, the group U(V ) is
quasi-split for both of the skew-Hermitian spaces, and μ(det(V )) is a square root of ωE/F (−1).
Likewise, the local root number ε(1/2,M ⊗ σM∨ ⊗ μ−1, ψE) is equal to ±1 when n is even and
is a square root of ωE/F (−1) if n is odd.

A related problem that has been studied in the literature is the determination of

dim HomU(V )(Π,C).

1918
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The third author has proposed precise conjectures about this dimension [Pra20]. Here, we have
replaced the trivial representation of U(V ) by a Weil representation, which lies in a one-parameter
family (indexed by the characters of E1) of the next smallest representations of U(V ). In retro-
spect, this appears quite natural and is simpler than this related problem considered in [Pra20].
It is also simpler than our original conjecture in the skew-Hermitian case, where we considered
U(V ) as a subgroup of U(V )(F × F ) = U(V )×U(V ), whereas U(V )(E) = GLn(E) is a simpler
group, whose L-packets are singletons. Note also that for HomU(V )(Π, ωV,ψ,μ), we consider ε and
L-function at 1/2 of M ⊗ σM∨ ⊗ μ−1 whereas for HomU(V )(Π,C), one considers the pole at s = 1
of M ⊗ σM∨.

The astute reader can no doubt guess by now the general twisted variant of the GGP con-
jecture we have in mind. Beyond the case of U(V ) as a subgroup of U(V )(E) and U(V )(F × F ),
we could choose a different quadratic extension K of F and consider U(V ) as a subgroup of
U(V )(K), which is the isometry group of the skew-Hermitian space V ⊗E L, with L = E ⊗K.
Indeed, one could consider an arbitrary pair of étale quadratic F -algebras (E,K) and formulate
a corresponding branching problem. The various possibilities are given in the following table.

E\K F × F E Quadratic field K �= E

F × F Rankin–Selberg Rankin–Selberg Asai

Field GGP U(V ) ⊂ GL(V ) U(V ) ⊂ U(VK)

Remark 1.1. We remark that in the case when E = F × F , and K is a separable quadratic
extension of F (corresponding to the first row of the above table), we would be asserting that for
any irreducible admissible generic representation π of GLn(K), and for ω the Weil representation
of GLn(F ) realized on the Schwartz space S(Fn), we have

HomGLn(F )[π ⊗ ω,C] = C.

The assertion on dimension of the Hom space being ≤ 1 is part of Theorem B of [Sun12], and
that it is non-zero is the conclusion of the Rankin–Selberg theory.

The last case in the table above, when E �= K are two distinct quadratic fields, is the most
complex and is discussed in § 8. To provide some evidence for our conjectures, we prove them
when n = dimV ≤ 2 (see §§ 3 and 9), as well as for unitary principal series representations
for general n (see §§ 4, 5, and 10, especially Corollary 5.3 and Theorem 10.7). Indeed, when
E = K, we reduce the conjecture for tempered representations to the case of essentially discrete-
series representations of GL(V ) (in Corollary 5.2), and further to the case of supercuspidal
representations under a certain hypothesis (in Theorem 5.4). In particular, this allows us to
prove the conjecture for the Steinberg representation (in Corollary 5.8). As a supplementary
result, we show the vanishing of the corresponding higher Ext groups Exti (i ≥ 1) for tempered
representations (in Theorem 5.9).

The work which we needed to do in this paper with the Mackey theory allowed us to deal
with certain non-tempered representations too, leading us naturally to the non-tempered analog
of the GGP conjectures [GGP20] in the twisted setting. In considering this twisted case, we
realized that our original conjectures for non-tempered representations, where we introduced the
concept of relevant parameters, needed to be clarified in some cases. This is also done in § 7.
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We also consider the twisted period problems over global fields. As in the GGP conjectures,
one expects that the non-vanishing of the global period integral here too is equivalent to the non-
vanishing of a corresponding central L-value, in the absence of local obstructions. For example,
when E = K, the relevant central L-value is L(1/2,M × σM∨ × μ−1). One can also formulate a
refined conjecture in the style of Ichino–Ikeda, which gives a precise formula relating the global
period integral to the product of the above central L-value and certain canonical local period
integrals. In the global context, it is interesting to note that when E �= K, all possible local
scenarios given in the above table will arise. Hence, one of our goals in this paper is to give a
uniform formulation of the local conjectures which can be specialized to all the local scenarios
in the table.

With the twisted GGP problems and conjectures formulated, one can ask if all the previous
work that has been done for the GGP conjectures can be adapted to this twisted setting. These
include Waldspurger’s and Beuzart-Plessis’s integral formulae for the branching multiplicity and
comparison of Jacquet–Rallis relative trace formulae, which in the skew-Hermitian case is due
to Liu [Liu14] and Xue [Xue14, Xue16]. To this end, we remark that an integral formula for the
branching multiplicity is being developed in the thesis work of Nhat Hoang Le (a student of the
first author), whereas a relative trace formula approach is being pursued in the thesis work of
Danielle Wang (a student of Wei Zhang at MIT).

2. When E = K is a field

In this section, we consider the simpler case E = K, which was briefly discussed in the
introduction. We formulate our conjectures more formally here, in both the local and global
setting.

2.1 Local case
We assume first that F is a local field and E/F is a separable quadratic field extension. We
let E0 denote the F -subspace of trace 0 elements in E and let E1 ⊂ E× denote the subgroup
of norm 1 elements. Fix a non-trivial additive character ψ of F and let σ ∈ Gal(E/F ) be the
non-trivial automorphism of E/F .

For a skew-Hermitian space V over E of dimension n, we recall that

det(V ) ∈
{
F×/NE/F (E×), if n is even;
E×

0 /NE/F (E×), if n is odd.

If F is non-archimedean, there are precisely two skew-Hermitian spaces of dimension n, distin-
guished by their determinants. When F is archimedean, there are many more skew-Hermitian
spaces, distinguished by their signatures.

Without loss of generality, we may assume that all these skew-Hermitian spaces (of a given
dimension) have the same underlying vector space V over E, equipped with non-isomorphic
skew-Hermitian forms. Thus the unitary groups U(V ) ⊂ GL(V ) = AutE(V ) = GLn(E) are all
subgroups of a fixed ambient group GLn(E).

For each skew-Hermitian space V over E and a conjugate-symplectic character μ of E×, we
have the associated Weil representation ωV,ψ,μ of U(V ). Now for an irreducible representation Π
of GL(V ) ∼= GLn(E), we consider the Hom space

HomU(V )(Π, ωV,ψ,μ).

We now state our main local conjecture in this case.

1920
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Conjecture 2.1. (i) For any Π ∈ Irr(GL(V )),

dim HomU(V )(Π, ωV,ψ,μ) ≤ 1.

(ii) If Π ∈ Irr(GL(V )) is generic, then∑
V

dim HomU(V )(Π, ωV,ψ,μ) = 1.

where the sum is over the equivalence classes of skew-Hermitian structures on V .
(iii) For generic Π ∈ Irr(GL(V )), the unique skew-Hermitian space V which gives a non-zero

contribution to the above sum satisfies

μ(det(V )) = ε(1/2,Π× σΠ∨×μ−1, ψE) · ωΠ(−1)n · ωE/F (−1)n(n−1)/2,

where σΠ∨ is the conjugate-dual representation of Π and ωΠ is the central character of Π.

As noted in the introduction, the ratio of the two sides of condition (iii) is a priori ±1. When
F is non-archimedean, condition (iii) in the conjecture uniquely determines the summand with
non-zero contribution to the sum in condition (ii). When F = R and E = C, one needs to be
more specific about the V which gives non-zero contribution. We shall consider this archimedean
case in greater detail in § 6. Note that if we define the discriminant of V by

disc(V ) = (−1)n(n−1)/2 · det(V ),

then the formula in condition (iii) can be expressed more succinctly as

μ(disc(V )) = ε(1/2,Π× σΠ∨ × μ−1, ψE) · ωΠ(−1)n,

taking note of the fact that μ(−1) = ωE/F (−1). We shall provide some evidence for this con-
jecture in the next two sections, verifying it for dimV ≤ 2 and for unitary principal series
representations of GL(V ) for V of arbitrary dimension over E.

In the above formulation, the conjecture does not require the local Langlands correspondence,
as the local root number in condition (iii) can be interpreted as the Rankin–Selberg local root
number defined by Jacquet, Piatetski-Shapiro, and Shalika [JPSS83].

Let M denote the Langlands parameter of Π, so that M is an n-dimensional representation
of the Weil–Deligne group WDE of E with det(M) corresponding to the central character ωΠ

under the local class field theory. We have noted in the introduction that M ⊗ σM∨ ⊗ μ−1 is a
conjugate-symplectic representation of WDE . Then Conjecture 2.1(iii) can be written as

μ(det(V )) = ε(1/2,M ⊗ σM∨ ⊗ μ−1, ψE) · det(M)(−1)n · ωE/F (−1)n(n−1)/2.

Note that, for e ∈ E×
0 ,

det(M ⊗ σM∨)(e) = det(M)(e)n/det(M)(eσ)n = det(M)(−1)n,

and

ωE/F (−1) = ωK/F (e2) = (e2, e2) (Hilbert symbol).

Hence, the above identity can be expressed as (for E = K)

μ(det(V )) = ε(1/2,M ⊗ σM∨ ⊗ μ−1, ψE) · det(M ⊗ σM∨)(e) · ωK/F (e2)n(n−1)/2,

and it is this last statement that generalizes well when we deal with the general case (where
E �= K) later.
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2.2 Global case
Consider now the case when E/F is a quadratic extension of global fields with adele rings AE

and AF . Fix a non-trivial additive character ψ of F\AF . We shall consider all skew-Hermitian
structures on a vector space V of dimension n over E.

Let Π ∼=⊗v Πv be a cuspidal automorphic representation of GL(V )(AF ) = GL(V ⊗F AF ) =
GL(V ⊗E AE) so that Πv are generic representations for each place v of E. For a conjugate-
symplectic Hecke character μ of A×

E , we may consider the automorphic Weil representation
ωV,ψ,μ of U(V )(AF ) (see [GGP12b]). Now we consider the global period integral

PV : Π⊗ ωV,ψ,μ −→ C

defined by

PV (f, φ) =
∫

[U(V )]
f(g) · φ(g) dg for f ∈ Π and φ ∈ ωV,ψ,μ,

where we have written [U(V )] for the automorphic quotient U(V )(F )\U(V )(AF ) with dg the
Tamagawa measure on it.

Globally, we are interested in characterizing the non-vanishing of this period integral. Our
global conjecture is the following.

Conjecture 2.2. In the above setting, in particular for V a skew-Hermitian space over a global
field E, the global period integral PV is non-zero if and only if the following two conditions hold
(denoting Vv = V ⊗ Fv):
(a) for all places v of F , HomU(Vv)(Πv, ωVv ,ψv ,μv) �= 0;
(b) L(1/2,Π× σΠ∨ × μ−1) �= 0.

Further, for a cuspidal automorphic representation Π of GLn(AE), if L(1/2,Π× σΠ∨ × μ−1) �= 0,
then there exists a unique skew-Hermitian space V of dimension n over E such that the global
period integral PV is non-zero.

Observe that if we are given a collection of local skew-Hermitian spaces {Vv} for all places v
of F (of a fixed dimension n ≥ 1), then the adelic skew-Hermitian space

⊗
v Vv is coherent over

F , i.e. the family of local skew-Hermitian spaces Vv comes from a global skew-Hermitian space
V , if and only if ∏

v

μv
(
det(Vv)

)
= 1.

Therefore, given a cuspidal automorphic representation Π of GLn(AE), if the local skew-
Hermitian spaces {Vv} are those for which HomU(Vv)(Πv, ωVv ,ψv ,μv) �= 0 for all places v of F ,
then part (iii) of our local Conjecture 2.1 implies that this collection of local skew-Hermitian
spaces {Vv} is coherent over F if and only if

ε(1/2,Π× σΠ∨ × μ−1) = 1.

Therefore, given a cuspidal automorphic representation Π of GLn(AE) for which the global
period integral on [U(V )] is non-zero (hence, HomU(Vv)(Πv, ωVv ,ψv ,μv) �= 0 for all places v of
F ), then ε(1/2,Π× σΠ∨ × μ−1) = 1. Thus, a necessary condition for the non-vanishing of
L(1/2,Π× σΠ∨ × μ−1) is satisfied if the global period integral on [U(V )] is non-zero. Conversely,
given a cuspidal automorphic representation Π of GLn(AE) for which L(1/2,Π× σΠ∨ × μ−1) �= 0
and hence ε(1/2,Π× σΠ∨ × μ−1) = 1, we have a global skew-Hermitian space V , unique up to
isomorphism, for which Conjecture 2.2 implies non-vanishing of period integral on [U(V )].
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2.3 A refined global conjecture
Not surprisingly, one expects to be able to refine the above global conjecture to a precise formula
relating the global period integral to the central L-value.

For Π ∼=⊗v Πv, a cuspidal automorphic representation of GL(V )(AF ) = GL(V ⊗F AF ) =
GL(V ⊗E AE), and ωV,ψ,μ ∼=

⊗
v ωVv ,ψv ,μv , the Weil representation of U(V )(AF ), fv, f ′v ∈ Πv and

φv, φ
′
v ∈ ωVv ,ψv ,μv , we may consider the following integral of matrix coefficients for each place v

of F :

Iv(fv, f ′v, φv, φ′v) :=
∫

U(V )(Fv)
〈gv · fv, f ′v〉 · 〈gv · φv, φ′v〉 dgv. (2.3)

As in [Xue16], it is not hard to see that if Πv is tempered, this integral is absolutely convergent,
so that it defines a U(Vv)×U(Vv)-equivariant linear functional

Iv : Πv ⊗Πv ⊗ ωVv ,ψv ,μv ⊗ ωVv ,ψv ,μv −→ C.

Now one would like to:

• show that Iv is non-zero if and only if HomU(V )(Fv)(Πv, ωVv ,ψv ,μv) �= 0;
• compute this integral at almost all places v of F where all data involved are unramified.

Without having done this work, we may nonetheless venture a guess here, in analogy with the
original GGP case [Xue16].

Conjecture 2.4. Suppose that:

• Ev/Fv is an unramified quadratic extension of residue characteristic not 2 and ψv has conductor
OFv ;

• μv is unramified;
• Vv contains a selfdual lattice Λv whose stabilizer in U(Vv) is a hyperspecial maximal compact

subgroup Kv, contained in K̃v = GL(Λv) ⊂ GL(Vv);
• dgv is the Haar measure on U(Vv) which gives Kv volume 1;
• Πv is K̃v-unramified and fv = f ′v is a K̃v-spherical vector of norm 1;
• φv = φ′v is a Kv-spherical vector of norm 1 in the Weil representation ωVv ,ψv ,μv .

Then

Iv(fv, f ′v, φv, φ′v) =
L(1,M∨

GL(Vv))

L(1,M∨
U(Vv))

· L(1/2,Πv × σΠ∨
v × μ−1

v )
L(1,Πv,Ad)

,

where

L(1,M∨
GL(Vv)) =

n∏
k=1

ζEv(k) and L(1,M∨
U(Vv)) =

n∏
k=1

L(k, ωkEv/Fv
)

are the values at s = 1 of the L-functions of the dual motives of GL(V ) and U(V ), respectively.
(One may observe that the expression for Iv(fv, f ′v, φv, φ′v) given above implies, in particular,
that it is non-zero.)

Given this, it is natural to define a normalized local period integral:

I#
v =

L(1,M∨
U(Vv))

L(1,M∨
GL(Vv))

· L(1,Πv,Ad)
L(1/2,Πv × σΠ∨

v × μ−1
v )
· Iv. (2.5)

We also note that if Ev = Fv × Fv, the analog of the above conjecture holds, and has already
been considered in the original formulation of the refined GGP conjecture for skew-Hermitian
spaces in [GGP12b].
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Coming back to the global setting, for each of the groups GL(V ) or U(V ), we will fix a
decomposition of the Tamagawa measures dg =

∏
v dgv, so that for almost all v, the local Haar

measures dgv give a hyperspecial maximal compact subgroup volume 1. We will also fix a decom-
position of the global Petersson inner product (defined by integrating over GLn(E)\GLn(AE)1,
where GLn(AE)1 := {g ∈ GLn(AE) with |det(g)| = 1}) as a product of local pairings:

〈−,−〉Pet =
∏
v

〈−,−〉v, (2.6)

and use these dgv and 〈−,−〉v in the definition of the local period integrals Iv introduced above.
We can now state the following.

Conjecture 2.7. Given a (tempered) cuspidal automorphic representation Π of GL(V ),

P ⊗ P =
L(1/2,Π× σΠ∨ × μ−1)

L(1,M∨
U(V ))

·
(L(s,M∨

GL(V ))

L(s,Π,Ad)

)∣∣∣∣
s=1

·
∏
v

I#
v .

as linear functionals on Π⊗Π⊗ ωV,ψ,μ ⊗ ωV,ψ,μ.
Here, note that L(s,M∨

GL(V )) and L(s,Π,Ad) both have a simple pole at s = 1, so that their
ratio is holomorphic and non-zero at s = 1.

2.4 Finite fields
We conclude this section by highlighting the restriction problem for skew-Hermitian spaces over
a finite field F = Fq. In the finite field setting, only the case E = K can occur. In this setting, a
naive first guess is that for any irreducible generic representation Π of GLn(Fq2),

dim HomUn(Fq)(Π, ω) = 1,

where ω is the Weil representation of Sp2n(Fq), restricted to the subgroup Un(Fq). However, an
examination of the case n = 1 shows that this cannot literally be the case because dimω = q
but U1(Fq) has q + 1 characters. Indeed, the unique non-trivial quadratic character of U1(Fq) is
missing from ω. Moreover, experience with the usual GGP problem over finite fields shows that
the above branching multiplicity can be larger than 1. Nonetheless, the naive expectation should
be generically true for cuspidal Deligne–Lusztig representations and it is an interesting question
to quantify the extent of its failure.

Over finite fields, we can also consider this restriction problem for symplectic groups. For
any irreducible generic representation Π of Sp2n(Fq2), one would thus like to determine

dim HomSp2n(Fq)(Π, ω).

It is curious that since the two fold cover of Sp2n(E) splits over Sp2n(F ), there is no analogous
problem for non-archimedean local fields. Perhaps, one could go to four fold cover of Sp2n(E)
(if the 4th roots of unity are there in E) to study the analogous branching problem?

A first study of these branching problems over finite fields has been conducted by Nhat
Hoang Le.

3. Evidence in low rank

In this section, we provide some evidence towards Conjecture 2.1 when n = dimV ≤ 2.
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3.1 Rank-one case
We begin by examining the case when dimV = 1, so that GL(V ) = E× ⊃ U(V ) = E1, where
E1 denotes the subgroup of norm one elements. Given a character χ of E×, we are thus inter-
ested in understanding HomE1(χ, ωV,ψ,μ). This is addressed by a theorem of Moen [Moe87] and
Rogawski [Rog92].

