
1

Introduction to Privacy-preserving Computing

Massive data and powerful computing resources have become the primary
driving force in the development of big data and artificial intelligence. On
one hand, mobile phones, social websites, and various sensors collect peo-
ple’s everyday activities continuously. On the other hand, high-performance
computing facilities and efficient machine learning algorithms enable the train-
ing of complex models. However, improper usage of sensitive information in
machine learning and data analysis may lead to catastrophes. For example,
the leakage of personal information may expose individuals to fraud crimes.
As a result, developing privacy-preserving theories and systems has become
extremely necessary. In this chapter, we introduce the fundamental definitions
and theories of privacy-preserving computing to help readers understand the
basic concepts, technologies, and solutions of privacy-preserving computing.

1.1 Definition and Background

Nowadays, with the pervasive application of computers, a large amount of data
is collected and processed by computers, which poses the following challenges
to privacy protection:

l Increased cost for privacy protection. Massive, sensitive data such as
names, ID numbers, and property information is stored in various forms
of computer devices and accessed, updated, and transferred frequently. Its
sheer scale and complex and volatile application scenarios greatly increase
privacy protection costs compared with those of gathering only a small
amount of information by statistical agencies in the early days.

l Increased difficulty in privacy protection. On one hand, private data can
be stored in various locations such as personal mobile devices and data
centers. Therefore, privacy protection schemes need to deal with privacy
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2 Introduction to Privacy-preserving Computing

protection issues under different devices or hosting modes. On the other
hand, the risk of computer intrusion and sensitive data theft cannot be elim-
inated due to the prevalence of computing devices and the sophistication
of attacking techniques. The diversity and complexity of modern devices
increase the difficulty of privacy protection compared with processing with
pen and paper manually in the early days.

l Increased damage caused by privacy leakage. The pervasion and abuse
of sensitive data greatly increase the damage caused by privacy leakage. For
example, disclosed ID numbers can be used to commit crimes.

Confronted with these challenges, we should not only rely on legal systems
but also integrate mathematical theories and algorithms in privacy protection.
Multiple techniques such as cryptography tools need to be used to prevent
privacy leakage in the workload of big data analysis and machine learning and
they are at the core of privacy-preserving computation.

1.1.1 Definition of Privacy-preserving Computing

Privacy-preserving computing refers to a series of techniques for comput-
ing without breaching raw data, which guarantee the available but invisible
property of data during their usage. In this book, we focus on a series of tech-
niques for protecting data privacy and enabling computing tasks at the same
time, including secret sharing, homomorphic encryption, oblivious transfer,
garbled circuit, differential privacy, and federated learning. Privacy-preserving
computing incorporates multiple disciplines including cryptography, statistics,
computer architecture, and artificial intelligence. The development of its theory
and applications is inseparable from cloud computing, big data, and artificial
intelligence. At present, privacy-preserving computing is mainly used in data
query and analysis as well as machine learning, which have the following
characteristics:

l Data query and analysis: This type of application usually consists of
simple computing tasks such as searching, summing, averaging, and vari-
ance calculation, in which the definition and protection of individuals’ data
privacy is the most important topic.

l Machine learning: Machine learning involves the collection of training data
and adopts optimization methods to learn models that can extract features
and patterns from training data. The model is then used for tasks such as
prediction, classification, or behavior guidance. The training and inference
usually involve complex computations such as the sigmoid function. During
model training, privacy-preserving computing needs to protect the privacy
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1.1 Definition and Background 3

of the training dataset. During model inference, i.e., predicting new data,
privacy-preserving computing needs to protect the privacy of the incoming
data.

1.1.2 Taxonomy of Privacy-preserving Computing

The definition of privacy protection varies with the requirement of computing
tasks. For machine learning, privacy protection concentrates on both the train-
ing and the inference processes. In the training process, the training data and
gradients need privacy protection, because training data usually contains sen-
sitive information and gradients are generated from the private data with the
training algorithm. During inference, in addition to the privacy of input data,
the model parameters also need protection, because the model parameters are
trained by private training data and may be exploited to get sensitive informa-
tion. For databases, the result of queries may contain sensitive information of
the data and need protection from random noise. Also, the column name in the
queries may need protection to protect the database users’ privacy.

