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Abstract In this paper, we prove the existence of topologically non-trivial solutions of the two-
dimensional Adkins–Nappi model of nuclear physics; to this end, we minimize the energy functional
by using the classical Skyrme ansatz, as well as a non-radially symmetric generalization of it. In both
cases, we show that the minimization procedure preserves the topological degree of the minimization
sequence.
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1. Introduction

The Skyrme model for baryons and mesons is a non-linear field theory in 3+1 dimensions
which admits topologically non-trivial solutions, called skyrmions (see [26, 27]). In this
model, the lagrangian includes a quadratic term and a term of the fourth order in the
derivatives (the Skyrme term) which is essential for the existence of a minimum amount of
energy, since it enables us to evade Derrick’s theorem [8]. A different model was developed
later by Adkins and Nappi [2] to improve the fit to the experimental data. In this theory,
vector mesons are also considered, and the Skyrme term is replaced with a term that
describes the coupling of the meson field to the pions and that stabilizes the skyrmion.
Recently, many authors have studied both the Skyrme model and the Adkins and

Nappi model in two spatial dimensions (see [1, 3, 6, 10, 11, 13–23, 25, 30, 31]) because
the two-dimensional skyrmions (usually called baby skyrmions) are more tractable, from
the numerical point of view, than their three-dimensional analogues. Moreover, baby
skyrmions have applications to condensed matter physics (see for instance, [28]), so they
have their own interest.
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On the existence of baby skyrmions stabilized by vector mesons 101

In two spatial dimensions, the static Skyrme field, namely the pions field, is a map
u : R2 → S2 whose energy is

E(u) =

∫
R2

(
1

2
|∇u|2 − 1

2
|∇ωu|2 −

M2

2
|ωu|2 +

g

4π
ωuu · ∂1u× ∂2u+ V (u)

)
dx, (1.1)

where the function ωu : R2 → R is the solution, vanishing at infinity, of the equation

∆ω −M2ω +
g

4π
u · ∂1u× ∂2u = 0. (1.2)

In Equations (1.1) and (1.2), M is the mass of the ω field, g is a coupling constant and
V (y) = V (y1, y2, y3) is a suitable smooth non-negative potential defined on S 2, which van-
ishes at the North Pole e3 = (0, 0, 1) of S 2; in most cases, the potential V (y) has the form
V (y) = m(1− y3), where m is the mass of the pion field (see [11]). From Equation (1.1),
provided ωu(x) → 0 appropriately for |x| → +∞, we get∫

R2

(
|∇ωu|2 +M2ω2

u

)
dx =

∫
R2

g

4π
ωuu · ∂1u× ∂2udx,

so that the functional E (u) becomes

E(u) =

∫
R2

(
1

2
|∇u|2 + 1

2
|∇ωu|2 +

1

2
M2|ωu|2 + V (u)

)
dx.

Clearly E(u) ≥ 0, and it has a trivial global minimum for u(x) ≡ e3. On the other hand,
the finite energy requirement implies u(∞) = e3, so that R2 can be compactified to S 2,
and the map u : R2 → S2 can be identified with a map from S 2 to S 2, with a well-defined
topological degree Q(u) ∈ Z, where

Q(u) =
1

4π

∫
R2
u · ∂1u× ∂2udx.

On each topological sector Qk (k ∈ Z), we have the well-known topological lower bound
on the energy:

E(u) ≥
∫
R2

1

2
|∇u|2 dx ≥ 4π|k|,

so that Ek ≡ inf{E(u) | u ∈ Qk} > 0 for k 6=0, and we can search for functions u ∈ Qk
such that E(u) = Ek, namely for baby skyrmions with topological degree Q(u) = k.
In this paper, we limit ourselves to consider functions u : R2 → S2 of the form

uf (x) = (sin(f(x)) cos(kϕ), sin(f(x)) sin(kϕ), cos(f(x))) , (1.3)

where k ∈ Z and f : R2 → R. In this case, the functional E (u) becomes
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102 C. Greco