Theorem 3.1. If χ is a character of E×, then

dim HomE1(χ, ωV,ψ,μ) ≤ 1

and equality holds if and only if

μ(det(V )) = χ(−1) · ε(1/2, χσ/χ · μ−1, ψE).

This is precisely what Conjecture 2.1 asserts in the case dimV = 1.

3.2 Rank-two case
Suppose now that dimV = 2. Skew-Hermitian spaces of rank two can be described using quater-
nion F -algebras, as we have exploited in [GGP12a]. More precisely, for a quaternion F -algebra
B, fix an F -algebra embedding i : E ↪→ B and write B = E ⊕ E · x where x is an element of B
such that xex−1 = eσ. Thus, B is a two-dimensional E-vector space (by left multiplication), and
we may identify GLE(B) with GL2(E) with respect to the basis {1, x}.

Now fix a trace 0 element δ ∈ E× and set

〈b1, b2〉 = δ · (projection of b1 · b̄2 onto E).

Then 〈−,−〉 is a skew-Hermitian form on B; we shall denote this skew-Hermitian space by VB.
The isomorphism class of VB is independent of x, δ, and VB is split if and only if B is split.

The unitary similitude group GU(VB) ⊂ GL(VB) = GL2(E) can be described by the
isomorphism

ι : (B× × E×)/ΔF× ∼=−→ GU(VB) ⊂ GL(VB)

given by sending (b, e) ∈ B× × E× to the element of GL(VB) whose action on B is

(b, e) : y �→ e · y · b−1.

The similitude character is

sim(b, e) = NE/F (e) ·NB(b)−1.

Hence, the unitary group is

U(VB) ∼= {(b, e) ∈ (B× × E×)/ΔF× = GU(VB) : NE/F (e) = NB(b)}.
This is contained in the subgroup

GU(VB)+ ∼= {(b, e) ∈ (B× × E×)/ΔF× = GU(VB) : NB(b) ∈ NE/F (E×)},
which has index 2 in GU(VB). Moreover, if Z = E× denotes the center of GL(VB), then

GU(VB)+ = Z ·U(VB).

Thus, when working with irreducible representations of U(VB), there is no difference in working
with GU(VB)+ instead.
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Let us explicate the Weil representation of U(VB) in this framework. The Weil representation
ωψ,μ,B is reducible but admits a central character decomposition:

ωψ,μ,B =
⊕
λ

ωψ,μ,B [λ],

where the sum runs over the characters of Z(U(VB)) = E1 and each summand is irreducible or
0. We can describe ωψ,μ,B [λ] in terms of the description of U(VB) given above. More precisely,
suppose that λ = χ|E1 for a character χ of E×. Consider the L-parameter

N = IndWF
WE

(μ · χ−1) of GL2(F ),

and let ΣB,N be the associated representation of B×. This gives a representation

ΣB,N � χ of B× × E×,

which is trivial on ΔF×, i.e. a representation of GU(VB). This representation of GU(VB) decom-
poses into the sum of two irreducible summands when restricted to GU(VB)+. One of these
summands is the representation ωψ,μ,B [χ|E1 ] whereas the other is ωψ′,μ,B [χ|E1 ], with ψ′ in a
different N(E×)-orbit as ψ.

Now suppose that Π is an irreducible generic representation of U(VB ⊗F E) ∼= GL(VB) with
L-parameter M . The embedding U(VB) ↪→ U(VB ⊗F E) is the natural embedding U(VB) ⊂
GL(VB). Pulling Π back via ι, and with χ := ωΠ, we see that

HomU(VB)(Π, ωψ,μ,B) = HomU(VB)(Π, ωψ,μ,B [χ|E1 ])

∼= Hom(B×)+(ι∗(Π), ωψ,μ,B [χ|E1 ])

∼= HomB×(ι∗(Π),ΣB,N ).

Now it is important to note that the embedding ι : B× ↪→ GL(VB) = GL2(E) is not the
natural embedding B× ↪→ (B ⊗F E)× ∼= GL2(E), but rather differs from it by the outer auto-
morphism b �→ b̄−1. Indeed, ι is the inverse on the central F×. Taking this into account, we see
that the last Hom space above is the space

HomB×(Π∨ ⊗ Σ∨
B,N ,C)

of twisted trilinear forms, where B× ↪→ (B ⊗F E)× ∼= GL2(E), with the last isomorphism
induced by an E-algebra isomorphism B ⊗F E ∼= M2(E).

By a result of the third author [Pra92], one has

dim HomB×(Π∨ ⊗ Σ∨
B,N ,C) ≤ 1

with equality if and only if

ε(1/2,As+(M∨)⊗N∨, ψE) · ωE/F (−1) = μ(det(VB)),

where As+ is the Asai lift of M from E to F . We refer the reader to § 8.4 for the definition and
properties of As+. Now let us explicate the local root number:

ε(1/2,As+(M∨)⊗N∨, ψE) = ε(1/2,As+(M∨)⊗ IndFE(μ−1 · χ), ψ)

= ε(1/2, IndFE(M∨ ⊗ σM∨ ⊗ μ−1 ⊗ χ), ψ)

= ε(1/2, IndFE(M ⊗ σM∨ ⊗ μ−1), ψ)

= ε(1/2,M ⊗ σM∨ ⊗ μ−1, ψE),
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where in the second last equality, we have noted that χ = ωΠ = detM , so that M∨ ⊗ χ ∼= M
(since dimM = 2), and in the last equality, we have used the fact that epsilon factors are inductive
in dimension zero together with the fact that dim(M ⊗ σM∨) = 4.

To conclude, we have shown the following.

Proposition 3.2. For an irreducible generic representation Π of U(VB ⊗F E) ∼= GL(VB), with
L-parameter M (a two-dimensional representation of WDE),

HomU(VB)(Π, ωψ,μ,B) �= 0 ⇐⇒ ε(1/2,M ⊗ σM∨ ⊗ μ−1, ψE) · ωE/F (−1) = μ(det(VB)).

This is precisely what Conjecture 2.1 says in the case n = 2.

3.3 Global conjecture: rank-one case
Finally, we can also verify the global Conjecture 2.7 when dimE V = 1. Let χ be a Hecke character
of GL(V )(AE) = A×

E , so that we are considering the global period integral

P : Cχ⊗ ωV,ψ,μ −→ C

defined by

P(φ) =
∫

[E1]
χ(x) · φ(x) dx.

Observe that this is simply the (conjugate of the) global theta lifting of χ for the dual pair

U1 ×U1 = U(V )×U(W ),

evaluated at the identity element. Here, V is equipped with its given skew Hermitian structure
and W is the rank-one Hermitian space 〈1〉. The non-vanishing of P is thus equivalent to the
non-vanishing of the global theta lift ΘV,W,ψ,μ(χ) of χ. Moreover, when this global theta lift is
non-zero, it is isomorphic to the representation χ of U(W ) = E1. Then we have

P(φ1) · P(φ2) · μ([E1]) = 〈Θ(φ2, χ),Θ(φ1, χ)〉Pet,

where μ([E1]) = 2 is the Tamagawa measure of U(W ). Now the Petersson inner product of the
global theta lift on the right-hand side is computed by the Rallis inner product formula. This
was first done by Tonghai Yang [Yan97] and a convenient reference is [Xue16, Theorem A.4.2].
One has

〈Θ(φ2, χ),Θ(φ1, χ)〉Pet =
L(1/2, χσχ−1 · μ−1)

L(1, ωE/F )
· Z∗(φ2, φ1),

where

Z∗(φ2, φ1) =
∫ ∗

A1
E

〈gφ1, φ2〉 · 〈gχ, χ〉U(V ),Pet dg

is the normalized global doubling zeta integral. Since the Tamagawa measure of U(V ) is 2, one
has

〈g · χ, χ〉U(V ),Pet = 2 · χ(g)

so that

Z∗(φ1, φ2) = 2 ·
∫ ∗

A1
E

〈gφ1, φ2〉 · χ(g) dg =
∏
v

I#
v (χ, χ, φ1, φ2),
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where the local factors I#
v are as defined in (2.3) and (2.5). Hence, we conclude that

P(φ1) · P(φ2) =
L(1/2, χσχ−1 · μ−1)

L(1, ωE/F )
·
∏
v

I#
v (χ, χ, φ1, φ2). (3.3)

This is precisely what Conjecture 2.7 says.
For the case when dimE V = 2, Conjecture 2.7 should reduce to Ichino’s formula [Ich08]

relating the (twisted) triple product period integral and the (twisted) triple product L-value. We
leave the verification of this to the interested reader.

4. Mackey theory: restriction of principal series

In this section, we apply Mackey theory to understand the branching of a principal series
representation of GL(V ) to the Weil representation of U(V ) over a non-archimedean local field.

4.1 Principal series
Let V be a vector space of dimension n over E. For a partition n = a+ b, with 0 < a ≤ b ∈ Z,
let

V = Va ⊕ Vb
with dimVa = a and dimVb = b. Consider the maximal parabolic subgroup

P = Pa,b = M ·N
of GL(V ) stabilizing Va, with Levi factor

M = GL(Va)×GL(Vb).

Let π = π1 � π2 be a representation of GL(Va)×GL(Vb) and consider the (normalized)
parabolically induced representation

π = π1 × π2 = IndGL(V )
P (π1 � π2). (4.1)

These are the principal series representations we will consider.

4.2 Skew-Hermitian structures
Recall that there are two inequivalent skew-Hermitian structures on V , distinguished by their
determinants in F×/NE× or E×

0 /NE
× (depending on whether n = dimV is even or odd). For

such a class δ, we let Vδ denote the skew-Hermitian structure on V with determinant δ, so that
U(Vδ) ⊂ GL(V ). We often drop δ from Vδ when a particular skew-Hermitian structure is fixed on
V . We also let rk(V ) denote the dimension of a maximal isotropic subspace of the skew-Hermitian
space V ; this is sometimes called the Witt index of V .

On the other hand, V with a roman subscript, such as Va, will denote either just a vector
space over E or a skew-Hermitian space over E of dimension a.

4.3 Mackey theory
For a fixed skew-Hermitian space V = Vδ, the goal of this section is to compute

HomU(V )(π1 × π2, ωV,ψ,μ),

where ωV,ψ,μ denotes the Weil representation of U(V ) associated to (ψ, μ). In fact, we will consider
the more general

ExtiU(V )(π1 × π2, ωV,ψ,μ).
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This will be achieved by using Mackey theory, which requires the determination of the orbits
of U(V ) on the partial flag variety GL(V )/P . In this analysis, each orbit gives rise to a certain
induced representation of U(V ) arising from the restriction of the inducing data to the stabilizer
of a point in the orbit.

Thus, the representation π = π1 × π2 when restricted to U(V ) comes equipped with a certain
finite filtration by U(V )-modules in which the open orbits contribute as submodules, and the
non-open orbits contribute as subquotients.

4.4 Orbits
The following lemma, the proof of which is omitted, summarizes the orbit structure of U(V ) on
GL(V )/P and is a direct consequence of Witt’s theorem.

Lemma 4.2. The orbits of U(V ) on GL(V )/Pa,b (with 0 < a ≤ b) are represented by the isom-
etry classes of a-dimensional E-subspaces X ⊂ V , which are themselves parameterized by the
following two invariants:

(1) the dimension d of the kernel of the skew-Hermitian form on V restricted to X, i.e.
d = dim(X ∩X⊥), d ≤ min{a, rk(V )}; and

(2) the non-degenerate skew-Hermitian form on X/(X ∩X⊥), which can be arbitrary.

In particular, with E non-archimedean, one has the following.

• For each integer

0 ≤ d ≤ min{a, rk(V )},
there are two orbits [X] of U(V ) on GL(V )/Pa,b, with dim(X ∩X⊥) = d, unless d = a (i.e.
when X/(X ∩X⊥) = 0), in which case there is only one.

• The open orbits correspond to d = 0, i.e. the isomorphism classes of the two non-degenerate
skew-Hermitian subspaces of V of dimension a.

• There is a unique closed orbit which corresponds to d = min{a, rk(V )} = a, except when
n = 2a and V does not have an isotropic subspace of dimension a, in which case there are two
closed orbits corresponding to d = a− 1.

4.5 Stabilizers
Let [X] be an U(V )-orbit in GL(V )/Pa,b, represented by an E-subspace X ⊂ V of dimension a
with dim(X ∩X⊥) = d. Let us first determine the stabilizer S = SX of X in U(V ).

Observe that SX preserves the flag

0 ⊂ X ∩X⊥ ⊂ X ⊂ (X ∩X⊥)⊥ = X +X⊥ ⊂ V,
and note that

X/(X ∩X⊥) ⊂ (X +X⊥)/(X ∩X⊥) =: Vn−2d

are non-degenerate skew-Hermitian spaces of dimension a− d and n− 2d, respectively. Hence,
SX is contained in the maximal parabolic subgroup Qd of U(V ) stabilizing the isotropic space
X ∩X⊥. The parabolic subgroup Qd = Md ·Nd can be depicted in matrix form as

Qd =

(GL(X ∩X⊥) ∗1 ∗d
0 U(Vn−2d) ∗2
0 0 ∗

)
,
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with Levi factor

Md = GL(X ∩X⊥)×U(Vn−2d)

and unipotent radical Nd. The center of Nd is the subgroup Zd consisting of matrices with
∗1 = ∗2 = 0.

It follows that, as a subgroup of Qd, SX has the form:

SX =

⎛
⎜⎜⎝
g ∗12 ∗13 ∗4
0 Ua−d 0 ∗24
0 0 Ub−d ∗34
0 0 0 (g∗)−1

⎞
⎟⎟⎠ ,

where:

• g ∈ GL(X ∩X⊥) ∼= GLd(E);
• the entries ∗12 and ∗34 are arbitrary matrices with entries in E of appropriate sizes which

determines ∗24, ∗13;
• the entry ∗4 is an arbitrary skew-Hermitian matrix of size d× d.
Let us highlight certain natural subgroups or quotients of SX .

• The unipotent radical N(SX) of SX consists of those matrices which have the identity matrix
on each diagonal block. Observe that N(SX) is, in fact, the unipotent radical Nd of the
maximal parabolic subgroup Qd.

• The center Z(SX) of N(SX) is the subgroup consisting of elements whose only non-zero entry
in the upper triangular blocks is ∗4, so that Z(SX) = Zd.

• The Levi factor SX/N(SX) is isomorphic to

GL(X ∩X⊥)×Ua−d ×Ub−d.

4.6 Modules
In what follows, we use Ind for the usual normalized induction, and ind for the usual normalized
induction with compact support, whereas we will use Ind and ind for the corresponding un-
normalized induction. Thus, for example,

π = π1 × π2 = IndGL(V )
P (π1 ⊗ π2) = Ind

GL(V )
P (π1 ⊗ π2 ⊗ δ1/2P ).

By Mackey theory, the restriction of the principal series representation π = π1 × π2 to U(V )
has a finite equivariant filtration indexed by the U(V )-orbits given in Lemma 4.2. For each such
U(V )-orbit [X], let πX denote the associated U(V )-subquotient of π. The following proposition
determines the representation πX .

Proposition 4.3. For a U(V )-orbit [X] on GL(V )/P , with dimX ∩X⊥ = d and stabilizer
S = SX , one has

πX ∼= ind
U(V )
S (π1 ⊗ π2 ⊗ δ1/2P )|S = indU(V )

S (π1 ⊗ π2 ⊗ δ1/2P/S)|S ,

where we have written δP/S = δP δ
−1
S .

We note that the representation π1 ⊗ π2 ⊗ δ1/2P/S is non-trivial on the unipotent radical N(S)
of S, but it is trivial on the center Z(S) of N(S).
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4.7 Branching for πX

We are now ready to consider the branching problem

ExtiU(V )(π1 × π2, ωV,ψ,μ).

Since, as a U(V )-module, π1 × π2 has a finite filtration with subquotients πX as given in
Proposition 4.3, it is natural to first consider

ExtiU(V )(πX , ωV,ψ,μ).

The result of this key computation is given by the following proposition.

Proposition 4.4. For an orbit [X] of U(V ) on GL(V )/P , with dim(X ∩X⊥) = d, correspond-
ing stabilizer S = SX and associated U(V )-module πX , one has

ExtiU(V )

(
πX , ωV,ψ,μ

)
∼= ExtiS/N(S)

(
δ
1/2
P/S · (π1)d,a−d ⊗ (π2)b−d,d, δ

1/2
S · |detGLd

|−1/2μ · ωVn−2d,ψ,μ

)
where we note:

• S/N(S) ∼= GLd(E)×Ua−d ×Ub−d;
• (π1)d,a−d denotes the unnormalized Jacquet module of π1 with respect to the (d, a− d)

parabolic subgroup in GL(Va) ∼= GLa(E), regarded as a representation of GLd(E)×Ua−d ⊂
GLd(E)×GLa−d(E) by restriction;

• likewise, (π2)b−d,d is the unnormalized Jacquet module of π2 with respect to the (b− d, d)-
parabolic subgroup in GL(Vb) ∼= GLb(E), regarded as a representation of Ub−d ×GLd(E) ⊂
GLb−d(E)×GLd(E) by restriction and taking contragredient on the GLd(E) factor;

• the characters δP/S and δS are trivial on Ua−d ×Ub−d and are given on GLd(E) by

δP/S = |det|d and δS = |det|n−d.
In particular, for the two open orbits X corresponding to d = 0, we have

ExtiU(V )[πX , ωV,ψ,μ] ∼=
∑
i=j+k

V=Va⊕Vb

ExtjU(Va)[π1|U(Va), ωVa,ψ,μ]⊗ ExtkU(Vb)
[π2|U(Vb), ωVb,ψ,μ],

where X = Va are the isomorphism classes of non-degenerate subspaces of V of dimension a with
orthogonal complement X⊥ = Vb.

Proof. For analyzing ExtiU(V )[πX , ωV,ψ,μ], we will need the following generalities on Ext groups
and contragredients (cf. [Pra18] for generality (a) below).

(a) For any two smooth representations U, V of a p-adic group G, we have

ExtiG[U, V ∨] ∼= ExtiG[V,U∨].

(b) For H a closed subgroup of a p-adic group G, and U any smooth representation of H with
smooth dual U∨,

[indGHU ]∨ ∼= IndGHU
∨.

(c) For a non-trivial character ψ : F → C×, with the associated Weil representation ωV,ψ,μ of
U(V ), we have

ω∨
V,ψ,μ

∼= ωV,ψ−,μ−1 ,

where ψ−(x) = ψ(−x).
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We shall also use the following three lemmas whose proofs are left to the reader.

Lemma 4.5. Let U ⊂ H be p-adic groups with U a normal subgroup of H which is a union
of compact open subgroups. Let π1, π2 be two smooth representations of H such that U acts
trivially on π2. Then

ExtiH [π1, π2] ∼= ExtiH/U [π1,U , π2].

Lemma 4.6. Let G be any p-adic group, Z ⊂ G a closed central subgroup. If π1 and π2 are two
smooth representations of G on which Z operates by different characters, then

ExtiG[π1, π2] = 0 for all i ≥ 0.