Privacy-preserving computing can be classified into encrypted compu-
tation with cryptography-based security protocols at its core and privacy-
preserving computation with a broader definition. Table 1.1 presents names
and definitions of some concepts frequently used in privacy-preserving
computing.

Encrypted computation uses cryptography tools to construct privacy-
preserving computing applications so that multiple data owners can collaborate
on computing tasks while protecting secret data. Secure Multi-Party Compu-
tation (MPC) (Goldreich, 1998) is one of the representatives of such tools.
Cryptography tools encrypt data as ciphertext, which is indistinguishable from
random numbers during communication. As a result, the plaintext cannot be
accessed by participants except for the private key owners. Encrypted compu-
tation is formally proven to guarantee the cryptography-level security of data
privacy. However, it is inefficient in practice due to the high computational
or communication complexity of the cryptography tools. Recent works have
focused on optimizing the performance of cryptographic tools in various appli-
cations such as machine learning (Hardy et al., 2017; Mohassel and Zhang,
2017) and data mining (Boneh et al., 2013; Chen et al., 2020; Evfimievski
et al., 2003). With the development of cryptography tools such as secret sharing
(De Santis et al., 1994), oblivious transfer (Rabin, 2005), garbled circuit (Yao,
1986), and homomorphic encryption (Gentry, 2009), encrypted computation
still has a wide range of applications.
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4 Introduction to Privacy-preserving Computing

Table 1.1 Names and definitions in privacy-preserving computing.

Name Definition

Privacy Computing Encrypted computation based on cryptography tools in a
narrow sense. In a broad sense, it refers to all techniques
used for protecting data privacy while achieving
computational goals.

Privacy-Preserving Secures data acquisition and management before computing,
Computation data privacy protection in computing, and data privacy

protection and interest allocation after computing. Some
privacy-preserving computing techniques use encryption
and can be regarded as part of privacy computing.

Secure Multi-Party Uses cryptography tools to construct privacy computing
Computing protocols at the security protocol layer so that multiple data

owners can collaborate on computing a specific function
without disclosing any other private information.

Secret Sharing A tool dividing private data into multiple partitions for
distribution and computation.

Homomorphic A cryptographic scheme allowing cipher computing. After
Encryption encrypting raw messages, only private key owners can

decrypt the ciphertext to obtain results. It is a common tool
in encrypted computation.

Oblivious Transfer A commonly used data transmission model considering
privacy protection. It ensures that, at the time of
transferring private data from a sender to a receiver, the
sender does not know the choice of the receiver and the
receiver does not know other private data transferred by the
sender either.

Garbled Circuit Protects plaintext electronic signals by encrypting the input
and output signals of logic gates. It is one of the most
widely used privacy encryption techniques.

Differential A flexible and effective privacy protection technique. It
Privacy differs from cryptography-based schemes in that it does not

encrypt data but protects privacy by adding random noise.

Trusted Execution A scheme providing privacy computing at a hardware level.
Environment It gives users a running environment that separates programs

from data so that they cannot be stolen or tampered with by
potential intruders.

Federated A privacy-preserving scheme proposed in the field of
Learning machine learning. The information required for model

training is transferred between participants while the raw
data is not. Federated learning can utilize privacy protection
techniques such as homomorphic encryption to provide
strict protection to the transferred information.
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1.1 Definition and Background 5

In encrypted computation, given input data from each participant X1, X2, . . .

and computing task Y = f (X1, X2, . . . ), all participants collaborate on private
computing with various cryptography tools. Encrypted computation guaran-
tees that no information other than the final output Y is disclosed in computing,
ensuring that each participant’s private data is kept secret. Note that crypto-
graphic tools do not offer privacy protection in multiple independent tasks.
Taking the millionaire problem as an example, suppose two millionaires are
comparing their properties using encrypted computation so that they do not
know how much the other’s property is worth. Nonetheless, the interme-
diate results produced in multiple rounds of comparison can be combined
to deduce each millionaire’s property with high precision. Furthermore, in
machine learning, when multiple data owners collaborate on the training of
machine learning models, although the whole training process is encrypted
by cryptography tools, a participant can still gather the gradients of the train-
ing data transmitted by other participants by analyzing the parameter updating
process of its local model. Subsequently, some private information may be
inferred from these gradients.