E(f) =

∫
R2

(
1

2

(
k2 sin2(f(x))

|x|2
+ |∇f |2

)
− 1

2
|∇ωf |2 −

M2

2
|ωf |2

)
dx

+

∫
R2

(
− g

4π
ωf (x)

k sin(f(x))

|x|2
x · ∇f(x) + V (uf )

)
dx,

and f (x ) and ωf (x) are coupled by the equation

∆ωf −M2ωf +
g

4π

k sin(f(x))

|x|2
x · ∇f(x) = 0. (1.4)

We assume that the potential V : S2 → R is a smooth non-negative function and that
there exist a0, a1 > 0 and t ∈]0, 1[, such that

V (y) ≤ a1|y − e3|2 for every y ∈ S2; (1.5)

V (y) ≥ a0|y − e3|2 for every y ∈ S2 with y3 > t; (1.6)

we have
V (y1, y2, y3) = V (−y1,−y2, y3) for every y = (y1, y2, y3) ∈ S2. (1.7)

Set

Y =

{
f ∈W 1,2(R2,R)

∣∣∣ ∫
R2

sin2(f(x))

|x|2
dx < +∞

}
and denote by X the set of the functions f ∈ Y such that there exists a weak solution
ωf of Equation (1.4) with ωf ∈W 1,2(R2,R). If f ∈ X, by multiplying Equation (1.4) by
ωf and integrating over R2, we get∫

R2

(
|∇ωf |2 +M2|ωf |2

)
dx =

∫
R2

g

4π
ωf (x)

k sin(f(x))

|x|2
x · ∇f(x) dx < +∞,

so that X is the natural domain of definition of the functional E (f ), and we also have

E(f) =

∫
R2

(
1

2

(
k2 sin2(f(x))

|x|2
+ |∇f |2

)
+

1

2
|∇ωf |2 +

M2

2
|ωf |2 + V (uf )

)
dx.

Moreover, if f ∈ Y , we have uf − e3 ∈ W 1,2(R2,R3) because of |uf (x) − e3|2 = 2(1 −
cos(f(x))) ≤ f(x)2, and

Q(uf ) =
1

4π

∫
R2

k sin(f(x))

|x|2
x · ∇f(x) dx.

Clearly, if k =0, then Q(uf ) = 0; for k 6=0, we have (see Lemma 2) Q(uf ) = 0 or
Q(uf ) = −k; let us suppose from now on k 6=0 and let X−k = {f ∈ X | Q(uf ) = −k}.
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On the existence of baby skyrmions stabilized by vector mesons 103

On X−k , we have

E−k = inf
{
E(f) | f ∈ X−k

}
≥ 4π|k| > 0.

We prove the following theorem.

Theorem 1. Assume that V satisfy assumptions (1.5)–(1.7). Then, for every k ∈ Z,
k 6=0, there exists f ∈ X−k such that 0 ≤ f(x) ≤ π and E(f) = inf

{
E(f) | f ∈ X−k

}
.

Starting from the paper [2], the existence of skyrmions stabilized by vector mesons
was studied by many authors, but almost exclusively through numerical simulations; the
axially symmetric ansatz (the Skyrme ansatz)

uf (x) = (sin(f(r)) cos(kϕ), sin(f(r)) sin(kϕ), cos(f(r))) , (1.8)

where r = |x| or the rational map ansatz (see [29]) was usually used in order to reduce
the problem to ordinary differential equations.
Existence and regularity results for critical points of a functional with a non-local

term are given in [7]; in this paper, no symmetry assumptions are made, but the field
configurations are taken over a compact manifold (the two-dimensional torus).
In Theorem 1, we prove the existence of baby skyrmions, which minimize the energy

functional on a class of field configurations wider than the axially symmetric ones usually
considered because we do not assume f(x) = f(|x|) in ansatz (1.3), namely that f (x ) is
radially symmetric.
Notice that the assumptions (1.5)–(1.7) on the potential are satisfied, of course, by

the potential V (y) = m(1 − y3) used in most papers and also, for instance, by ‘double
vacuum’ potentials like V (y) = m(1− y23) (see [11]).
The skyrmions found in Theorem 1 are not necessarily axially symmetric (as far as we

know); however, the existence of baby skyrmions of the form (1.8) is proved in Theorem 2
(see § 3); a similar result in the three-dimensional case was obtained by [9]. Clearly, the
baby skyrmions found in Theorem 2 minimize the energy only on the class of axially
symmetric field configurations.