Lemma 4.7. Let V = Vn be a skew-Hermitian space over E of dimension n, and let ωV,ψ,μ be
a Weil representation of U(V ). Let Qd = MdNd be the maximal parabolic subgroup of U(V )
stabilizing a d-dimensional isotropic space (see § 4.5), so that Md

∼= GLd(E)×U(Vn−2d). Then
for Zd, the center of Nd, we have

(ωV,ψ,μ)Zd
= (ωV,ψ,μ)Nd

∼= (μ · | − |1/2 ◦ det)⊗ ωVn−2d,ψ,μ,

as Md-modules.

With these preliminaries in place, we now compute

ExtiU(V )[πX , ωV,ψ,μ]

∼= ExtiU(V )[indU(V )
S (π1 ⊗ π2 ⊗ δ1/2P/S), ωV,ψ,μ], (by Proposition 4.3)

∼= ExtiU(V )[ωV,ψ−,μ−1 , IndU(V )
S (π1 ⊗ π2 ⊗ δ1/2P/S)∨], (by (a), (b) and (c))

∼= ExtiS [δ−1/2
S ωV,ψ−,μ−1 , (π1 ⊗ π2 ⊗ δ1/2P/S)∨], (by Frobenius reciprocity)

∼= ExtiS/Z(S)[δ
−1/2
S (ωV,ψ−,μ−1)Z(S), (π1 ⊗ π2 ⊗ δ1/2P/S)∨], (by Lemma 4.5)

∼= ExtiS/Z(S)[δ
−1/2
S · μ−1 · |det|1/2 · ωVn−2d,ψ−,μ−1 , (π1 ⊗ π2 ⊗ δ1/2P/S)∨] (by Lemma 4.7)

∼= ExtiS/Z(S)[π1 ⊗ π2 ⊗ δ1/2P/S , δ
1/2
S |det|−1/2 · μ · ωVn−2d,ψ,μ] (by (a))

∼= ExtiS/N(S)[(π1)d,a−d ⊗ (π2)b−d,d ⊗ δ1/2P/S , δ
1/2
S |det|−1/2 · μ · ωVn−2d,ψ,μ]

where (π1)d,a−d denotes the unnormalized Jacquet module of π1 with respect to the (d, a− d)
parabolic subgroup in GLa(E); similarly for (π2)b−d,d. Here we have applied Lemma 4.5 (taking
U = N(S)/Z(S)) for the last isomorphism for which it is important to note thatN(S)/Z(S) maps
isomorphically to the product of the unipotent radicals of the (d, a− d)-parabolic subgroup of
GLa(E) and the (b− d, d)-parabolic subgroup of GLb(E).

For the final assertion in the proposition regarding the open orbits corresponding to d = 0, it
suffices to observe that for the direct sum of non-degenerate skew-Hermitian spaces V = Va ⊕ Vb,
we have the tensor product decomposition of their Weil representations:

ωV,ψ,μ ∼= ωVa,ψ,μ ⊗ ωVb,ψ,μ,

as representations of U(Va)×U(Vb) ⊂ U(V ). Thus, the final assertion is a direct consequence of
the Kunneth theorem [Pra18, Theorem 3.1], completing the proof of Proposition 4.4. �
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4.8 Branching for π1 × π2

We can now assemble the results of Proposition 4.4 for the various U(V )-orbits [X] on GL(V )/P
to understand the branching problem

ExtiU(V )(π1 × π2, ωV,ψ,μ).

The result is most definitive when only the open orbits have non-zero contribution. The following
theorem, which is the main result of this section, gives a simple sufficient condition (temperedness
of π1 and π2) for this to happen.

Theorem 4.8. Suppose that π1 and π2 are tempered representations of GL(Va) and GL(Vb)
(with unitary central characters), so that π = π1 × π2 is a tempered principal series representa-
tion of GL(V ) for V = Va + Vb. If [X] is a non-open orbit of U(V ) on GL(V )/P , then for πX ,
the subquotient of π supported on the orbit [X], we have

ExtiU(V )[πX , ωV,ψ,μ] = 0,

for all i ≥ 0.
As a consequence, for all i ≥ 0, one has⊕

δ

ExtiU(Vδ)[π, ωVδ ,ψ,μ]

∼=
⊕
i=j+k

(⊕
δ′

ExtjU(Va,δ′ )
[π1, ωVa,δ′ ,ψ,μ]

)
⊗
(⊕

δ′′
ExtkU(Vb,δ′′)

[π2, ωVb,δ′′ ,ψ,μ]
)
, (4.9)

where the sums over δ, δ′, and δ′′ run over F×/NE× or E×
0 /NE

× according to the parity of
n, a, b, respectively.

Hence, for i = 0, one has

HomU(Vδ)[π, ωVδ ,ψ]

∼=
⊕

(δ′,δ′′):Va,δ′⊕Vb,δ′′∼=Vδ

HomU(Va,δ′ )[π1, ωVa,δ′ ,ψ]⊗HomU(Vb,δ′′)[π2, ωVb,δ′′ ,ψ]. (4.10)

In particular,⊕
δ

HomU(Vδ)[π, ωVδ ,ψ]

∼=
(⊕

δ′
HomU(Va,δ′ )[π1, ωVa,δ′ ,ψ]

)
⊗
(⊕

δ′′
HomU(Vb,δ′′)[π2, ωVb,δ′′ ,ψ]

)
. (4.11)

Proof. By Proposition 4.4, ExtiU(V )[πX , ωV,ψ,μ] is equal to

ExtiS/N(S)[δ
1/2
P/S · (π1)d,a−d ⊗ (π2)b−d,d, δ

1/2
S · |det|−1/2μ · ωVn−2d,ψ,μ].

Since π1 is tempered, it follows by Casselman’s temperedness criterion that the central exponents
of (π1)d,a−d have the form δ

(1+α)/2
Pd,a−d

with α ≥ 0. Moreover, for (g, h) ∈ GLd(E)×Ua−d(F ),

δPd,a−d
(g, h)(1+α)/2 = |det(g)|(a−d+ε)/2, with ε = α · (a− d).

Similarly, the central exponents of (π2)b−d,d have the form

δ
(1+α′)/2
Pb−d,d

with α′ ≥ 0,
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and for (h, (g∗)−1) ∈ Ub−d(F )×GLd(E),

δPb−d,d
(h, (g∗)−1)(1+α

′)/2 = |det(g)|(b−d+ε′)/2, with ε′ = α′ · (b− d).
Summarizing, we have:

(1) the representation

A = δ
1/2
P/S · (π1)d,a−d ⊗ (π2)b−d,d

has central exponents of the form

|det|(a−d+ε)/2 · |det|(b−d+ε′)/2|det|d/2 = |det|(n−d+ε+ε′)/2

with ε and ε′ non-negative;
(2) the representation

B = δ
1/2
S · |det|−1/2μ · ωVn−2d,ψ,μ

is the twist of a unitary representation of GLd(E)×U(Vn−2d) by the character

|det|(n−d)/2 · |det|−1/2 = |det|(n−d−1)/2

of GLd(E).

Thus, when d > 0, the actions of the center of GLd(E) in

S/N(S) = GLd(E)×U(Va−d)×U(Vb−d)

on the two representations A and B are different. Therefore, by Lemma 4.6,

ExtiS/N(S)[A,B] = 0,

for all i ≥ 0 (as long as d �= 0). This completes the proof that for a non-open U(V )-orbit [X] ⊂
GL(V )/P , the associated subquotient πX of the U(V )-module π satisfies

ExtiU(V )[πX , ωV,ψ] = 0 for all i ≥ 0.

As a consequence of the vanishing of Exti, i ≥ 0, for all non-open orbits, we deduce that

ExtiU(V )[π, ωV,ψ,μ] =
⊕
X

ExtiU(V )[πX , ωV,ψ,μ],

where nowX runs over the two open orbits of U(V ) on GL(V )/P . Since Proposition 4.4 calculates
ExtiU(V )[πX , ωV,ψ] for the open orbits, the proof of Theorem 4.8 is complete. �

5. Application to Conjecture 2.1

In this section, we deduce the implications of Theorem 4.8 for Conjecture 2.1. Indeed, we shall
show how Theorem 4.8 allows us to reduce Conjecture 2.1 for tempered representations to the case
of discrete-series representations of GLn(E). This allows us to prove Conjecture 2.1 for unitary
principal series induced from the Borel subgroup. We also investigate whether the Mackey theory
argument allows one to further reduce Conjecture 2.1 to the case of supercuspidal representations.
As we shall see, we fall slightly short of that, but we will at least be able to prove Conjecture 2.1
for the Steinberg representation of GLn(E).

5.1 Inductive argument
Let us first record the following consequence of Theorem 4.8.
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Corollary 5.1. Let V = Va ⊕ Vb be a direct sum of non-degenerate skew-Hermitian spaces,
and let π1 and π2 be irreducible tempered representations of GL(Va) and GL(Vb), respectively.
Then we have the following.

(i) If Conjecture 2.1 holds for π1 and π2, then Conjecture 2.1 holds for the unitary principal
series representation π1 × π2 of GL(V ).

(ii) If

ExtiU(Va)(π1, ωVa,ψ,μ) = ExtiU(Vb)
(π2, ωVb,ψ,μ) = 0 for all i > 0,

then

ExtiU(V )(π1 × π2, ωV,ψ,μ) = 0 for all i > 0.

Proof. The vanishing statement in part (ii) follows from Theorem 4.8, especially (4.9). Likewise,
(4.11) imply that Conjecture 2.1(i) and (ii) for π1 × π2 follows from the corresponding statements
for π1 and π2. Thus, it remains to verify that the unique skew-Hermitian space Vδ for which
HomU(Vδ)(π1 × π2, ωVδ ,ψ,μ) is non-zero is as predicted by Conjecture 2.1(iii).

Assume then that

HomU(V )(π1 × π2, ωV,ψ,μ) �= 0.

By (4.10),

HomU(Va)(π1, ωVa,ψ,μ) �= 0 and HomU(Vb)(π2, ωVb,ψ,μ) �= 0

for a unique pair of skew-Hermitian spaces Va and Vb satisfying Va ⊕ Vb ∼= V . As we have assumed
that Conjecture 2.1(iii) holds for π1 and π2, we have

μ(det(Va)) = ε(1/2, π1 × σπ∨1 × μ−1, ψE) · ωπ1(−1)a · ωE/F (−1)a(a−1)/2,

and

μ(det(Vb)) = ε(1/2, π2 × σπ∨2 × μ−1, ψE) · ωπ2(−1)b · ωE/F (−1)b(b−1)/2.

This implies that for π = π1 × π2,

μ(det(V )) = ε(1/2, π × σπ∨ × μ−1, ψE) · ωπ(−1)n · ωE/F (−1)n(n−1)/2,

using the facts that μ = σμ−1, μ(−1) = ωE/F (−1) and

ε(Π + σΠ∨, ψE) = det Π(−1)

for any representation Π of GLm(E). This completes the proof of the corollary. �

5.2 Reduction to the discrete-series case
Corollary 5.1 allows one to reduce Conjecture 2.1 for tempered representations to the case of
discrete-series representations.

Corollary 5.2. If Conjecture 2.1 holds for all (unitary) discrete-series representations of all
GL(V ), then it holds for all (unitary) tempered representations of all GL(V ).

Proof. This follows from Corollary 5.1 and the fact that any tempered non-discrete-series repre-
sentation of GL(V ) is irreducibly and unitarily induced from a discrete-series representation of
a proper parabolic subgroup. �

5.3 Borel–Principal series
In addition, by applying Corollary 5.1 inductively, we deduce the following.
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Corollary 5.3. Conjecture 2.1 holds for all irreducible unitary principal series representations
of GL(V ) induced from a unitary character of a Borel subgroup.

Proof. Using Corollary 5.1, this follows by induction on dimV . The base case, with dimV = 1,
is Theorem 3.1 due to Moen and Rogawski. �

5.4 An alternative proof
We now give another proof of Corollary 5.3 as it brings out an interesting structure of the open
orbits of U(V ) on GL(V )/B.

Suppose that

Π = IndGL(V )
B (χ1 ⊗ · · · ⊗ χn) (normalized induction),

so that its L-parameter is

M =
⊕
i

χi.

On restriction to U(V ), Theorem 4.8 inductively implies that only the open U(V )-orbits on
the flag variety GL(V )/B will contribute to the Hom space HomU(V )[Π, ωV,ψ]. Moreover, using
Lemma 4.2 inductively, the open orbits can be described as follows. Given an ordered collection

L = {L1, . . . , Ln}
of non-degenerate orthogonal lines in V , the U(V )-orbit of the flag

FL : L1 ⊂ L1 ⊕ L2 ⊂ · · ·
is an open orbit, and the stabilizer of FL in U(V ) is the subgroup

U(L) :=
∏
i

U(Li).

Moreover, all open orbits are given by such an ordered collection {Li} of isomorphism classes of
(non-degenerate) skew-Hermitian E-spaces of dimension 1, subject to the condition that

⊕
i Li
∼=

V as skew-Hermitian E-spaces; we say that such an L is V -relevant. There are thus 2n−1 open
orbits, indexed by V -relevant L. This can also be gleaned from a Galois cohomological argument:
having fixed an open orbit over F with stabilizer U(L) in U(V ) and noting that there is exactly
one open orbit over F , the number of open U(V )-orbits is given by

Ker
(
H1(F,U(L))→ H1(F,U(V ))

)
= Ker

(
(F×/N(E×))n → F×/N(E×)

)
.

Hence, by an inductive application of Theorem 4.8, we have

HomU(V )(Π, ωV,ψ,μ) ∼=
⊕
L

HomU(V )(indU(V )
U(L) (�iχi), ωV,ψ,μ),

where the sum runs over V -relevant L. By Frobenius reciprocity, and the fact that

ωV,ψ,μ|U(L)
∼=
⊗
i

ωLi,ψ,μ,

one deduces that

HomU(V )(Π, ωV,ψ,μ) ∼=
⊕
L

⊗
i

HomU(Li)(χi, ωLi,ψ,μ).

Now by Theorem 3.1 (the theorem of Moen and Rogawski),

HomU(Li)(χi, ωLi,ψ,μ) �= 0⇐⇒ ε(1/2, χi/χσi · μ−1, ψE) · χi(−1) = μ(det(Li)).
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Hence, at most one term in the sum over L has non-zero contribution, and this unique L exists
if and only if

μ(det(V )) =
∏
i

ε(1/2, χi/χσi · μ−1, ψE) · χi(−1).

To prove Conjecture 2.1, we explicate as follows:

ε(1/2,M ⊗ σM∨ · μ−1, ψE)

=
∏
i

ε(1/2, χi/χσi · μ−1, ψE) ·
∏
i<j

ε
(
1/2, (χi/χσj + χj/χ

σ
i ) · μ−1, ψE

)
.

For i < j, observe that

ε
(
1/2, (χi/χσj + χj/χ

σ
i ) · μ−1, ψE

)
= ε(1/2, χi/χσj · μ−1, ψE)ε(1/2, χσj /χi · μ−1, ψE)

= χi(−1) · χj(−1) · ωE/F (−1),

where we have used the following standard properties of the epsilon factor:

(1) ε(1/2,W, ψE) · ε(1/2,W∨, ψE) = det(W )(−1);
(2) ε(1/2,W, ψE) = ε(1/2,W σ, ψE).

It follows that∏
i<j

ε
(
1/2, (χi/χσj + χj/χ

σ
i ) · μ−1, ψE

)
= det(M)(−1)n−1 · ωE/F (−1)n(n−1)/2.

Putting everything together, we see that HomU(V )(Π, ωV,ψ,μ) �= 0 if and only if

μ(det(V )) = ε(1/2,M ⊗ σM∨ · μ−1, ψE) · det(M)(−1)n · ωE/F (−1)n(n−1)/2,

as desired.

5.5 Reduction to the supercuspidal case
We have seen that Conjecture 2.1 for tempered representations can be reduced to the case
of discrete-series representations by a Mackey theory argument. In the rest of the section, we
investigate whether the same argument can be used to reduce Conjecture 2.1 for discrete-series
representations to the case of supercuspidal representations. It turns out that this can be done
under a certain hypothesis. While we cannot prove this hypothesis in general, it can be shown
in some situations. This will allow us to prove Conjecture 2.1 for the Steinberg representation,
for example.

Let us first set up some notation and formulate the relevant hypothesis. Suppose that π
is a supercuspidal representation (with unitary central character) of GL(V ) = GLm(E). The
parabolically induced representation

π|det|(n−1)/2 × π|det|(n−3)/2 × · · · × π|det|−(n−1)/2

of GL(V ⊕n) ∼= GLmn(E) is a standard module and, thus, has a unique irreducible quotient
Sp(π, n), which is often called a Speh representation and is non-tempered (if n > 1). This
parabolically induced representation also has a unique irreducible submodule St(π, n); this is
the ‘generalized Steinberg’ representation, which is a discrete-series representation. All the irre-
ducible (unitary) discrete-series representations of general linear groups are of the form St(π, n).
The supercuspidal ones are precisely those with n = 1.
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If

φπ : WE → GLm(C)

is the L-parameter of π, then the L-parameter of St(π, n) is the representation φπ ⊗ Symn−1(C2)
of the Weil–Deligne groupWDE = WE × SL2(C). We also write [n] = Symn−1(C2) for the unique
irreducible n-dimensional representation of SL2(C), and write φπ[n] for the L-parameter of
St(π, n).

To deal with the generalised Steinberg representations, we will need to make an assumption.
In this, V,W are the two isomorphism classes of skew-Hermitian spaces over E of dimension m.
Then we make the following assumption:

(Assumption)

{
HomU(V+V )[Sp(π, 2), ωV+V,ψ,μ] = 0,
HomU(V+W )[Sp(π, 2), ωV+W,ψ,μ] = 0.

We remark that this assumption is a case of the non-tempered twisted GGP conjecture
formulated in Conjecture 7.2.

With this assumption formulated, our result is as follows.

Theorem 5.4. Let π be a supercuspidal representation of GL(V ) with dimV = m. If π satisfies
Conjecture 2.1 and the above (Assumption), then Conjecture 2.1 holds for the discrete-series
representations St(π, n) for all n ≥ 1.

We make this more precise as follows.

(a) Suppose that V and W are the two isomorphism classes of skew-Hermitian spaces over E of
dimension m and

HomU(V )(π, ωV,ψ,μ) ∼= C,

HomU(W )(π, ωW,ψ,μ) = 0.

Then, under (Assumption), one has

HomU(V n)(St(π, n), ωV n,ψ,μ) ∼= C,

HomU(W+V n−1)(St(π, n), ωW+V n−1,ψ,μ) = 0,

for the two isomorphism classes of skew-Hermitian spaces V n,W + V n−1 of dimension mn
over E,

(b) If

μ(det(V ))
(1)
= ε(1/2, φπ × σφ∨π × μ−1, ψE) · ωπ(−1)m · ωE/F (−1)m(m−1)/2,

then for the skew-Hermitian space V n,

μ(det(V n)) = μ(det(V )n)

(2)
= ε(1/2, φπ[n]× σφ∨π [n]× μ−1, ψE) · ωπ(−1)nm · ωE/F (−1)mn(mn−1)/2.