Privacy-preserving computation. Some works adopt noncryptographic tools
or compromise on encryption for better performance. In this book, such
new privacy-preserving computing techniques are called privacy-preserving
computation to distinguish them from the traditional encrypted computation
techniques based purely on cryptography tools.

Each participant’s privacy leakage after a computing task is finished is
closely related to the task’s property. The subject of privacy-preserving com-
putation is to study the possibility and degree of each participant’s privacy
leakage in the entire computing process and to measure and protect data pri-
vacy from the perspective of the whole task, which is also a focus of the
research in this field.

Privacy-preserving computing techniques can be divided into multiple cat-
egories. These include Secure Multi-Party Computation (MPC) (Goldreich,
1998), Homomorphic Encryption (HE) (Gentry, 2009), Differential Privacy
(DP) (Dwork, 2008), Trusted Execution Environment (TEE) (Pinto and San-
tos, 2019), and Federated Learning (FL) (Yang et al., 2019c), based on the
development tracks, algorithm basis, and application characteristics of the
techniques.

This book provides a comprehensive and in-depth overview and analy-
sis of the aforementioned technologies for encrypted and privacy-preserving
computation, allowing readers to gain a complete understanding of privacy-
preserving computing. The book focuses on introducing the principles and
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6 Introduction to Privacy-preserving Computing

implementations of technical approaches for privacy protection. Untechnical
methods such as supervising companies or organizations by legislation and
institutions are not covered in the book.

1.1.3 History of Privacy-preserving Computing

The development of privacy-preserving computing dates back to the time
before the invention of computers. Some statistical agencies often used ques-
tionnaires to study social phenomena. To protect respondents’ privacy on
data such as names, ages, and replies, they usually promised that the col-
lected information would only be used for research purposes and would be
strictly supervised. At that time, the protection of the respondents’ privacy
relied mainly on institutions and public regulations. Additionally, in the early
days, cryptography played an important role in certain key fields such as
military intelligence (Singh, 1999). These small-scale cases of using sim-
ple cryptography tools can be seen as early examples of privacy-preserving
computing.

The development of modern privacy-preserving computing can be divided
into four stages. In each stage, new computing schemes are proposed from
different perspectives to solve the omissions and defections in the previous
stage. These schemes provide many different views and ideas to solve privacy-
preserving computing problems so as to enrich the selections of techniques
in different application scenarios. Figure 1.1 presents several critical moments
and the corresponding functional features.

The first stage is the development of theories and applications of Secure
Multi-Party Computation (MPC) (Goldreich, 1998). Multi-Party Computation
is a type of encrypted computation that uses cryptography tools to construct
a secure computational model under which multiple participants can collabo-
rate on a computing task using their own data without the fear of leaking data
to others. The proposal of Shamir Secret Sharing (Shamir, 1979) heralded the
birth of MPC. Following that, a system with secret sharing (Yao, 1982) and
garbled circuit (Yao, 1986) as its fundamental protocols was built to imple-
ment privacy protection through generating and exchanging random numbers
and ensure the validity of computational results via predefined computing pro-
tocols. The idea of MPC is well-suited for precise computing and database
queries, the security of which is provable. Some privacy-preserving legisla-
tion such as GDPR (Europe, 2019) requires that the data shall be kept locally,
and MPC satisfies the requirement of not publishing local data. However, its
main disadvantage is the enormous performance disparity with unencrypted
computing. In the worst case, MPC runs 106 times slower than unencrypted
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Stage 1: Secure Multi-Party
Computing (MPC)