Proof. The first assertion of the theorem (concerning the truth of Conjecture 2.1) is an immediate
consequence of statements (a) and (b). We shall prove these two statements in turn, starting
with the simpler statement (b).
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Proof of Theorem 5.4(b). Recall from [Tat79] that for an irreducible representation λ⊗ [n] of
WDE = WE × SL2(C), one has

ε(λ⊗ [n]) = ε(λ)n · det(−F, λI)n−1,

where λI denotes the subspace of λ fixed by the inertia group I and F denotes the Frobenius
element of WE/I.

On the other hand, by the Clebsch–Gordon theorem,

[n]⊗ [n] = [2n− 1]⊕ [2n− 3]⊕ · · · ⊕ [1].

In particular, only odd integers (2d+ 1) appear in this decomposition. It is easy to see that in
the expression

ε(λ⊗ [2d+ 1]) = ε(λ)2d+1 · det(−F, λI)2d,
the factor det(−F, λI)2d is trivial for λ a conjugate selfdual representation of WE . Hence, we find
that

ε(λ⊗ [2d+ 1]) = ε(λ)2d+1

for λ a conjugate selfdual representation of WE . These considerations, applied to the conjugate
selfdual representation λ of WE associated to π × σπ∨ × μ−1, allow one to prove identity (2)
from identity (1); we leave the simple and pleasant computation to the reader. �
Proof of Theorem 5.4(a). The proof of statement (a) depends on some intermediate results
contained in the following series of lemmas.

Lemma 5.5. Let π be a unitary supercuspidal representation of GL(V ) ∼= GLm(E).

(i) One has a short exact sequence GLmn(E)-representations:

0→ Kn → ν−(n−1)/2π × ν1/2St(π, n− 1)→ St(π, n)→ 0,

with Kn an irreducible representation of GLmn(E) and we have written ν for the
character |det|.

(ii) The irreducible representation Kn of GLmn(E) arising in the exact sequence above, sits in
the following short exact sequence:

0→ Ln−1 → ν−(n−2)/2Sp(π, 2)× νSt(π, n− 2)→ Kn → 0.

Proof. (i) The fact that the discrete-series representation St(π, n) of GLmn(E) appears as a
quotient of the principal series ν−(n−1)/2π × ν1/2St(π, n− 1) is clear, since St(π, n) is a quotient
of the principal series representation

ν−(n−1)/2π × ν−(n−3)/2π × · · · × ν(n−1)/2π.

It is well-known from Zelevinski [Zel80] that the principal series ν−(n−1)/2π × ν1/2St(π, n− 1)
has length 2, so that Kn is irreducible and part (i) is proved.

(ii) Since Kn is irreducible, it suffices to prove that there is a non-zero GLmn(E)-equivariant
homomorphism from the principal series ν−(n−2)/2Sp(π, 2)× νSt(π, n− 2) to Kn. By the second
adjointness theorem, this boils down to proving that the normalized Jacquet functor ofKn for the
opposite parabolic of the maximal standard parabolic with Levi GL2m(E)×GL(n−2)m(E) con-
tains the irreducible representation ν−(n−2)/2Sp(π, 2)⊗ νSt(π, n− 2) of GL2n(E)×GL(m−2)n(E)
as a submodule. We leave this simple calculation to the reader. �

Next, we apply Proposition 4.4 to the two principal series representations appearing in
Lemma 5.5. We do not perform the explicit calculation here, but simply summarize the results.
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Lemma 5.6. Let P denote the maximal parabolic subgroup of GL(V n) from which the principal
series representation considered below is induced. Then we have the following.

(i) For any non-open U(V n)-orbit [X] ⊂ GL(V n)/P , the associated subquotient πX of the
U(V n)-module ν−(n−2)/2Sp(π, 2)× νSt(π, n− 2), satisfies

ExtiU(V n)[πX , ωV n,ψ] = 0,

for all i ≥ 0. If (Assumption) holds for π, then the above result holds for the open orbits as
well and therefore

HomU(V n)[ν
−(n−2)/2Sp(π, 2)× νSt(π, n− 2), ωV n,ψ] = 0.

(ii) For any non-open U(V n)-orbit [X] ⊂ GL(V n)/P , the associated subquotient πX of the
U(V n)-module ν−(n−1)/2π × ν1/2St(π, n− 1), satisfies

ExtiU(V n)[πX , ωV n,ψ] = 0,

for all i ≥ 0.
(iii) For any non-open U(V n)-orbit [X] ⊂ GL(V n)/P , the associated subquotient πX of the

U(V n)-module ν1/2St(π, n− 1)× ν−(n−1)/2π, satisfies

ExtiU(V n)[πX , ωV n,ψ] = 0,

for all i ≥ 0.

With the above two lemmas at hand, let us now return to the proof of Theorem 5.4(a). By
Lemma 5.5(ii), combined with Lemma 5.6(i), we deduce that

HomU(V n)[Kn, ωV n,ψ] = 0.

Therefore, by Lemma 5.5(i),

HomU(V n)(St(π, n), ωV n,ψ) ∼= HomU(V n)(ν
−(n−1)/2π × ν1/2St(π, n− 1), ωV n,ψ).

Furthermore, from Lemma 5.6(ii),

HomU(V n)(ν
−(n−1)/2π × ν1/2St(π, n− 1), ωV n,ψ)

is contributed by the submodule of the principal series representation

ν−(n−1)/2π × ν1/2St(π, n− 1)

supported on the open orbits.
Observe that the open orbits of the action of U(V n) on GLmn(E)/Pm,m(n−1) are parametrized

by the isomorphism classes of the skew-Hermitian subspaces of V n of dimension m = dim(V ).
Thus, there are exactly two orbits, represented by the skew-Hermitian spaces V and W , with
stabilizer in U(V n) being U(V )×U(V n−1) and U(W )×U(W + V n−2). Therefore,

HomU(V n)(St(π, n), ωV n,ψ) ∼= HomU(V n)(ν
−(n−1)/2π × ν1/2St(π, n− 1), ωV n,ψ)

is the sum A+B of the contributions coming from these two open orbits, with

A = HomU(V )(π, ωV,ψ)⊗HomU(V n−1)(St(π, n− 1), ωV (n−1),ψ),

B = HomU(W )(π, ωW,ψ)⊗HomU(W+V n−2)(St(π, n− 1), ωW+V (n−2),ψ).

Now as HomU(W )(π, ωW,ψ) = 0, we conclude that B = 0. This completes the proof of part (a) of
Theorem 5.4, and hence the proof of Theorem 5.4 is complete. �
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5.6 The Steinberg representation
At the moment, we do not know how to prove the (Assumption) that

HomU(V 2)[Sp(π, 2), ωV 2,ψ] = HomU(V+W )[Sp(π, 2), ωV+W,ψ] = 0,

except when m = dimV = dimW = 1, i.e. when π is a character of E×. In this case, the
(Assumption) is equivalent to saying that the Weil representation of U(2) does not contain
any one-dimensional representation of U(2) where U(2) is either of the two unitary groups in
two variables. The next lemma establishes this.

Lemma 5.7. For V be a skew-Hermitian space over E, a non-archimedean local field, of
dimension d ≥ 2, one has

HomU(V )[χ, ωV,ψ,μ] = 0

for any one-dimensional character χ of U(V ).

Proof. If V = V1 ⊕ V2, a direct sum of skew-Hermitian spaces, one knows that as representations
of U(V1)×U(V2) ⊂ U(V ),

ωV,ψ,μ = ωV1,ψ,μ ⊗ ωV2,ψ,μ.

Therefore, the proof of the lemma reduces to the case of d = 2.
When d = 2, we have seen in the discussion in § 3.2 that ωV,ψ,μ is a direct sum of irreducible

summands (with different central characters), each of which has dihedral L-parameters. Hence,
ωV,ψ,μ does not contain one-dimensional characters of U(V ). (This uses the requirement for E
to be a non-archimedean local field.) �

As a consequence, we obtain the following.

Corollary 5.8. The Steinberg representation St of GL(V ) satisfies Conjecture 2.1.

5.7 Ext vanishing
The results of this section also prove the following theorem on the vanishing of Ext groups for
tempered representations.

Theorem 5.9. Let F be a non-archimedean local field and E a separable quadratic algebra over
F . Let V be a skew-Hermitian space over E, with corresponding unitary group U(V ) ⊂ GL(V ).
For any irreducible tempered representation Π of GL(V ) and any Weil representation ωV,ψ,μ
of U(V ),

ExtiU(V )(Π, ωV,ψ,μ) = 0 for all i ≥ 1.

Proof. 1 As any irreducible tempered representation of GL(V ) is parabolically induced from
an irreducible discrete-series representation of a Levi subgroup, by Corollary 5.1, it suf-
fices to prove this theorem for the discrete-series representations Π = St(π, n) of GLmn(E)
where π is a cuspidal representation of GLm(E). We prove this by an induction on the
integer n.

The base case n = 1 is clear since a supercuspidal representation π of GLm(E) is a projective
representation when restricted to any subgroup H ⊂ GLm(E) for which the intersection of H
with the center of GLm(E) is compact. In particular, this applies to H = Um(E).

1 The authors thank Rui Chen of Zhejiang University for his help with this proof; Rui Chen has used similar
ideas as here (dimension shifting, cf. [Che23]) to prove theorems about vanishing of Ext groups in many situations
involving the GGP branching.
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For the inductive step, let us assume that the theorem holds good for Π = St(π, n− 1), so
that our goal is to prove it for Π = St(π, n). Recall the exact sequence from Lemma 5.5:

0→ Kn → ν−(n−1)/2π × ν1/2St(π, n− 1)→ St(π, n)→ 0, (5.10)

with Kn an irreducible representation of GLmn(E). Observe that

ExtiU(V )(ν
−(n−1)/2π × ν1/2St(π, n− 1), ωV,ψ,μ) = 0 for all i ≥ 1. (5.11)

Indeed, by Lemma 5.6(ii), one knows the vanishing of Exti, i ≥ 0 for the subquotient of the
principal series representation ν−(n−1)/2π × ν1/2St(π, n− 1) of GLmn(E) supported on a non-
open orbit. For the open orbits, the vanishing of Exti, i ≥ 1 is consequence of the induction
hypothesis and the Kunneth theorem.

Equipped with this vanishing of ExtiU(V )(ν
−(n−1)/2π × ν1/2St(π, n− 1), ωV,ψ,μ) for all i ≥ 1,

the usual long exact sequence of Ext groups associated to the short exact sequence of modules
in (5.10) gives us isomorphisms:

Exti+1
U(V )(St(π, n), ωV,ψ,μ) ∼= ExtiU(V )(Kn, ωV,ψ,μ) for all i ≥ 1. (5.12)

Next, we use the pinned outer automorphism φ on GLmn(E) which is a conjugate of the
automorphism g → tg−1 by a (longest) Weyl group element. The outer automorphism φ takes
standard parabolic subgroups to standard parabolic subgroups and, in particular, takes the
parabolic Pm,m(n−1) to Pm(n−1),m. Moreover, for an element (g1, g2) ∈ GLm(E)×GLm(n−1)(E)
in the Levi subgroup GLm(E)×GLm(n−1)(E) of Pm,m(n−1), one has

φ(g1, g2) = (tg−1
2 , tg−1

1 ) ∈ GLm(n−1)(E)×GLm(E).

Applying φ to the exact sequence (5.10) above, we obtain

0→ Kφ
n → [ν−(n−1)/2π × ν1/2St(π, n− 1)]φ → St(π, n)φ → 0.

By transport of structure,

[ν−(n−1)/2π × ν1/2St(π, n− 1)]φ ∼= [ν1/2St(π, n− 1)]φ × [ν−(n−1)/2π]φ.

Now by a well-known theorem of Gelfand–Kazhdan, the action of φ on any irreducible
representation of GLmn(E) is just the contragredient. Thus, we obtain the exact sequence

0→ K∨
n → ν−1/2St(π, n− 1)∨ × (ν(n−1)/2π∨)→ St(π, n)∨ → 0.

Taking the contragredient of this exact sequence, we get

0→ St(π, n)→ ν1/2St(π, n− 1)× (ν−(n−1)/2π)→ Kn → 0. (5.13)

Once again, we have

ExtiU(V )(ν
1/2St(π, n− 1)× ν−(n−1)/2π, ωV,ψ,μ) = 0 for all i ≥ 1. (5.14)

As for (5.11), this follows by Lemma 5.6(iii), which gives the vanishing of Exti (i ≥ 0) for the
subquotient of the principal series ν1/2St(π, n− 1)× ν−(n−1)/2π supported on a non-open orbit,
and the vanishing of Exti (i ≥ 1) for the open orbits is a consequence of the induction hypothesis
and the Kunneth theorem.

Equipped with this vanishing of ExtiU(V )(ν
1/2St(π, n− 1)× ν−(n−1)/2π, ωV,ψ,μ) for all i ≥ 1,

the usual long exact sequence of Ext groups associated to the short exact sequence of modules
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in (5.13) gives us isomorphisms:

ExtiU(V )(St(π, n), ωV,ψ,μ) ∼= Exti+1
U(V )(Kn, ωV,ψ,μ) for all i ≥ 1. (5.15)

Using the isomorphisms in (5.12) and (5.15), we get

ExtiU(V )(St(π, n), ωV,ψ,μ) ∼= Exti+2
U(V )(St(π, n), ωV,ψ,μ) for all i ≥ 1.

Now for any two smooth representations π1, π2 of a reductive p-adic group G(F ), one has

ExtiG[π1, π2] = 0 for any i > the F -rank of G.

Hence, we deduce by (5.15) that

ExtiU(V )(St(π, n), ωV,ψ,μ) = 0 for all i ≥ 1,

completing the proof of the theorem. �

6. Archimedean case

In this section, we consider the archimedean case, so that GL(V ) = GLn(C). As mentioned
before, Conjecture 2.1 in the archimedean case does not determine the unique skew-Hermitian
space V which has non-zero contribution. In this section, we shall explain how the conjecture
can be refined in the archimedean case to give a definitive answer.

Recall that Hermitian forms over C are classified by their signatures (p, q). Since skew-
Hermitian forms can be obtained from Hermitian ones by scaling by i, we shall likewise say that
a skew-Hermitian space has signature (p, q) if it has p many i and q many (−i) in an orthogonal
basis. We will denote the corresponding space as Vp,q and its isometry group as U(Vp,q) = Up,q.
In particular, in rank one, the two skew-Hermitian forms are classified by their determinant,
which is i or −i.

An irreducible generic representation Π of GLn(C) is an irreducible principal series
representation:

Π = IndGLn(C)
B(C) (χ1 ⊗ · · · ⊗ χn) (normalized induction)

where the χj are characters of C×. We may write χj as

χj(z) = |z|rj · (z/z)kj/2

where kj ∈ Z.
As in the previous section, we may consider the restriction of the representation Π of GLn(C)

to a subgroup U(Vp,q) = Up,q ⊂ GLn(C) by Mackey theory. The open U(Vp,q)-orbits on the flag
variety GLn(C)/B are associated, as in the p-adic case, to the ordered collection of orthogonal
(non-degenerate) skew-Hermitian lines L = {L1, . . . , Ln}, with

⊕
j Lj
∼= Vp,q as skew-Hermitian

spaces. This means that p of the lines Li have determinant i and the rest have determinant −i;
we shall call such L to be Vp,q-relevant. In particular, the number of open U(Vp,q)-orbits is

(
n
p

)
.

If we assume that the analog of Theorem 4.8 holds in the archimedean case, then the proof
of Corollary 5.3 gives

HomU(V )(Π, ωV,ψ,μ) ∼=
⊕
L

⊗
j

HomU(Lj)(χj , ωLj ,ψ,μ), (∗)

where the sum is taken over those L which are Vp,q-relevant. For each i, one may apply
Theorem 3.1 [Moe87, Rog92]:

HomU(Lj)(χj , ωLj ,ψ,μ) �= 0⇐⇒ ε(1/2, χj/χj · μ−1, ψE) · χj(−1) = μ(det(Lj)),
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which shows that at most one L can have a non-zero contribution to the sum in (∗). Now let us
explicate this local root number condition.

The conjugate-symplectic character μ of C× has the form

μ(z) =
(
z̄

z

)α
with α ∈ 1

2
Z \ Z.

Observe that

μ(i) = i−2α.

Then writing χ in place of χj for simplicity,

χ/χ · μ−1 : z �→
(
z̄

z

)k−α
.

Hence, if ψ is the additive character of R given by

ψ(x) = e2πix,

then by [Tat79, 3.2.5] (see also [GGP12a, Proposition 2.1])

ε(1/2, χ/χ · μ−1, ψ(Tr)) = sign(k − α) · i2k−2α = sign(k − α) · (−1)k · i−2α.

Hence, we conclude that

HomU(Lj)(χj , ωLj ,ψ,μ) �= 0⇐⇒ μ(det(Lj)) = sign(kj − α) · i−2α,

⇐⇒ det(Lj) = sign(kj − α) · i.
For this to hold with L being Vp,q-relevant, we need

#{j : kj > α} = p and #{j : kj < α} = q = n− p.
Hence, our refinement of Conjecture 2.1 in the archimedean case is as follows.

Conjecture 6.1. Assume that E/F = C/R. Let

Π = IndGLn(C)
B(C) (χ1 ⊗ · · · ⊗ χn)

be an irreducible generic principal series representation of GLn(C) with

χj(z) = |z|rj · (z/z)kj/2, kj ∈ Z,

and let

μ(z) =
(
z̄

z

)α
with α ∈ 1

2
Z \ Z.

Then for ψ(x) = e2πix,

HomU(Vp,q)(Π, ωVp,q ,ψ,μ) �= 0

if and only if

#{j : kj > α} = p and #{j : kj < α} = q = n− p.
We have essentially proved this conjecture by our open-orbit analysis above, under the

hypothesis that Theorem 4.8 holds in the archimedean case. We leave the analysis of non-open
orbits and the resulting extension problems to more capable hands.
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7. The conjecture for A-parameters

In this section, we shall extend Conjecture 2.1 beyond the setting of generic representations to the
setting of non-tempered representations of Arthur type, analogous to what we did in [GGP20] for
the classical GGP conjectures. We begin with a brief recollection of this non-tempered conjecture
from [GGP20].

7.1 Non-tempered GGP and relevance
In [GGP20], we considered the problem of determining

dim HomGLn(F )(πM , πN ) = 0 or 1

where πM and πN are, respectively, irreducible representations of GLn+1(F ) and GLn(F ) of
Arthur type, with associated A-parameters

MA =
k⊕
i=1

Mi � Symdi−1(C2) and NA =
l⊕

i=1

Ni � Symei−1(C2).

Here, Mi and Ni are irreducible bounded admissible representations of the Weil–Deligne group
WDF and Symd−1(C2) is the d-dimensional irreducible representation of SL2(C) (the Arthur
SL2(C)), so that MA and NA are representations of WDF × SL2(C) of dimension n+ 1 and n,
respectively. The associated A-packets are singletons, containing the irreducible unitary principal
series representations:

πM = ×ri=1Sp(πMi , di) and πN = ×li=1Sp(πNi , ei),

where πMi refers to the irreducible representation of the appropriate GL with L-parameter Mi

and Sp(πMi , di) denotes the associated Speh representation (as introduced in § 5.5).

Remark. We take this opportunity to correct a misnomer in [GGP20, § 5]. In the first para-
graph of [GGP20, p. 2312], the representation with A-parameter Mi ⊗ Symdi(C2) was denoted
by Speh(πMi , di). Though just a naming convention, it is more customary to denote this
representation by Speh(πMi , di + 1). We have followed the latter convention here.

Now the main conjecture in [GGP20] (for the general linear groups) is that

dim HomGLn(F )(πM , πN ) = 1

if and only if the pair (MA, NA) is a relevant pair of A-parameters. This conjecture has now
been proven by Chan [Cha22]. Our goal here is to recall the key notion of ‘relevance’ and make
a couple of remarks about it, especially in the context of classical groups.

Definition 7.1. Given two A-parameters (of arbitrary dimensions) of GL-groups

MA =
d⊕
i=0

Mi � Symi(C2) and NA =
d⊕
i=0

Ni � Symi(C2),

we say that (MA, NA) is a relevant pair if we have a decomposition of the respective
representations of WDF as

Mi = M+
i +M−

i and Ni = N+
i +N−

i

with the property that

M+
i = N−

i+1 for i ≥ 0 and M−
i = N+

i−1 for i ≥ 1.

This combinatorial definition has a more geometric interpretation which was discussed in
[GGP20, § 4].
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7.2 Relevance for classical groups
We make a few remarks on the relevance condition for classical groups, clarifying [GGP20].

• The first point is minor but worth noting. The typical GGP conjecture (in the context of
GLn ×GLn+1 say) is formulated as the branching problem of determining

dim HomGLn(F )Δ(πM ⊗ πN ,C), rather than dim HomGLn(F )(πM , πN ).

When formulated in this way, the non-tempered GGP conjecture would then say that

dim HomGLn(F )Δ(πM ⊗ πN ,C) = 1

if and only if (MA, N
∨
A) is relevant, where N∨

A is the dual representation of NA.

• Second, in [GGP20, § 6], we formulated the non-tempered GGP conjecture for the classical
groups, asserting that the same ‘relevance’ condition plays a crucial role. We take this opportunity
to explicate the relevance notion here.

For classical groups, the branching problem concerns the determination of

dim HomH(π, ν),

where π is an irreducible representation of

G = G1 ×G2 = Un ×Um (say),

with n ≥ m,

H = Um �N ⊂ G
is a subgroup with unipotent radical N and ν is a certain small representation of H. More
precisely, ν is a one-dimensional character if n �≡ m mod 2; this case is referred to as the Bessel
case for Hermitian spaces. On the other hand, the case when n ≡ m mod 2 is referred to as the
Fourier–Jacobi case for skew-Hermitian spaces; in this case, ν is a Weil representation.

The A-parameters for classical groups are likewise finite-dimensional representations of
WDE × SL2(C), where WDE is the Weil–Deligne group of E, with appropriate (conjugate)-
duality conditions. Suppose we are given A-parameters

MA =
d⊕
i=0

Mi � Symi(C2),

NA =
d⊕
i=0

Ni � Symi(C2),

with Mi and Ni satisfying appropriate (conjugate-)duality conditions. We can now summarize
the relevance conditions required in each case as follows.

(i) Orthogonal and symplectic groups (both Bessel and Fourier–Jacobi models): an
A-parameter MA �NA of G1 ×G2 is relevant if and only if MA = M∨

A and NA = N∨
A form

a relevant pair in the sense of Definition 7.1 for GLm ×GLn.
(ii) Hermitian case (Bessel models): an A-parameter MA �NA of G1 ×G2 is relevant if and

only if M∨
A and NA form a relevant pair in the sense of Definition 7.1 for GLm ×GLn.

(iii) Skew-Hermitian case (Fourier–Jacobi model): in this case, the definition of the Weil
representation ν requires an extra piece of data, namely a character

μ : E× → C× with μ|F× = ωE/F .
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An A-parameter MA �NA of G1 ×G2 is relevant if and only if μ ·M∨
A and NA are relevant

in the sense of Definition 7.1 for GLm ×GLn.

7.3 Non-tempered twisted GGP
We shall now formulate the extension of the non-tempered GGP conjecture of [GGP20] to the
twisted setting considered in this paper. Hence, with E/F a quadratic extension, suppose we
have a representation πM of GL(V ) with associated A-parameter MA. The notion of relevance is
not immediately obvious in this setting, as in contrast to the situations discussed above, we do
not have a pair of A-parameters but only a single one. Nonetheless, we have the following result.

Conjecture 7.2. Let V be an n-dimensional E/F -skew-Hermitian space. Let π be an irre-
ducible admissible representation of GL(V ) with an A-parameter (which is an n-dimensional
representation of WDE × SL2(C)) of the form

MA =
r⊕
i=1

Mi � Symdi(C2),

where Mi is an irreducible mi-dimensional tempered representation of WDE . If

HomU(V )[π, ωV,ψ,μ] �= 0,

then MA is a sum of a tempered A-parameter (i.e. with SL2(C) acting trivially) and summands
of the form

Ni � Symdi(C2)⊕ μ ·Nσ
i � Symdi−1(C2),

where di ≥ 1, and the Ni are tempered representations of WDE with Nσ
i their conjugate under

the action of Gal(E/F ). Equivalently, the parameters MA and μ ·Mσ
A should be relevant in the

sense of [GGP20].
Conversely, if the parameters MA and μ ·Mσ

A are relevant in the sense of [GGP20], then

HomU(V )[π, ωV,ψ,μ] = C

for exactly one skew-Hermitian space V , namely the one determined as in Conjecture 2.1(iii).

We leave it to the reader to verify that when E = F × F is split, so that V = V1 × V2, the
relevance condition in Conjecture 7.2 reduces to the one formulated earlier for a representation
πM = π1 ⊗ π2 of GL(V ) = GL(V1)×GL(V2).

7.4 Degenerate principal series
The reader may wonder how we are led to the above conjecture. In fact, we are led to the
conjecture by considering the branching problem for degenerate principal series representations.
Recall that in the previous three sections, we have appealed to Mackey theory computations to
study the twisted branching problem for tempered principal series representations and gen-
eralized Steinberg representations. As much of the material there is of a general nature, it
is natural to apply them to the analogous restriction problem for degenerate principal series
representations. The result is given in the following proposition. Note that the degenerate prin-
cipal series considered below are of Arthur type. Hence, the proposition serves as a motivation
and check for Conjecture 7.2.

Proposition 7.3. Let:

• n = a+ b, with 0 < a ≤ b ∈ Z;
• χ1, χ2 : E× → C× be two unitary characters;
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• V = Va ⊕ Vb be an n-dimensional E/F -skew-Hermitian space, with dimVa = a;
• P = Pa,b the maximal parabolic subgroup of GL(V ) stabilizing Va, with Levi factor GL(Va)×

GL(Vb);
• π = χ1 × χ2 be the degenerate principal series representation of GL(V ) induced from the

corresponding one-dimensional character (χ1 ◦ detVa)⊗ (χ2 ◦ detVb
) of Pa,b.

If

HomU(V )[π, ωV,ψ,μ] �= 0,

then the following hold:

(i) b = a+ 1; and
(ii) χ1 = χσ2 · μ where σ is the Galois involution of E/F .

Conversely, if b = a+ 1 and χ1 = χσ2 · μ, then there is exactly one skew-Hermitian structure on
V such that

HomU(V )[π, ωV,ψ,μ] = C,

and for the other skew-Hermitian space V ′,

HomU(V ′)[π, ωV ′,ψ,μ] = 0.

Proof. We shall apply the results from Mackey theory obtained in Proposition 4.4. Recall
that the orbits for the action of U(V ) on X = GLn(E)/Pa,b are given by Lemma 4.2. For an
a-dimensional subspace X ⊂ V with dim(X ∩X⊥) = d with the corresponding subquotient πX
of π, Proposition 4.4 says that

ExtiU(V )[πX , ωV,ψ,μ] ∼= ExtiQ/N(Q)[(π1)d,a−d ⊗ (π2)b−d,d ⊗ δ1/2P/Q, δ
1/2
Q · |det|−1/2μ · ωVn−2d,ψ,μ],

where Q/N(Q) = GLd(E)×Ua−d ×Ub−d and the other notation is as given there. Applying this
to π1 = χ1 and π2 = χ2, we deduce

ExtiU(V )[πX , ωV,ψ,μ] ∼= ExtiQ/N(Q)[χ1 · (χσ2 )−1|det|d/2, |det|(n−d)/2|det|−1/2μ · ωVn−2d,ψ,μ].

We shall now study when this Ext group can be non-zero.
Consider first the case when [X] is an open orbit (so that d = 0) and i = 0. In this case each

of the |det| factors which refers to GLd(E), are trivial for d = 0, hence it follows by Lemma 5.7
that

HomU(V )[πX , ωV,ψ,μ] = HomU(Va)(χ1, ωVa,ψ,μ)⊗HomU(Vb)(χ2, ωVb,ψ,μ) = 0.

On the other hand, when d > 0, it follows by Lemma 4.6 (on matching powers of |det| for the
two arguments) that a necessary condition for the non-vanishing of the above Ext group is

2d+ 1 = n.

Since d ≤ a ≤ b < n = (a+ b), this implies that we must have

d = a and b = a+ 1,

which means that [X] is the unique closed orbit of U(V ) on GLn(E)/Pa,b. In particular, πX is a
quotient of π.

With a, b and d related as above, the Ext group in question is

ExtiU(V )[πX , ωV,ψ,μ] ∼= ExtiGLa(E)×U1
[χ1 · (χσ2 )−1, μ · ωV1,ψ,μ],

where ωV1,ψ,μ is a Weil representation of U(V1) = U1 for the one-dimensional skew-
Hermitian space V1 with disc(V1) = disc(V ), and we are regarding ωV1,ψ,μ as a representation
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of GLa(E)×U1. Thus, we see that

χ1 = χσ2 · μ
is a necessary condition for the non-vanishing of this Ext group. When this condition holds, the
above Ext group becomes ExtiU(V1)(1, ωV1,ψ,μ) and this vanishes if i > 0 (since U(V1) is compact).

We have, thus, shown that

HomU(V )(χ1 × χ2, ωV,ψ,μ) = HomU(V )(πX , ωV,ψ,μ)

for [X] the unique closed U(V )-orbit on GL(V )/Pa,b, and a necessary condition for the non-
vanishing of this Hom space is

b = a+ 1 and χ1 = χσ2 · μ.
In other words, we have proved the first assertion of the proposition.

For the converse, since [X] is the closed orbit of U(V ) on GL(V )/Pa,b, we have seen that
when the above conditions hold, one has

HomU(V )(χ1 × χ2, ωV,ψ,μ) = HomU(V )(πX , ωV,ψ,μ) ∼= HomU(V1)(1, ωV1,ψ,μ).

One is thus reduced to the n = 1 case of Conjecture 2.1 which is known.
The proof of the proposition is now complete. �

Remark 7.4. The proof above also proves that for the degenerate principal series representation
π = χ1 × χ2 of GLn(E), with b = a+ 1 and χ1 = χσ2 · μ,

ExtiU(V )[π|GLn(E), ωV,ψ,μ] ∼=
∑
i=j+k

ExtjU(Va)(χ1, ωVa,ψ,μ)⊗ ExtkU(Vb)
(χ2, ωVb,ψ,μ).

8. When E �= K: local case

In this section, we consider the general twisted variant of the GGP problem, where E �= K are two
distinct quadratic extensions of a local field F . In particular, F is necessarily non-archimedean
and we fix a non-trivial additive character ψ of F . This case is considerably more intricate and,
like the GGP problem, we will need to make use of the local Langlands correspondence for
unitary groups to formulate our conjectural answers.

8.1 Biquadratic extension
Let L = E ⊗F K, so that L is a biquadratic extension of F . We thus have the following picture.

L = E ⊗K
σ

����������
τ

����������

K

τ ������������ E

σ
������������

F

In particular, we have set

Gal(E/F ) ∼= Gal(L/K) = 〈σ〉 and Gal(K/F ) ∼= Gal(L/E) = 〈τ〉.
Observe that the biquadratic field L contains a third quadratic subfield E′ which is the fixed
field of σ · τ . This field E′ will play a role later on.
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8.2 Skew-Hermitian spaces
We consider the two isomorphism classes of skew-Hermitian spaces V and V ′ over E of dimension
n, and make the following observation.

Lemma 8.1. The two skew-Hermitian spaces VK = V ⊗F K and V ′
K = V ′ ⊗F K are isomorphic

over L. When n is even, VK ∼= V ′
K is the maximally split skew-Hermitian space; whereas when

n is odd, VK ∼= V ′
K is characterized as the unique skew-Hermitian space whose determinant can

be represented by elements of E×
0 . In either case, U(VK) ∼= U(V ′

K) is a quasi-split group.

Proof. It suffices to show that detV and detV ′ belong to the same NL/K(L×)-coset, when
viewed as elements of K× or L×

0 . Since detV and detV ′ belong to the same F×-coset, it suffices
to observe that F× ⊂ NL/K(L×). Indeed, since L is a biquadratic extension of F , ωL/K = ωE/F ◦
NK/F . Hence,

ωL/K(F×) = ωE/F
(
NK/F (F×)

)
= ωE/F (F×2) = 1. �

In view of the lemma, we may regard U(V ) and U(V ′) as subgroups of a fixed U(VK) =
U(V ′

K).

8.3 Local Langlands correspondence
Now we recall the local Langlands correspondence for U(VK). An L-parameter for U(VK) is a
conjugate-dual n-dimensional semisimple representation M of the Weil–Deligne group WDL =
WL × SL2(C) of sign (−1)n−1. We have studied such conjugate-dual representations in some
detail in [GGP12b] and described their associated component groups AM . More precisely, we
may write

M =
⊕
i∈I

Vi ⊗Mi ⊕ P ⊕ σP∨

with Mi distinct conjugate-dual representations of sign (−1)n−1, Vi its multiplicity space and P
contains all the irreducible summands which are either non-conjugate-dual or conjugate-dual of
sign (−1)n, with σP∨ its conjugate-dual. As we discussed in [GGP12b, § 4], the centralizer group
of the L-parameter is of the form

CM =
∏
i∈I

O(Vi)× (a connected reductive group).

Hence, the component group of CM is an elementary abelian 2-group

AM =
∏
i∈I

Z/2Z · ai,

equipped with a canonical basis indexed by I. The element −1M gives rise to the element∑
i∈I

dim(Vi) · ai ∈ AM ,

which generates a subgroup of order ≤ 2 in AM . Now the local Langlands correspondence for
U(VK) gives a partition

Irr(U(VK)) =
⊔
M

ΠM ,

of Irr(U(VK)) into the disjoint union of finite subsets, the L-packets, with the sum running
over L-parameters of U(VK). Moreover, since we are at the moment concerned only with the
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quasi-split group U(VK), for each parameter M of U(VK), one has a bijection

J : ΠM ←→ Irr(AM/〈−1M 〉).
Here the bijection J is canonical when n is odd and depends on the choice of an equivalence
class of Whittaker datum for U(VK) when n is even. In that case, we have seen in [GGP12b]
that the equivalence classes of Whittaker data are parameterized by additive characters of K
modulo the translation action of NL/K(L×). We shall use the Whittaker datum associated to
ψK = ψ ◦ TrK/F .

Recall that an L-parameter M is generic if the adjoint L-factor L(s,M,Ad) is holomorphic
at s = 1. In that case, the L-packet ΠM contains a unique representation which is generic with
respect to the Whittaker datum associated to ψ ◦ TrL/K . This representation corresponds to the
trivial character of AM under the bijection J .

8.4 Asai factors
We recall from [GGP12b] the notion of Asai L-factors and ε-factors associated to a representa-
tion M of WDL relative to the quadratic extension L/E. If τ denotes the non-trivial element
of Aut(L/E) ∼= Aut(K/F ), the representation M ⊗M τ is τ -invariant and, hence, we have a
decomposition

IndWDE
WDL

(M ⊗M τ ) = As+L/E(M)⊕As−L/E(M)

of WDE-modules, with As±L/E(M) ∼= M ⊗M τ as WDL-modules. On As+L/E(M), an element
s ∈WE \WL acts by v ⊗ w �→ w ⊗ s2 · v, whereas on As−L/E(M), this action is twisted by the
non-trivial character of WE/WL (see [GGP12b, pp. 26–27]), thus As−L/E(M) = As+L/E(M) · ωL/E .

We record here some useful properties of the functor As±L/E . Later we will deal exclusively
with As+L/E , dropping the sign +.

Lemma 8.2. One has the following.

(a) If M =
⊕

iMi, then

AsεL/E(M) =
⊕
i

AsεL/E(Mi)⊕
⊕
i<j

IndEL (Mi ⊗M τ
j ).

(b) One has AsεL/E(M)∨ ∼= AsεL/E(M∨), where M∨ denotes the dual of M .

(c) One has AsεL/E(M1 ⊗M2) ∼= AsεL/E(M1)⊗AsεL/E(M2).
(d) If dimM = 1, in which case M is treated as a character of WDab

L = L×, As+L/E(M) is the

restriction of M from L× to E×.
(e) As a character of WDab

E
∼= E×,

det(As+L/E(M)) = As+(det(M))n · ωn(n−1)/2
L/E = det(M)|nE× · ωn(n−1)/2

L/E ,

where n = dimM .
(f) If M is an L-parameter of U(VK) and, hence, is conjugate-dual (with respect to L/K) of

sign (−1)n−1, then As±L/E(M) is necessarily conjugate-orthogonal relative to E/F .

8.5 Conjectures
We now come to the restriction problem to be studied. For each of the two skew-Hermitian spaces
V over E, we have the Weil representation ωV,ψ,μ, where μ is a conjugate-symplectic character
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of E×. Then we are interested in determining

mV (π, μ) := dim HomU(V )(π, ωV,ψ,μ) for π ∈ Irr(U(VK)).

Here is our main local conjecture for arbitrary separable quadratic extensions E,K of F ,
subsuming the earlier Conjecture 2.1 (for the case E = K).

Conjecture 8.3.

(i) For each π ∈ Irr(U(VK)),

mV (π, μ) = dim HomU(V )(π, ωV,ψ,μ) ≤ 1.

(ii) Let M be a generic L-parameter of U(VK) with associated L-packet ΠM ⊂ Irr(U(VK)). Then∑
V

∑
π∈ΠM

mV (π, μ) = 1

where the first sum runs over the two skew-Hermitian spaces over E of dimension n and
the second runs over the L-packet ΠM .