Stage 2: Differential Privacy
(DP)

Stage 3: Centralized Encrypted
Computing

Stage 4: Federated Learning
(FL)

Technical
Design

Exchange data in ciphertext to protect
privacy in precise computing and
database queries

Obfuscate individuals to
protect privacy in database
queries and model publishing

Centralize data computing to
improve performance and encrypt
data or programs to prevent data
breaches

Designed for machine learning
involving multiple participants and
satisfying the requirements of
heterogeneous data’s training,
inducing, security, and incentives

Development
History

Compliance Does not publish local data
Compliant with privacy legislation

Publishes local data
Partially compliant with

privacy legislation

Publishes local data
Conflict with most privacy laws

Does not publish local data
Compliant with privacy legislation

Hardware
Dependence No specific dependence No specific dependence SGX depends on Intel’s CPU

TrustZone depends on ARM’s CPU No specific dependence

Computing
Performance

106 times slower than plaintext
computing

Nearly the same as plaintext
computing

TEE is nearly the same as plaintext
computing

FHE is 106 times slower than
plaintext computing

Depends on implementation
techniques

Communica-
tion

Overhead

Extra overhead for transmitting
encrypted information No extra overhead Extra overhead for data centralizing Extra overhead for transmitting

intermediate results

Computing
Mode Distributed Distributed querying, local

computing Centralized Distributed

1979
Secret
Sharing
Shamir &
Blakley

1982
MPC
Andrew
Chi-
Chih
Yao

1986
Garbled
Circuit
Andrew
Chi-Chih
Yao

2006
TEE/TrustZone
ARM

2013
TEE/SGX
Intel

Horizontal FL
Google
McMahan

20182016
Vertical FL
Federated
Transfer
Learning
QiangYang

2009
FHE
Gentry

2006
DP
Dwork

Figure 1.1 History of privacy-preserving computing (along the time dimension).
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8 Introduction to Privacy-preserving Computing

computing. The exact cost varies with different computing tasks and network
environments. The bottleneck is the communication overhead.

The second stage is the theories and applications of differential privacy (DP).
Differential privacy has long been applied to customer surveys. It differs from
MPC in that it perturbs user data by adding random noise to the process or
results of a computing task. Differential privacy is based on the obfuscation
of data distribution (Dwork, 2008) and evaluates its privacy protection capa-
bility at a more flexible level than the cryptography-based techniques relying
on the difficulty of solving NP-hard problems. From a legal compliance stand-
point, DP satisfies certain privacy protection laws. Meanwhile, it runs at nearly
the same speed as computing in plaintext, which is significantly faster than
cryptography-based schemes because it does not encrypt data or require extra
intensive communications. As a result, DP is initially applied to various artifi-
cial intelligence applications, such as Google Keyboard (Google, 2020) and
Apple Siri (Apple, Differential Privacy Team, 2017; Ding et al., 2017), to
protect end users’ privacy.

The third stage is centralized encrypted computation such as trusted execu-
tion environment (TEE) and fully homomorphic encryption (FHE). Unlike the
previous stages, this stage aims to find a manner to publish data securely. One
technical route is TEE, which builds an isolated running environment where
users can upload their data without worrying about it being stolen by other
programs or computer devices. The implementation of TEE depends on spe-
cific hardware produced by different manufacturers, such as Intel SGX (Costan
and Devadas, 2016) and ARM TruestZone (Pinto and Santos, 2019). There-
fore, its security is not 100 percent guaranteed. However, it runs nearly as fast
as plaintext computing,1 making it more practical than homomorphic encryp-
tion. As for FHE, the earliest development of HE can be traced back to the
privacy-preserving computing scheme proposed by Rivest. The first version of
FHE was not published until 2009 (Gentry, 2009). Homomorphic encryption
enables us to perform effective computations directly on ciphertext without
decrypting it. However, the effectiveness needs to be paid for by increasing the
communication time for ciphertext transmission. Additionally, homomorphic
encryption consumes a significant amount of computational time, typically six
orders of magnitude more than plaintext computing. Both TEE and FHE pro-
vide mechanisms for secure data publishing. However, they may conflict with
privacy protection laws that prohibit publishing local data (Europe, 2019).