(iii) The unique V0 which has non-zero contribution to the sum in part (ii) is characterized by

μ(det(V0)) = ε(1/2,AsL/E(M)⊗ μ−1, ψE) · det(AsL/E(M))(e) · ωK/F (e2)n(n−1)/2,

where e is any non-zero trace 0 element of E, so that E = F (e).
(iv) The unique π ∈ ΠM which has non-zero contribution to the sum in part (ii) corresponds

via the bijection J to the character of the local component group AM =
∏
i∈I Z/2Z · ai

given by

χ(ai) = ε(1/2, IndEL (M τ
i ⊗ (M/Mi)) · μ−1, ψE,e)

= ε(1/2, [As(Mi) + As(M) + As(M/Mi)] · μ−1, ψE,e),

where ψE,e is the additive character of E/F defined by ψE,e(x) = ψ(Tr(ex)).

We make a few remarks on the above conjecture.

(a) In part (iii), the proposed expression for μ(det(V0)) is independent of the choice of the trace
0 element e. Moreover, using property (d) in § 8.4 and the fact that ωL/E(e) = ωK/F (NE/F (e)) =
ωK/F (−e2), the equation in part (iii) can be explicated as

μ(det(V0)) = ε(1/2,AsL/E(M)⊗ μ−1, ψE) · det(M)(e)n · ωK/F (−1)n(n−1)/2.

Though this may be more compact, our original expression has the advantage that it can be
specialized to all possible situations for the pair (E,K), as we shall explain below.

(b) In part (iii), observe that if E = F (e) and K = F (k) with k ∈ K× a trace zero element, then

ωK/F (e2) = (k2, e2)F .

In particular, we see that this term only appears when K and E are both fields (as we are
assuming in the conjecture).

(c) The distinguished character χ in part (iv) is indeed trivial on the image of −1M in
AM . Moreover, it is independent of the choice of the trace 0 element e. This follows from
the fact that (As(Mi) + As(M) + As(M/Mi)) · μ−1 is an even-dimensional conjugate-symplectic
representation of WDE and hence its determinant is conjugate-orthogonal.

(d) For the skew-Hermitian case considered in [GGP12b], we had defined a distinguished char-
acter χ of the local component group which gives the unique representation in the L-packet
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with non-zero branching multiplicity. This distinguished character automatically picks out the
skew-Hermitian space V0 over E which supports the non-zero multiplicity, so that part (iii) is a
consequence of part (iv) in the original GGP setting. In the case here, the distinguished character
χ in part (iv) gives a representation of U(VK), but does not specify the E-space V0. This is why
condition (iii) is needed.

8.6 Specializations
Though we are assuming that E �= K are distinct quadratic fields in this section, the formulas
in Conjecture 8.3(iii) and (iv) make sense for general (E,K). For this, we need to explain how
the L-parameter of Π ∈ Irr(U(VK)) gives rise to a representation of WDL and how to interpret
the Asai lift relative to L/E in the various situations.

• E = K is a field: this is the setting of § 2. In this case, L = E ⊗K is isomorphic to E × E =
K ×K. Note however that the embeddings of K and E into L are different. The embedding
of K into L is the diagonal embedding x �→ (x, x), whereas that of E into L is x �→ (x, xσ),
where Aut(E/F ) = 〈σ〉. We interpret the Weil–Deligne group of L as WDL = WDK ×WDK =
WDE ×WDE .

Now given an irreducible representation Π of U(VK) = GL(V ), its L-parameter M is an
n-dimensional representation of WK = WE and this gives rise to the pair (M,M∨) which
we interpret as a representation of WDL. Now the non-trivial element of Aut(L/E) acts on
L = E × E via (x, y) �→ (yσ, xσ). Thus, its induced action on the representations of WDL is
(M,M∨) �→ (σM∨,Mσ) (the switch, followed by the action of σ). We interpret the Asai lift as
the tensor product representation M ⊗ σM∨ of WDE . With these interpretations, the formula
in Conjecture 8.3(iii) specializes to that in Conjecture 2.1(iii), in view of remark (a) in § 8.5.

The issue addressed by Conjecture 8.3(iv) is not relevant in this case since the L-packet
of U(VK) = GL(V ) is a singleton. However, we note that with the above interpretations, the
right-hand side of the formula there is equal to 1.

• E is a field and K = F × F , so that L = K ⊗ E = E × E and WDL = WDE ×WDE : this is
the original GGP situation. Then U(VK) ∼= U(V )×U(V ) and an irreducible representation of
U(VK) is of the form π1 � π2 with πi ∈ Irr(U(V )). The L-parameters of π1 and π2 are conjugate-
dual representations M1 and M2 of WDE of sign (−1)n−1, giving a representation (M1,M2)
of WDL. Now since E is embedded diagonally in L = E × E, the non-trivial automorphism
of L/E is the switch of the two factors of E in L. The Asai lift of M1 �M2 from L to E is
interpreted as the internal tensor product M1 ⊗M2. With these interpretations, the formula in
Conjecture 8.3(iii) reads

μ(det(V0)) = ε(1/2,M1 ⊗M2 ⊗ μ−1, ψE) · det(M1 ⊗M2)(e).

We leave it to the reader to verify that this reduces to the relevant conjecture in [GGP12b].

• Compared with the other cases, a peculiarity of the original GGP situation is that U(VK) and
U(V ′

K) are not isomorphic when V and V ′ are the two distinct skew-Hermitian spaces over E.
Hence, one needs to choose and fix a quasi-split U(VK) to formulate the LLC, before one can
consider Conjecture 8.3(iv). When dimV is even, this choice is unique, but when dimV is odd,
this amounts to choosing a trace zero element e0 ∈ E× (the determinant of the distinguished V ).
Moreover, it is no longer the case that the character given in Conjecture 8.3(iv) is independent of
e when dimV is odd (though it is still the case when dimV is even). Thus, in Conjecture 8.3(iv),
one needs to use the distinguished e0 in the definition of the character χ when dimV is odd.
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With this caveat, we leave it to the reader to verify that the formula for the character χ in
part (iv) specializes to the one we had in [GGP12b].

• E = F × F and K is a field, so that L = K ×K. Here, U(V ) = GL(V ) and U(VK) = GL(VK).
Given an irreducible generic representation Π of GL(VK), and a conjugate-dual character
μ = (ν, ν−1) of E×/F× = (F× × F×)/F×, the multiplicity dim HomGL(V )(Π, ωV,ψ,μ) should be
always non-zero. So we expect the proposed identity in Conjecture 8.3(iii) to always hold, after
appropriate interpretations.

Now the L-parameter of Π is an n-dimensional representation M of WDK . This gives rise
to the pair (M,M∨) which we regard as a representation of WDL = WDK ×WDK . The non-
trivial automorphism of L/E is the componentwise action of τ ∈ Aut(K/F ) on L = K ×K, so
the Asai lift from L to E is the pair (AsK/F (M),AsK/F (M∨)), regarded as a representation of
WDE = WDF ×WDF . In this case,

ε(1/2,AsL/E(M,M∨) · μ−1, ψE)

= ε(1/2,AsK/F (M) · ν−1, ψ) · ε(1/2,AsK/F (M)∨ · ν, ψ).

= det(AsK/F (M))(−1) · ν(−1)n.

Moreover, an element e ∈ E = F × F of trace 0 is of the form (a,−a) for a ∈ F×. Hence,

det(AsL/E(M,M∨))(e) = det(AsK/F (M))(a) · det(AsK/F (M))(−a)−1

= det(AsK/F (M))(−1)

and

ωK/F (e2) = ωK/F (a2) = 1.

Thus, the right-hand side of the formula in part (iii) is ν(−1)n, which is equal to the left-hand
side.

There is also the case where E = K = F × F , which we will leave to the reader. The main
reason for formulating Conjecture 8.3 in a uniform way which allows for specialization to the
various cases is that in the global setting to be considered in § 11, any one of these local scenarios
will arise.

9. Low-rank evidence: E �= K

Just as for Conjecture 2.1, we provide here some evidence for Conjecture 8.3 in low-rank cases.
In particular, we shall show the following.

Theorem 9.1. Conjecture 8.3 holds when dimV ≤ 2.

The rest of this section is devoted to the verification of the theorem.

9.1 Rank-one case
Assume first that V is a skew-Hermitian space of dimension 1, so that U(V ) = E1 ⊂ U(VK) = L1,
where L1 denotes the subgroup of elements x ∈ L× with NL/K(x) = 1. Given a character χ of L1,
choose an extension χ̃ of χ to L×. Then the L-parameter of χ is the one-dimensional conjugate-
orthogonal representation M = χ̃/χ̃σ of WL. By the theorem of Moen and Rogawski, we know
that

HomE1(χ, ωV,ψ,μ) �= 0⇐⇒ ε(1/2, (χ̃/χ̃σ)|E× ⊗ μ−1, ψE) · χ(−1) = μ(det(V )).
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The local root number above can be written as

ε(1/2,AsL/E(M) · μ−1, ψE),

whereas

det(As(M))(e) = χ̃(e)/χ̃(eσ) = χ(−1).

This shows Conjecture 8.3 when n = dimV = 1.

9.2 Rank-two case
Suppose now that dimV = 2. In this case, we need to verify the independent statements (iii)
and (iv) of Conjecture 8.3. As we have noted before, V = VB is associated with a quaternion
F -algebra B, with

GU(VB) ∼= (B× × E×)/ΔF×.

The embedding GU(VB) ↪→ GU(VB,K) is the natural embedding

(B× × E×)/ΔF× ↪→ ((B ⊗F K)× × L×)/ΔK×,

with B ⊗F K ∼= M2(K).
A generic L-packet of U(VK) is thus given by an irreducible representation

Π � χ of GL2(K)× L×,

with ωΠ · χ|K× = 1. If P is the L-parameter of Π, then the L-parameter of the corresponding
L-packet of U(VK) is the conjugate-symplectic (relative to L/K) representation

M = P |WDL
⊗ χ

of WDL. On the other hand, the Weil representation ωψ,μ,B[χ|E× ] of U(VB) is an irreducible
summand of the representation

ΣB,N ⊗ χ
of B× × E× restricted to (B×)+ × E×, where as in § 3.2, ΣB,N has L-parameter

N = IndFE(μ · χ|−1
E×).

The corresponding L-parameter of U(VB) is the conjugate-symplectic (relative to E/F )
representation

N |WDE
⊗ χ|E× .

Now we consider the sum ∑
π∈ΠM

dim HomU(VB)(π, ωψ,μ,B). (9.2)

Via the above identifications, one sees that this sum is simply

dim Hom(B×)+(Π, ωψ,μ,B) = dim HomB×(Π,ΣB,N ).

In other words, we are reduced to a twisted trilinear form problem as in § 3.2. Hence, by a result
of the third author, cf. [Pra92], this dimension is at most 1 and is non-zero if and only if

ε(1/2,AsK/F (P )⊗ IndFE(μ−1 · χ|E×), ψ) · ωK/F (−1) = μ(det(VB)). (9.3)
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Now the local root number can be explicated as

ε(1/2,AsK/F (P )⊗ IndFE(μ−1 · χ|E×), ψ) = ε(1/2, IndFE(AsK/F (P )|WDE
· χ|E× · μ−1), ψ),

= ε(1/2, IndFE(AsL/E(P |WDL
· χ) · μ−1), ψ),

= ε(1/2,AsL/E(P |WDL
· χ) · μ−1, ψE),

= ε(1/2,AsL/E(M) · μ−1, ψE).

In the above, we have used the facts that

AsK/F (P )|WDE
∼= AsL/E

(
P |WDL

)
and

AsL/E(P |WDL
)⊗ χ|E× = AsL/E(P |WDL

⊗ χ) = AsL/E(M).

On the other hand, with n = 2,

det(AsL/E(M))(e)n · ωK/F (e2)n(n−1)/2 = det(M)(e)2 · ωL/E(e) · ωK/F (e2) = ωK/F (−1),

since det(M) is conjugate-orthogonal and, hence, trivial on e2 ∈ F×, and ωL/E(e) = ωK/F (−e2).
Hence, the equality (9.3) is precisely the statement of Conjecture 8.3(iii).

We now come to Conjecture 8.3(iv). Continuing with the analysis above, let us fix V = VB
such that (9.3) holds, so that the sum in (9.2) is equal to 1, and we need to determine which
element in the L-packet ΠM has non-zero contribution. Now the members of the L-packet are
given by the restriction of Π to GL2(K)+. If this restriction is irreducible, then we leave it to the
readers to convince themselves that Conjecture 8.3(iv) holds. Let us examine the more intricate
case when this restriction is the sum of two irreducible summands, i.e. when Π is dihedral with
respect to L/K. Thus, we see that the problem at hand is a refined version of the twisted trilinear
form problem, relative to the embedding GL2(F ) ⊂ GL2(K)+.

Since Π is dihedral with respect to L/K, P |WDL
is reducible and so is M = P |WDL

· χ.
To understand the L-packet, we shall return to the setting of unitary groups, as ΠM can be
constructed via theta lifting from rank-one skew-Hermitian spaces.

9.3 Unitary theta lifts
Let M = M1 +M2 be an L-parameter of U(VB)(K) with M1 and M2 conjugate-symplectic char-
acters of WL. The L-packet ΠM has two representations of U(VB)(K), which we may denote
by π+ and π− (these are π++, π−− of [GGP12a]), so that π+ is generic with respect to the
Whittaker datum determined by ψK = ψ ◦ TrK/F . Note that by Lemma 8.1, U(VB)(K) is always
the quasi-split unitary group in two variables, so the representations on the anisotropic form of
U(VB)(K) does not arise in our considerations. We shall explain how these representations π±

can be constructed as theta lifts from U1.
Let W± be the two rank-one Hermitian spaces over L with ωL/K(disc(W±)) = ±1. In par-

ticular, the Hermitian form on W+ is (x, y) �→ x · yτ , with Gal(L/K) = 〈τ〉. Then for ε = ±1,
U(W ε)×U(VK) is a reductive dual pair where VK = VB ⊗F K. Likewise, we may consider the
rank-two Hermitian space

W ε
E := ResL/E(W ε) with Hermitian form TrL/E(−,−)W ε .

This rank-two Hermitian space over E has discriminant

disc(W ε
E) = NK/F (k · disc(W ε)) ∈ F×/N(E×),
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where k ∈ K× is any trace 0 element; we leave the verification of this to the reader. Then
U(W ε

E)×U(V ) is a reductive dual pair, and we have the following seesaw diagram.

U(W ε
E)

���������
U(VK)

U(W ε)

���������

U(V )

To consider the theta correspondences for these two dual pairs, we need to select splitting char-
acters in each case, and to obtain a seesaw identity from the seesaw diagram, we need to select
these two sets of splitting characters compatibly. With the goal of obtaining the L-packet ΠM

of U(VK) as theta lifts from U(W±), we shall select these splitting characters as follows.

• Recall that M1 is a conjugate symplectic character of L× relative to L/K. Then its restriction
M1|E× is a conjugate-orthogonal character of E× relative to E/F (because F× ⊂ NL/K(L×)).

• For the equal rank dual pair U(V )×U(WE) over F , we use the pair of splitting characters
(M1|E× ,M1|E×), and the additive character ψ of F .

• For the almost equal rank dual pair U(VK)×U(W ε) over K, we use the pair (M1,M1 ◦
NL/E) = (M1,M1 ·M τ

1 ) and the character ψK of K.

With these splitting characters and additive characters fixed, one can consider the associated
theta correspondences for the two dual pairs. Moreover, one has the seesaw identity associated
to the above seesaw diagram. For this, one needs to specify the irreducible representations one
starts with on U(W ε) and U(V ).

(i) For the dual pair U(W ε)×U(VK), if one starts with the character χMτ
1M2 of U(W ε) with

L-parameter M τ
1 ·M2, then its theta lift to U(VK) has L-parameter M = M1 +M2. As ε

varies over ±, the two representations so obtained are the elements πε of the L-packet ΠM .
(ii) For the dual pair U(V )×U(WE), we start with the Weil representation ωψ,μ,V [χM1M2 ] of

U(V ) whose central character is the character χM1M2 of E1 with L-parameter M1M2 and
whose L-parameter is N = μ+ μ−1M1M2. Its theta lift to U(WE), if non-zero, has the same
L-parameter.

From the seesaw identity, we see that

HomU(V )(π
ε, ωψ,μ,V ) ∼= HomU(W ε)(Θ(ωψ,μ,V [χM1M2 ]), χMτ

1M2),

so that

HomU(V )(π
ε, ωψ,μ,V ) �= 0 =⇒ Θ(ωψ,μ,V [χM1M2 ]) �= 0.

By the theta dichotomy theorem [HKS96, GI16], the latter holds if and only if

ωE/F (−k2) · ε = ωE/F (disc(W ε
E)) = ε(1/2, N ·M1|−1

E× , ψE,e) · μ(det(V )).

The local root number on the right-hand side is equal to

ε(1/2,AsL/E(M1)−1 · μ, ψE,e) · ε(1/2,AsL/E(M2) · μ−1, ψE,e)

= ε(1/2,AsL/E(M1) · μ−1, ψE,e) · ε(1/2,AsL/E(M2) · μ−1, ψE,e) · ωE/F (−1).

On the other hand, by Conjecture 8.3(iii), which we have demonstrated above, we know that

μ(det(V )) = ε(1/2,AsL/E(M) · μ−1, ψE) · ωK/F (−1)

= ε(1/2,AsL/E(M) · μ−1, ψE,e) · ωK/F (e2).
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Assembling these together, we see that

ε = ε(1/2, [AsL/EM1 + AsL/E(M2) + AsL/E(M)] · μ−1, ψE,e) · ωE/F (k2) · ωK/F (e2),

= ε(1/2, [AsL/EM1 + AsL/E(M2) + AsL/E(M)] · μ−1, ψE,e),

as predicted by Conjecture 8.3(iv), where for the second equality, we have used

ωK/F (e2) = (k2, e2)F = ωE/F (k2).

Note that by Lemma 8.2(a), the last epsilon factor can be simplified as

ε = ε(1/2, IndEL (M τ
1 ·M2) · μ−1, ψE,e).

We have thus completed the proof of Theorem 9.1. For concreteness, we highlight the results
obtained for the rank-two case.

Proposition 9.4. Suppose we are given:

• a quadratic extension E/F of non-archimedean local fields;
• a quaternion F -algebra B with associated skew-Hermitian space VB of dimension 2 over E;
• a quadratic field extension K �= E with associated biquadratic field L = E ⊗K;
• an L-parameterM = M1 +M2 of U(VB)(K), withM1 andM2 conjugate-symplectic characters

of WL, whose L-packet ΠM has two representations π+ and π− of U(VB)(K), so that π+ is
generic with respect to the Whittaker datum determined by ψK = ψ ◦ TrK/F .

Then one has

HomU(VB)(π
ε, ωψ,μ,VB

) �= 0 ⇐⇒
{
μ(det(VB)) = ε(1/2,AsL/E(M) · μ−1, ψE) · ωK/F (−1),
ε = ε(1/2, IndEL (M τ

1 ·M2) · μ−1, ψE,e),

where e ∈ E×
0 .

10. Unitary principal series: E �= K

In this section, we shall study the restriction problem for unitary principal series representations
and show the analog of Corollary 5.3 in the E �= K setting. Recall that we have the following
diagram of fields and Galois automorphisms.

L = E ⊗K
σ

����������
τ

����������

K

τ ������������ E

σ
������������

F

The biquadratic field L contains a third quadratic subfield E′ which is the fixed field of σ · τ .
Let V be a skew-Hermitian space (relative to E/F ) of dimension n over E and VK = V ⊗F K,
the corresponding skew-Hermitian space (relative to L/K) over L = KE. We also let τ denote
the Galois automorphism acting on VK and U(VK) with fixed points V and U(V ), respectively.

10.1 Mackey theory
We shall consider the restriction to U(V ) of a parabolically induced representation from a
maximal parabolic subgroup of U(VK). The following theorem is an analog of Theorem 4.8.

1958

https://doi.org/10.1112/S0010437X23007327 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007327


Twisted GGP problems and conjectures

Theorem 10.1. Let VK be the n-dimensional skew-Hermitian space relative to L/K which is
the base change of any n-dimensional skew-Hermitian space relative to E/F .

• Let P = MN be a maximal parabolic subgroup of U(VK) which is the stabilizer of an
a-dimensional isotropic subspace of VK , with Levi factor

M ∼= GLa(L)×Un−2a(K).

• Let π = π1 � π2 = IndU(VK)
P (π1 ⊗ π2) be a tempered principal series representation of U(VK),

with π1 ∈ Irr(GLa(L)) and π2 ∈ Irr(Un−2a(K)).

For any skew-Hermitian V relative to E/F such that V ⊗F K ∼= VK , let ωV,ψ,μ be a Weil
representation of U(V ).

Then for all i ≥ 0,∑
V

ExtiU(V )[π, ωV,ψ,μ]

(1)
=
∑
i=j+k

(∑
V ′

a

ExtjU(V ′
a)[π1, ωV ′

a,ψ,μ◦NL/E
]
)
⊗
( ∑
Vn−2a

ExtkU(Vn−2a)[π2, ωVn−2a,ψ,μ]
)
,

where:

• the sum over V runs over the two skew-Hermitian spaces relative to E/F of dimension n;
• the sum over V ′

a runs over the two skew-Hermitian spaces relative to L/E′ of dimension a;
• the sum over Vn−2a runs over the two skew-Hermitian spaces relative to E/F of dimension
n− 2a;

• ωV ′
a,ψ,μ◦NL/E

and ωVn−2a,ψ,μ denote the corresponding Weil representations of U(V ′
a) and

U(Vn−2a).

In particular, for i = 0,∑
V

HomU(V )[π, ωV,ψ,μ]

(2)
=
(∑

V ′
a

HomU(V ′
a)[π1, ωV ′

a,ψ,μ◦NL/E
]
)
⊗
( ∑
Vn−2a

HomU(Vn−2a)[π2, ωVn−2a,ψ,μ]
)
.

The isomorphisms in both of the above equations (1) and (2) come from the open orbits. More
precisely, if [X] is a non-open orbit of U(V ) on U(VK)/P , contributing (by the Mackey theory)
a certain representation πX of U(V ) as a subquotient of π, then

ExtiU(V )[πX , ωV,ψ,μ] = 0,

for all i ≥ 0.

Proof. The proof of this theorem is almost identical to the corresponding theorem for the E = K
case, i.e. Theorem 4.8, so we will be brief. It again depends on using the Mackey theory to
calculate the representation πX of U(V ) as a subquotient of π supported on each orbit [X] of
U(V ) on the partial flag variety U(VK)/P . Hence, we first investigate the orbits of U(V ) on
U(VK)/P , and their associated stabilizers in U(V ).

The partial flag variety U(VK)/P parameterizes a-dimensional isotropic L-subspaces X of
VK . Since τ acts on VK , we have an action X �→ Xτ of τ on U(VK)/P . For each isotropic X,
let PX ⊂ U(VK) be the stabilizer of X in U(VK), so that PX = MXNX is a maximal parabolic
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subgroup with Levi factor

MX = GL(X)×U(X⊥/X).

Let

QX = U(V ) ∩ PX
be the stabilizer of X in U(V ), with NQX

its unipotent radical. Therefore, QX preserves the flag:

0 ⊂ X ∩Xτ ⊂ X ⊂ X⊥ ⊂ (X ∩Xτ )⊥ ⊂ VK ,
and there is a natural map

QX → PX →MX = GL(X)×U(X⊥/X).

Hence, a representation π1 � π2 of MX = GL(X)×U(X⊥/X) gives rise by pullback to a repre-
sentation of QX , which can then be induced to U(V ) to obtain the representation πX of U(V )
supported on the U(V )-orbit of X.

After the above generalities, we now consider different cases according to the types of X.

Case 1: X ∩Xτ �= 0. Set d = dimL(X ∩Xτ ). The space X ∩Xτ is defined over E, so let Y ⊂ V
be such that YL := Y ⊗E L = X ∩Xτ . The space Y is isotropic, and it is easy to see that QX
has the following properties.

(1) QX is a subgroup of the parabolic subgroup

PY = (GL(Y )×U(V0)) �NY ⊂ U(V )

stabilizing Y , with V0 a nondegenerate subspace such that Y ⊥ = Y ⊕ V0. Indeed, one has

QX = (GL(Y )×H) �NY

for some subgroup H ⊂ U(V0). To see this, note that elements of GL(Y ) ·NY preserve Y
and act as identity on Y ⊥/Y . Since

YL ⊂ X ⊂ Y ⊥
L ,

we see that GL(Y ) ·NY preserves X and hence lies in PX ∩U(V ) = QX .
(2) For the natural map

QX → GL(X)×U(X⊥/X),

the center ZY of NY lies in the kernel, since elements of ZY act as identity on Y ⊥.
(3) For the composite map

πX : QX → GL(X)×U(X⊥/X)→ GL(X),

the image of GL(Y ) ·NY under πX is contained in the parabolic subgroup

Pd,a−d = (GLd(L)×GLa−d(L)) �Nd,a−d

stabilizing the subspace YL = X ∩Xτ ⊂ X. Indeed, GL(Y ) is mapped isomorphically to the
subgroup GL(Y ) ⊂ GL(YL) = GLd(L) and NY is mapped surjectively onto the unipotent
radical Nd,a−d of Pd,a−d.

To see the assertion on surjectivity, suppose we are given an element g ∈ Nd,a−d, so that
g ∈ GL(X) acts as identity on YL = X ∩Xτ and on X/YL. Then g extends to a map on
X +Xτ , still denoted by g. Moreover, this extended map g preserves the skew-Hermitian
structure on X +Xτ ; this is because the image of g − 1 lies in YL, which is orthogonal to
X +Xτ . Now note that the space X +Xτ and the map g ∈ GL(X +Xτ ) are both defined
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over E. By Witt’s theorem, we can thus find an element g̃ ∈ U(V ) such that g̃ induces g on
X +Xτ and hence stabilizes X. Such a g̃ thus belongs to QX and is sent to g under the
composite map here.

(4) The composite map

QX → GL(X)×U(X⊥/X)→ U(X⊥/X)

is trivial on GL(Y ).

As in the proof of Theorem 4.8, these properties and Lemma 4.7 imply that

ExtiU(V )(πX , ωV,ψ,μ)

∼= ExtiU(V )[indU(V )
QX

(π1 ⊗ π2 ⊗ δ1/2PX/QX
), ωV,ψ,μ]

∼= ExtiQX/ZY
[(ωV,ψ−,μ−1)ZY

, δ
1/2
QX
· (π1 ⊗ π2 ⊗ δ1/2PX/QX

)∨]

∼= ExtiQX/NY
[(π1)d,a−d ⊗ π2 ⊗ δ1/2PX

, δQX
· μ · |det|−1/2

E · ωn−2d,ψ,μ]

∼= ExtiQX/NY
(A,B),

where (π1)d,a−d denotes the un-normalized Jacquet module of π1 with respect to the parabolic
subgroup Pd,a−d of GL(X) ∼= GLa(L) stabilizing YL = X ∩Xτ .

Now we examine the central characters occurring in A and B as GL(Y )-modules. A simple
computation gives

δPX
= |det|n−aL , δQX

= |det|n−dE and δPd,a−d
= |det |a−dL .

Since π1 is tempered, one sees by Casselman’s criterion that the central exponents of

A = (π1)d,a−d ⊗ π2 ⊗ δ1/2PX
,

regarded as a representation of GL(Y ), have the form

|det|(a−d+ε)/2L · |det|(n−a)/2L = |det|(n−d+ε)/2L = |det|n−d+εE

for ε ≥ 0. On the other hand, the only central exponent occurring in B is

δQX
· |det|−1/2

E = |det|n−d−
1
2

E .

Since the central exponents of A and B (regarded as GL(Y )-modules) are different, we have
shown that

ExtiU(V )[πX , ωV,ψ,μ] = 0 for all i ≥ 0.

Case 2: X ∩Xτ = 0, but Z0 = X ∩Xτ⊥ �= 0. In this case, X +Xτ is a degenerate skew-
Hermitian space defined over E whose nullspace is Z0 + Zτ0 , i.e.

Z0 + Zτ0 = (X +Xτ ) ∩ (X +Xτ )⊥.

Let Z be the subspace of V such that Z ⊗ L = Z0 + Zτ0 , so that Z is an isotropic subspace of
V . In this case, it is easy to see that the subgroup QX of U(V ) preserving X has the following
properties.

(1) The subgroup QX contains the unipotent radical of the parabolic subgroup of U(V )
stabilizing the isotropic subspace Z ⊂ V .
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(2) The image of the natural map from QX to GL(X) given as the composite

QX → GL(X)×U(X⊥/X)→ GL(X)

lands inside the parabolic subgroup defined by the subspace Z0 = X ∩Xτ⊥ ⊂ X, containing
the unipotent radical of this parabolic subgroup of GL(X), as well as GL(X ∩Xτ⊥).

A similar analysis as in Case 1 (based on appropriate central character analysis) allows us to
conclude that

ExtiU(V )[πX , ωV,ψ] = 0,

for all i ≥ 0.

Case 3: both X ∩Xτ = 0, and X ∩Xτ⊥ = 0. In this case, the U(V )-orbit of X is open. Such
isotropic spaces X ⊂ VK , up to U(V )-conjugacy, are in bijective correspondence with U(V )-
conjugacy classes of non-degenerate subspaces W ⊂ V of dimension 2a, since such a subspace W
has, up to U(W ) conjugacy, a unique subspace X ⊂WK such that X ∩Xτ = 0 and X ∩Xτ⊥ = 0
(the proof of this is given in Lemma 10.2).

Now let QX be the stabilizer of X in U(V ). The following lemma allows us to determine this
stabilizer.

Lemma 10.2. Let W be a 2a-dimensional non-degenerate skew-Hermitian space over E and let
X ⊂W ⊗F K = WK be an isotropic subspace of WK such that

X ∩Xτ = 0 and X +Xτ = WK ,

where we recall that Gal(K/F ) = 〈τ〉. Then we have the following.

(i) The isotropic subspace X ⊂WK with the above properties is unique up to the action of
U(W ) on WK ;

(ii) The stabilizer of X in U(W ) is isomorphic to U(WX), where WX is the skew-Hermitian
space on the underlying vector space X relative to L/E′ (for E′ the third quadratic field
contained in the biquadratic extension L = E ⊗K), defined by

(x1, x2) = 〈x1, τx2〉.
(iii) The determinant of the 2a-dimensional skew-Hermitian space W for E/F and the

a-dimensional skew-Hermitian space WX for L/E′ are related by (as elements of
F×/NE/F (E×)):

det(W ) = NL/E [ka det(WX)] = (−k2)aNL/E det(WX),

where k is any non-zero element of K whose trace to F is zero.

Further, the restriction of the Weil representation ωW,ψ,μ of U(W ) to U(WX) is the Weil
representation of ωWX ,ψ◦TrE′/F ,μ◦NL/E

.

Proof. (i) Let X and X ′ be two L-vector subspaces of WK satisfying the properties in the lemma.
Let

φ : X −→ X ′

be a L-linear isomorphism of vector spaces. Then φ extends uniquely to a L-linear automorphism
(still denoted by φ) of X +Xτ = WK defined by

φ(xτ ) = φ(x)τ , for x ∈ X.
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Since this satisfies φ ◦ τ = τ ◦ φ, it follows by Galois descent that φ is defined over E, i.e. φ is
obtained by base change from an E-linear isomorphism

φ0 : W −→W.

Moreover, one checks by a direct computation that φ0 preserves the given skew-Hermitian struc-
ture on W if and only if φ is compatible with the L/E′-skew-Hermitian structure on X and X ′

defined in part (ii), i.e. φ is an isomorphism of L/E′-skew-Hermitian spaces:

φ : WX −→WX′ .

Hence, to show that there is an element of U(W ) which carries X to X ′, it remains to show that
WX and WX′ are necessarily isomorphic as L/E′-skew-Hermitian spaces. We shall show this and
hence complete the proof of part (i) only after we demonstrate part (iii), using Lemma 10.3.

(ii) Taking X ′ = X in part (i) above, one deduces that the stabilizer of X in U(W ) is precisely
U(WX).

(iii) For the L/E′-skew-Hermitian space WX defined in part (ii), there is a natural E/F skew-
Hermitian structure on WX obtained by taking the same vector space as WX , now treated as an
E-vector space and denoted by RE(WX), with the skew-Hermitian form which is the L/E-trace
of the skew-Hermitian form on WX . Define a map φ : X →W by

φ(x) = x+ xτ ∈W for x ∈ X.

It is easy to check that φ induces an isomorphism of the E/F skew-Hermitian spaces RE(WX)
and W . Now we appeal to the Lemma 10.3 below to complete the proof of part (iii).

Lemma 10.3. With the quadratic extensions E,K,E′ of F as before, let W be an L/E′-skew-
Hermitian space with a skew-Hermitian form 〈−,−〉. Let RE(W) be the same space W regarded
as a vector space over E, which comes equipped with a natural E/F skew-Hermitian structure
(−,−):

(w1, w2) = 〈w1, w2〉+ 〈w1, w2〉τ .
Fix an element k ∈ K× with TrK/F (k) = 0. Then, with a = dimW, one has

ka detW ∈ E′×,

and

NL/E(ka detW) = NE′/F (ka detW) = detRE(W),

as elements of F×/NE/F (E×).
Moreover, if W ′ �W is the other L/E′-skew-Hermitian space of the same dimension, then

RE(W ′) � RE(W ′).

Proof. By writingW as an orthogonal sum of lines over L, we are reduced to proving the lemma
for a one-dimensional skew-Hermitian space for L/E′ which we take to be the vector space L
with the skew-Hermitian structure:

〈�1, �2〉 = �1x�
στ
2 ,

for x ∈ L× with x+ xστ = 0.
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This gives rise to an E/F skew-Hermitian structure on L by

(�1, �2) = 〈�1, �2〉+ 〈�1, �2〉τ = �1x�
στ
2 + �τ1x

τ �σ2 .

For this E/F -skew-Hermitian space L, {1, k} is a basis, for which the Gram matrix is given by

A =
(

x+ xτ −k(x− xτ )
k(x− xτ ) −k2(x+ xτ )

)
,

so that

detA = −4k2xxτ .

Now since (kx)στ = kx, we see that kx belongs to E′×, as desired.
For the final statement, it suffices to show that

det(RE(W ′)) �= det(RE(W)) ∈ F×/NE/F (E×),

or, equivalently, that

ωE/F (det(RE(W ′)) · det(RE(W))) = −1.

By the identity proved above, this is equivalent to showing that

(ωE/F ◦NE′/F )
(
det(W ′) · det(W)

)
= −1.

However, this desired identity holds since

ωE/F ◦NE′/F = ωL/E′ .

This completes the proof of Lemma 10.3. �

As we mentioned, Lemma 10.3 completes the proof of part (iii). The last assertion in
Lemma 10.3 also allows us to complete the proof of part (i). Indeed, in the proof of part (iii),
we have shown that RE(WX) ∼= W as E/F -skew-Hermitian spaces. Hence, with X and X ′ as
in the proof of part (i), we deduce that RE(WX) ∼= RE(WX′). In view of the last assertion in
Lemma 10.3, one thus deduces that WX

∼= WX′ as L/E′-skew-Hermitian spaces.
Finally, we observe that the restriction of the Weil representations made in Lemma 10.2

is the precise version of the well-known assertion that the restriction of a Weil representation
of Sp(4n, F ) to Sp(2n,E′) takes a Weil representation of Sp(4n, F ) to a Weil representation of
Sp(2n,E′). This completes the proof of Lemma 10.2. �

Applying Lemma 10.2, we find

QX ∼= U(WX)×U(W⊥
X ) ⊂ U(V )

with dimWX = 2a and dimW⊥
X = n− 2a. We can now conclude the proof as in Theorem 4.8.

The proof of Theorem 10.1 is now complete. �
The following proposition is obtained as a corollary to Theorem 10.1.

Proposition 10.4. Let V be an n-dimensional skew-Hermitian space relative to E/F , and
VK = V ⊗F K = V ⊗E L its base change to an n-dimensional skew-Hermitian space relative to
L/K.

• Let VK = X +Xτ +W ′
K with X an isotropic subspace of VK such that X ∩Xτ = 0. Assume

that both (X +Xτ ) and W ′
K = W ′ ⊗E L are defined over E, are non-degenerate skew-

Hermitian spaces over E, and are perpendicular to each other. Let P = MN be a maximal
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parabolic subgroup of U(VK) which is the stabilizer of X, with Levi factor

M ∼= GL(X)×U(W ′
K).

• Let

π = π1 � π2 = IndU(VK)
P (π1 ⊗ π2)

be a tempered principal series representation of U(VK), with π1 ∈ Irr(GL(X)) and π2 ∈
Irr(U(W ′

K)).

By Lemma 10.2, the vector space X over L carries a natural L/E′-skew-Hermitian structure
(where E′ is the quadratic extension of F inside L different from E,K), that we denote by W
(so W as a vector space over L is the same as X). If Conjecture 8.3(i)–(iii) holds for:

(1) the representation π1 of GL(X) containing the unitary subgroup U(W ), of size a for the
extension L/E′;

(2) π2 ∈ Irr(U(W ′
K));

then it holds also for the representation π = π1 � π2 of U(VK).

Proof. That Conjecture 8.3(i) holds for the representation π = π1 � π2 of U(VK) if and only if
it does for both the representations π1 and π2 is the content of our previous theorem.