1 Performing computation without encryption, in contrast to computing on ciphertext with
homomorphic encryption.
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1.2 Main Technologies of Privacy-preserving Computing 9

The fourth stage is federated learning designed for machine learning model
training and inference tasks. In contrast to conventional technical roadmaps,
federated learning allows data owners to store their data locally and exchange
only the protected parameters to accomplish a training process. Therefore,
private local data is not exposed in the framework of federated learning. More-
over, the exchange of model parameters does not expose raw data and model
contents. Additionally, federated learning protects the privacy of model infer-
ence. It focuses on the design of data heterogeneity and security mechanism
for distributed machine learning and its performance optimization to avoid per-
formance issues like those encountered in MPC. Federated learning can be
implemented based on many privacy-preserving computing techniques such
as MPC, DP, TEE, and FHE. Meanwhile, it needs to consider the character-
istics of specific modeling and prediction tasks when developing methods for
parameter protection. The security of federated learning is usually analyzed
jointly with specific machine learning tasks. Compared to the third stage, fed-
erated learning guarantees that the local data is kept locally and will not be
shared in any form. When regarded as a training paradigm, federated learn-
ing can be divided into horizontal and vertical federated learning (Yang et al.,
2019c). Compared with the traditional centralized machine learning paradigm,
the cost of federated learning comes primarily from cipher computation and
the additional communications for transferring intermediate results.

Today, with the deepening of communication and cooperation between
multiple research fields, a growing number of startups and large companies
enter the privacy-preserving computing industry and release products such
as WeBank’s FATE and OpenMinded’s Syft. Privacy-preserving computing is
applied in a wide variety of fields including database query (Microsoft, 2016),
vote counting (Xia et al., 2008), and machine learning (Google, 2020).

1.2 Main Technologies of Privacy-preserving Computing

This book introduces the mainstream privacy-preserving computing technolo-
gies in the following chapters. Chapters 2–5 introduce common cryptography
tools in privacy-preserving computing, including secret sharing, homomorphic
encryption, oblivious transfer, and garbled circuit. Differential privacy, trusted
execution environment, and federated learning, which are the core techniques
of privacy-preserving computation, are discussed in Chapters 6–8. Figure 1.2
illustrates the relationships between the techniques. Federated learning can
realize more flexible privacy protection by integrating more privacy protection
techniques, such as DP and TEE, than those based on traditional encrypted
computation.
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10 Introduction to Privacy-preserving Computing

Figure 1.2 Technical framework of privacy-preserving computing.

Chapter 2: Secret Sharing. Secret sharing is an important implementation
of encrypted computation, which allows a participant to split private data
randomly into multiple parts and send them to other participants. The raw
data can be revealed only when a certain number of participants reach an
agreement.

Chapter 3: Homomorphic Encryption. Homomorphic Encryption (HE) is
an encryption method that supports computing on the ciphertext. Unlike non-
homomorphic encryption methods, it allows users to encrypt private data and
send ciphertext to an untrusted computer and perform computation on the
ciphertext. In the view of an adversary, the input data of programs using HE
contains no private information. Privacy will never be disclosed provided that
the private keys of HE are not leaked.

Chapter 4: Oblivious Transfer. Oblivious Transfer (OT) defines a privacy-
preserving data transmission model that divides participants into a sender and
a receiver. The sender possesses private data and the receiver selects messages
from the received data. They agree on sending a piece of the sender’s pri-
vate data to the receiver on the assumption that the sender is unaware of the
receiver’s choice and the receiver does not know the sender’s other private data
either. Oblivious transfer has been widely applied to solving simple privacy-
preserving computing problems and developing complex privacy-preserving
computing protocols.