We will next prove the analogous assertion on Conjecture 8.3(ii). For this, let the represen-
tations of the Weil–Deligne group of L associated to π1, π2 be M1,M2. Then the parameter of
the representation π of U(VK) is M = M1 + σM1

∨ +M2. We need to prove that if equations (1)
and (2) below hold, then so does equation (3). Here is equation (1):

μ(det(W ′))

= ε(1/2,AsL/E(M2)⊗ μ−1, ψE) · det(AsL/E(M2))(e) · ωK/F (e2)(n−2a)(n−2a−1)/2

= ε(1/2,AsL/E(M2)⊗ μ−1, ψE) · det(M2)(e)n−2a · ωK/F (−1)(n−2a)(n−2a−1)/2

(1)
= ε(1/2,AsL/E(M2)⊗ μ−1, ψE) · det(M2)(e)n · ωK/F (−1)n(n−1)/2 · ωK/F (−1)a,

where we have used the observation that detM2 is a character of L×/K×, hence is trivial on e2.
Here is equation (2):

μ(NL/E det(WX))

= ε(1/2,M1 ⊗ στM1
∨ ⊗ μ−1 ◦NL/E , ψL) · det(M1)(−1)a · ωL/E′(−1)a(a−1)/2,

(2)
= ε(1/2,M1 ⊗ στM∨

1 ⊗ μ−1 ◦NL/E , ψL) · det(M1)(−1)a,

where μ−1 ◦NL/E denotes the character of L× obtained from the character μ−1 of E× by com-
posing with the norm map NL/E : L× → E×, and ψL is the character of L obtained from the
character ψE of E obtained by composing with the trace map from L to E. Equation (3) is

μ(det(V ))

= ε(1/2,AsL/E(M)⊗ μ−1, ψE) · det(AsL/E(M))(e) · ωK/F (e2)n(n−1)/2

= ε(1/2,AsL/E(M)⊗ μ−1, ψE) · det(M)(e)nωL/E(e)n(n−1)/2 · ωK/F (e2)n(n−1)/2

= ε(1/2,AsL/E(M)⊗ μ−1, ψE) · det(M)(e)n · ωK/F (−1)n(n−1)/2

(3)
= ε(1/2,AsL/E(M)⊗ μ−1, ψE) · det(M1)(−1)n · det(M2)(e)n · ωK/F (−1)n(n−1)/2.
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The proof that equations (1) and (2) imply equation (3) depends essentially on relat-
ing ε(1/2,AsL/E(M)⊗ μ−1, ψE) to ε(1/2,AsL/E(M2)⊗ μ−1, ψE) and ε(1/2,M1 ⊗ σM∨

1 ⊗ μ−1 ◦
NL/E , ψL), given that M = M1 + σM∨

1 +M2 with σM∨
2 = M2. We begin with the following

calculation:

AsL/E(M) = AsL/E(M1) + AsL/E(σM∨
1 ) + AsL/E(M2)

+ IndEL (M1 ⊗M τ
2 ) + IndEL (σM∨

1 ⊗M τ
2 ) + IndEL (M1 ⊗ στM∨

1 )

(4)
= AsL/E(M1) + AsL/E(σM∨

1 ) + IndEL (M1 ⊗M τ
2 ) + IndEL (σM∨

1 ⊗M τ
2 )

+ AsL/E(M2) + IndEL (στM∨
1 ⊗M1).

Now, for any representation N of WE , one has

ε(N + σN∨, ψE) = det(N)(−1).

Hence, we find (using a calculation on the determinant of the Asai representation AsL/E(M1)⊗
μ−1) that

ε([AsL/E(M1) + AsL/E(σM∨
1 )]⊗ μ−1, ψE) = det[AsL/E(M1)](−1)μa

2
(−1)

= det(M1)a(−1)ωL/E(−1)a(a−1)/2μa
2
(−1)

(5)
= det(M1)a(−1)μa(−1),

where in the last equality, we have used that ωL/E(−1) = 1 since ωL/E = ωK/F ◦NE/F .
Similarly, using that M2

∼= σM∨
2 , and a calculation on the determinant of the induced repre-

sentation IndEL (M1 ⊗M τ
2 ), we find that

ε([IndEL (M1 ⊗M τ
2 ) + IndEL (σM∨

1 ⊗M τ
2 )]⊗ μ−1, ψE) = det[IndEL (M1 ⊗M τ

2 )⊗ μ−1](−1)

= det(M1 ⊗M τ
2 )(−1),

(6)
= det(M1)(−1)n,

where, in the second equality, we have used the facts that ωL/E(−1) = 1, and detM2(−1) = 1.
By the inductive nature of the epsilon factors for representations of dimension 0, we have

ε(IndEL (στM∨
1 ⊗M1)⊗ μ−1, ψE) = ε(στM∨

1 ⊗M1 ⊗ μ−1 ◦NL/E , ψL) · ε(ωL/E , ψE)a
2
,

= ε(στM∨
1 ⊗M1 ⊗ μ−1 ◦NL/E , ψL) · ωL/E(e)a,

(7)
= ε(στM∨

1 ⊗M1 ⊗ μ−1 ◦NL/E , ψL) · ωK/F (−e2)a,
From equations (4), (5), (6), and (7), we see that

ε(AsL/E(M)⊗ μ−1, ψE) = ε([AsL/E(M2) + IndEL (στM∨
1 ⊗M1)]⊗ μ−1, ψE)

· det(M1)a(−1)μa(−1) · det(M1)(−1)n,

= ε(AsL/E(M2)⊗ μ−1, ψE)ε(στM∨
1 ⊗M1 ⊗ μ−1 ◦NL/E , ψL)

· det(M1)a(−1)μa(−1) · det(M1)(−1)nωK/F (−e2)a2
,

(8)
= ε(AsL/E(M2)⊗ μ−1, ψE)ε(στM∨

1 ⊗M1 ⊗ μ−1 ◦NL/E , ψL)

· det(M1)n+a(−1)μa(−1)ωK/F (−e2)a,
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By equation (8), one sees that equations (1) and (2) imply equation (3), using the following
identity from Lemma 10.2 of elements of F×/NE/F (E×),

(−k2)a detW ′ ·NL/E det(W ) = detV,

as well as the relation of the characters ωK/F and ωE/F to the (quadratic) Hilbert symbol of F :

ωK/F (x) = (k2, x),

ωE/F (x) = (e2, x),

which implies

ωK/F (e2) = (k2, e2) = ωE/F (k2).

Finally, under the standard identification of the character of component groups under
parabolic induction, it is easy to see that the recipe in Conjecture 8.3(iii) holds. This amounts
to the identity (for Mi = σM∨

i ):

ε(IndEL (M τ
i ⊗ [M1 + σM∨

1 ]⊗ μ−1, ψE,e) = 1,

which is easy to see.
We have thus finished the proof of Proposition 10.4. �

Remark 10.5. The arguments given here also prove that for any tempered representation π of
U(VK) which is a direct summand of a representation of U(VK) parabolically induced from a
unitary cuspidal representation of a Levi subgroup of U(VK),

ExtiU(V )[π, ωV,ψ] = 0, for all i ≥ 1.

This vanishing of higher Ext is as proposed in [Pra18], but is not as precise as Theorem 5.9.

10.2 U(V )-orbits on the full flag variety
Using Theorem 10.1, and its corollary, Proposition 10.4, one can inductively deduce
Conjecture 8.3(i)–(iii) for irreducible unitary principal series representations of U(VK) induced
from a Borel subgroup. However, we shall give an alternative treatment involving the analysis
of the U(V )-orbits on the full flag variety of U(VK), which has a rather nice structure that may
be of independent interest.

Proposition 10.6. Let:

• L = E ⊗K be a biquadratic extension and let E′ be the third quadratic subfield of L;
• V be a skew-Hermitian space relative to E/F of dimension n.

For a skew-Hermitian space W relative to L/E′, let ResL/E(W ) be the same space W regarded as
a vector space over E (of twice the dimension) together with the associated E/F -skew-Hermitian
structure (obtained by taking the trace), so that

U(W ) ⊂ U(ResL/E(W )).

Then we have the following.
(i) If dimV = n = 2d is even, there are 2d−1 open U(V )-orbits on the flag variety of U(VK).

The open orbits are parameterized by ordered collection of lines

L = {L1, L2, . . . , Ld},
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where each Li is a rank-one skew-Hermitian space relative to L/E′, subject to the condition of
V -relevance:

det(V ) =
∏
i

det(ResL/E(Li)).

The stabilizer group for the orbit corresponding to L is

U(L) =
∏
i

U(Li) ⊂
∏
i

U(ResL/E(Li)) ⊂ U(V ).

(ii) Suppose that dimV = n = 2d+ 1 is odd. There are 2d open U(V )-orbits on the flag
variety of U(VK). The open orbits are parameterized by ordered collection

L = {L1, L2, . . . , Ld;V0},
where each Li is a rank-one skew-Hermitian space relative to L/E′, and V0 is a rank-one skew-
Hermitian space relative to E/F , subject to the condition of V -relevance:

det(V ) =
∏
i

det(ResL/E(Li)) · det(V0).

In particular, V0 is determined by {L1, . . . , Ld}. The stabilizer group associated to L is

U(L) =
∏
i

U(Li)×U(V0) ⊂
∏
i

U(ResL/E(Li))×U(V0) ⊂ U(V ).

10.3 Unitary principal series
Using Proposition 10.6 and Theorem 10.1, we can study the restriction of a unitary principal
series

Π = IndU(VK)
B χ

to U(V ) and show the following.

Theorem 10.7. Conjecture 8.3(i)–(iii) hold for the tempered L-packet consisting of the
constituents of the unitary principal series representation Π.

Proof. The argument is similar to that of Corollary 5.3 and it will be convenient to treat the
cases of even or odd dimV separately. We shall only write down the details for the case of even
dimV , leaving the odd case as an exercise for the interested reader.

Assume thus that dimV = n = 2d is even, so that

Π = IndU(VK)
B (χ1 ⊗ · · · ⊗ χd)

for some unitary characters χi of L×. By Theorem 10.1, we see that

HomU(V )(Π, ωψ,μ,V ) ∼=
⊕
L

⊗
i

HomU(Li)(χi, ωψ,μ,LE
i
), (10.8)

where the sum runs over V -relevant L and we have written LEi for ResL/E(Li).
We thus need to analyze the non-vanishing of HomU(Li)(χi, ωψ,μ,LE

i
). As in the E = K case,

this comes down to an application of the theorem of Moen and Rogawski, i.e. Theorem 3.1.
Indeed, by the functorial property of the Weil representation, the restriction of ωψ,μ,LE

i
of U(Li)
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is simply the Weil representation ωψK ,μ◦NL/E ,Li of U(Li). Hence,

HomU(Li)(χi, ωψ,μ,LE
i
) �= 0

if and only if

μ(NL/E(det(Li))) = χi(−1) · ε(1/2, χi/χτσi · (μ ◦NL/E)−1, ψL), (10.9)

where the local root number is considered over L.
Hence, we see that at most one L in (10.8) has non-zero contribution, and this L = {Li} is

characterized by having (10.9) holding for all i. By Lemma 10.3,

det(LEi ) = NL/E(k · det(Li)) ∈ F×/NE/F (E×)

where k ∈ K×
0 . Thus, if HomU(V )(Π, ωψ,μ,V ) �= 0, then

μ(det(V )) =
∏
i

μ(det(LEi ))

=
∏
i

μ(NL/E(k · det(Li))

= ωE/F (−k2)d ·
∏
i

χi(−1) ·
∏
i

ε(1/2, χi/χτσi · (μ ◦NL/E)−1, ψL), (10.10)

with the last equality following by (10.9).
On the other hand, according to Conjecture 8.3(iii), one should expect that

μ(det(V )) = ε(1/2,AsL/E(M) · μ−1, ψE) · det(As(M))(e) · ωK/F (e2)n(n−1)/2,

where

M =
⊕
i

Mi =
⊕
i

(χi + (χσi )
−1)

is the L-parameter of Π. Let us explicate this and compare it with the expression for μ(det(V ))
in (10.10).

By Lemma 8.2(a),

AsL/E(M) =
⊕
i

AsL/E(Mi)⊕
⊕
i<j

IndEL (M τ
i ⊗Mj),

with Mi = χi + (χσi )
−1. Likewise, by Lemma 8.2(a) and (c),

AsL/E(Mi) = χi|E× + (χσi )
−1|E× + IndELχi/χ

τσ
i ,

and it follows that

ε(1/2,AsL/E(Mi) · μ−1, ψE)

= χi(−1) · ωE/F (−1) · ε(1/2, IndELχi/χ
τσ
i · μ−1, ψE)

= χi(−1) · ωE/F (−1) · ωK/F (−e2) · ε(1/2, χi/χτσi · (μ ◦NL/E)−1, ψL).

In the above computation, we have repeatedly used the facts:

(1) ε(1/2, N + (Nσ)∨, ψE) = det(N)(−1);
(2) ε(1/2, IndELN,ψE) = ε(1/2, N, ψL) · ε(1/2, ωL/E , ψE)dimN ;
(3) ε(1/2, ωL/E , ψE) = ωL/E(e) = ωK/F (−e2), since ωL/E is a conjugate-orthogonal character

of E×.

1969

https://doi.org/10.1112/S0010437X23007327 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007327


W. T. Gan, B. H. Gross and D. Prasad

For i < j, a similar computation using the above facts shows that

ε(1/2, IndEL (M τ
i ⊗Mj), ψE) = 1

Hence, we have

ε(1/2,As(M) · μ−1, ψE) =
∏
i

χi(−1) · ωE/F (−1)d · ωK/F (−e2)d

·
∏
i

ε(1/2, χi/χτσi · (μ ◦NL/E)−1, ψL).

On the other hand, using Lemma 8.2(d),

det(As(M))(e) · ωK/F (e2)n(n−1)/2 = ωK/F (−1)d.

Hence, Conjecture 8.3(iii) predicts that

μ(det(V )) =
∏
i

χi(−1) · ωE/F (−1)d · ωK/F (e2)d ·
∏
i

ε(1/2, χi/χτσi · (μ ◦NL/E)−1, ψL).

Comparing this with (10.10) and noting that

ωE/F (k2) = (e2, k2) = ωK/F (e2),

we see that Conjecture 8.3(iii) holds for the L-packet defined by unitary principal series
representations of U(VK). �

The reader will notice that we have not shown Conjecture 8.3(iv). For this, one would need
to explicate which irreducible summand of the unitary principal series representation Π has non-
zero contribution to HomU(V )(Π, ωV,μ,ψ). The different summands of Π can be distinguished from
each other by the effects on the normalized standard intertwining operators (i.e. the so-called
local intertwining relations). We do not know how to exploit this to establish Conjecture 8.3(iv).
However, in a paper [CG22] of Rui Chen and the first author, this remaining issue is taken care
of by means of theta correspondence.

11. When E �= K; global case

In this final section, we will formulate the global conjecture in the general case where E �= K
are two distinct quadratic extensions of a global field F . We will use the notation of § 2.2 in this
global setting.

Let Π be a cuspidal automorphic representation of U(VK) with a generic global L-parameter
MΠ, so that

MΠ =
d⊕
i=1

Mi,

is a sum of conjugate-dual cuspidal representations Mi of GLmi(L⊗ AF ) of sign (−1)n−1 where
L = E ⊗F K. Now we have the global period integral

P : Π⊗ ωV,ψ,μ −→ C

defined as in § 2.2. The global conjecture is as follows.

Conjecture 11.1. The global period integral P is non-zero if and only if

(a) for all places v of F , HomU(Vv)(Πv, ωVv ,ψ,μv) �= 0;
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(b) the twisted Asai automorphic L-function [Fli88] satisfies

L(1/2,Π,AsL/E × μ−1) �= 0.

(denoting Vv = V ⊗F Fv).
Further, if L(1/2,Π,AsL/E × μ−1) �= 0, then there exists a skew-Hermitian space V of dimension
n over E such that the global period integral P is non-zero.

As in § 2.3, after fixing decompositions of Tamagawa measures and Petersson inner products,
one expects a refined conjecture of the following form:

P ⊗ P =
1
|SΠ| ·

L(1,M∨
U(VK))

L(1,M∨
U(V ))

· L(1/2,Π,AsL/E × μ−1)
L(1,Π, Ad)

·
∏
v

I#
v .

Here:

• I#
v is a normalized local period integral

I#
v =

L(1,M∨
U(Vv))

L(1,M∨
U(VK,v))

· L(1,Πv, Ad)
L(1/2,Πv,AsLv/Ev

× μ−1
v )
· Iv

with

Iv : Πv ⊗Πv ⊗ ωψv ,μv ,Vv ⊗ ωψv ,μv ,Vv −→ C

defined by the integral of matrix coefficients as in (2.3);
• M∨

U(V ) and M∨
U(VK) are the dual of the motives of U(V ) and U(VK), respectively;

• |SΠ| = 2d, with MΠ =
⊕d

i=1Mi.

Observe that for this global conjecture, all the local possibilities for (Ev,Kv) will occur. It is
conceivable that one can develop a relative trace formula, as in the case of GGP, to address the
global conjectures here. This is being pursued by Danielle Wang, a PhD student of Wei Zhang
at MIT.

Just as for Conjecture 2.7, we can verify the refined conjecture above when dimE V = 1. More
precisely, suppose one starts with a Hecke character χ of AL× , so that χ|A1

L
is an automorphic

character of U(VK). Then, as in the verification of Conjecture 2.7 in § 3.3, the period P is the
(conjugate of) a global theta lift of χ|A1

E
from U(V ) to U(W ), where W = 〈1〉 is a rank-one

Hermitian space for E/F . Hence, for φ1, φ2 ∈ ωV,ψ,μ, one has

P(φ1) · P(φ2) · τ(U(W )) = 〈Θ(φ2, χ|E1),Θ(φ1, χ|E1)〉U(W ),Pet.

The right-hand side is computed by the Rallis inner product formula, which gives

P(φ1) · P(φ2) =
1
2
· LE(1/2, (χσχ−1)|E · μ−1)

L(1, ωE/F )
·
∏
v

I#
v (χ, χ, φ1, φ2), (11.2)

taking note that the Tamagawa number τ(U(W )) is equal to 2. This is precisely what the refined
conjecture says in this case, since |Sχ|L1

| = 2 here and

AsL/E(χσχ−1) = (χσ · χ−1)|E
by Lemma 8.2(d).

It is interesting to note that, as a sesquilinear form on ωV,ψ,μ, the left-hand side of (11.2) is
exactly the same as the left-hand side of (3.3) (assuming that the character χ restricts to the
same character on A1

E in the two cases). Moreover, the two ratio of L-values appearing on the
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right-hand side of (3.3) and (11.2) are exactly the same. Hence, the reader may wonder why
there is a factor of 1/2 on the right-hand side of (11.2) but there is none on the right-hand
side of (3.3). The reason is that the adelic periods I# =

∏
v I#

v on the right-hand side of both
equations are different. Indeed, in view of (2.6), the adelic period I# in (3.3) is defined relative
to the Petersson inner product 〈−,−〉GL(V ),Pet of GL(V ) whereas that in (11.2) is defined using
the Petersson inner product 〈−,−〉U(VK),Pet of U(VK). As inner products on the one-dimensional
vector space defined by χ, the latter is twice the former, so that (3.3) and (11.2) are consistent
with each other.
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