Chapter 5: Garbled Circuit. Garbled Circuit (GC) is one of the most adapt-
able privacy-preserving computing protocols, since it applies to all computing
tasks that circuits can express. GC protects plaintext signals in circuits by
encrypting the input and output signals of logic gates. A GC protocol classifies
participants into a generator and an operator, who are responsible for garbling
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1.3 Privacy-preserving Computing Platforms and Cases 11

circuits and computing on the garbled circuits, respectively. GC is used very
widely because circuits can represent most computing tasks.

Chapter 6: Differential Privacy. Differential Privacy (DP) is a flexible and
efficient privacy protection scheme. Unlike cryptography-based schemes, DP
protects data privacy by adding random noise to data instead of encrypting
it. From the perspective of a potential attacker, DP restricts their capability to
steal information by reducing the probability of their obtaining true data to a
certain degree.

Chapter 7: Trusted Execution Environment. Trusted execution environment
(TEE) is a scheme providing privacy-preserving computing at the hardware
level. It constructs privacy-preserving computing solutions from the perspec-
tive of system architecture. By protecting user programs at the hardware
level and employing cryptography tools, TEE provides an environment that
separates programs from data, thus preventing them from being stolen or
tampered with by potential attackers such as other programs or even system
administrators.

Chapter 8: Federated Learning. Federated learning (FL) is a privacy-
preserving computing scheme proposed in the field of machine learning. The
information required for training models is transferred between participants,
not including their local data. Furthermore, FL adopts specific privacy-
preserving techniques such as HE to protect the information exchanged
between participants to provide high privacy. When model training is accom-
plished, trained models will be deployed to each participant for subsequent
tasks.

1.3 Privacy-preserving Computing Platforms and Cases

In order to promote the commercialization of privacy-preserving computing
technology, it is necessary to build privacy-preserving computing platforms
based on practical application requirements to facilitate the development and
operation of privacy-preserving computing applications.

Chapter 9: Privacy-preserving Computing Platforms. These platforms,
including FATE, CryptDB, and Conclave, combine the techniques introduced
in Chapters 2–8 to provide privacy protection and interfaces to facilitate appli-
cation development for different tasks such as machine learning, database
query, and web searching.

Chapter 10: Case Studies of Privacy-preserving Computing Cases. These
cases deal with applications of privacy-preserving computing in financial
marking, risk management, advertisement, data querying, medical treatment,
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12 Introduction to Privacy-preserving Computing

voice recognition, government affairs, and data statistics. From the cases
introduced in this chapter, we can see that privacy-preserving computing is not
only the traditional style of computing task integrated with privacy protection
but also an important precondition for the wide application of new technology.

1.4 Challenges and Opportunities in Privacy-preserving
Computing

Chapter 11: Future of Privacy-preserving Computing. In this chapter we dis-
cuss the significance of data rights confirmation and the future development of
privacy-preserving computing, especially with heterogeneous architecture.

At present, numerous privacy-preserving computing schemes based on tech-
niques such as cryptography exist. But privacy-preserving computing still faces
challenges such as security compliance, inferior performance, and the lack of
unified standards.

First, no existing privacy-preserving computing schemes guarantee uncon-
ditional security. Even schemes that employ cryptography are developed based
on the difficulty of NP-hard problems, which may be broken with increase of
computational power in the future. Furthermore, while different security pro-
tocols provide different levels of protection, their improper use may lead to
privacy breaches. For example, if simple hash functions are employed to pro-
tect binary-valued data, an attacker can easily infer the data’s binary property
from the ciphertext.

Second, privacy-preserving computing techniques inevitably cause extra
computation costs. For example, the computation cost of ciphertext computing
in HE is several orders of magnitude greater than that of plaintext comput-
ing, and so is its extra communication overhead. Taking into account that
modern computing applications usually involve massive data processing, the
computing performance and communication efficiency of privacy-preserving
computing still face huge challenges even though computational resources are
abundant today.

Finally, there are still barriers to the interconnection between different enter-
prises’ privacy-preserving computing platforms. The APIs and algorithms are
not unified. These impediments hinder data interconnection between differ-
ent privacy-preserving computing platforms and bring in an extra cost for
developing additional middleware.
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