2. Proof of Theorem 1

To simplify the notation, in this section, we set M =1 and g = 4π; moreover, since
Q(uf ) = k Q(vf ), where

vf (x) = (sin(f(x)) cos(ϕ), sin(f(x)) sin(ϕ), cos(f(x))),

we can also assume, without loss of generality, that k =1, so that the functional E (f ) in
the Introduction becomes

E(f) =

∫
R2

(
1

2

(
sin2(f(x))

|x|2
+ |∇f |2

)
+

1

2
|∇ωf |2 +

1

2
|ωf |2 + V (uf )

)
dx.
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104 C. Greco

For every f : R2 → R, we set f̂(r, θ) = f(r cos θ, r sin θ), where r ≥ 0 and θ ∈ [0, 2π]; we
prove the following simple lemma.

Lemma 1. Let f ∈ Y , then the function

g(r) ≡
∫ 2π

0

cos(f̂(r, θ)) dθ

is well-defined and continuous on [0,+∞[, and lim
r→+∞

g(r) = 2π.

Proof. Since

|g(b)− g(a)| ≤ 1

2

∫ b

a

∫ 2π

0

(
sin2(f̂(r, θ))

r
+ f̂r(r, θ)

2r

)
dθ dr

≤ 1

2

∫
a<|x|<b

(
sin2(f(x))

|x|2
+ |∇f(x)|2

)
dx,

g(r) is continuous because of the absolute continuity of the integral. Moreover, since for
every ε> 0 ∫

|x|>R

(
sin2(f(x))

|x|2
+ |∇f(x)|2

)
dx < ε

provided R is large enough, the Cauchy condition at infinity is satisfied, so the limit
limr→+∞ g(r) exists, and clearly it is ≤ 2π; then, since

∫
|x|>1

f(x)2 dx ≥
∫
|x|>1

(1− cos(f(x))) dx =

∫ +∞

1

∫ 2π

0

(1− cos(f̂(r, θ)))r dθ dr

≥
∫ +∞

1

∫ 2π

0

(1− cos(f̂(r, θ))) dθ dr =

∫ +∞

1

(2π − g(r)) dr,

and
∫
R2 f(x)

2 dx <∞, we must have limr→+∞ g(r) = 2π. �

Lemma 2. Let f ∈ Y , then

` ≡ lim
r→0

∫ 2π

0

cos(f̂(r, θ)) dθ = ±2π;

moreover, if we set uf (x) = (sin(f(x)) cos(ϕ), sin(f(x)) sin(ϕ), cos(f(x))), then Q(uf ) =
0 if ` = 2π and Q(uf ) = −1 if ` = −2π.

Proof. Fix f ∈ Y , and let uf (x) be as in the statement of the lemma. Let r, R be
such that 0 < r < R and set Ωr,R = {x ∈ R2 | r < |x| < R}; from the summability of the

https://doi.org/10.1017/S0013091523000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000056


On the existence of baby skyrmions stabilized by vector mesons 105

function

sin(f(x))

|x|2
x · ∇f(x) = div

(
1− cos(f(x))

|x|2
x

)
,

we have

4πQ(uf ) =

∫
R2

sin(f(x))

|x|2
x · ∇f(x) dx = lim

r→0
lim

R→+∞

∫
Ωr,R

div

(
1− cos(f(x))

|x|2
x

)
dx

= lim
r→0

lim
R→+∞

(
−
∫ 2π

0

(
1− cos(f̂(r, θ))

)
dθ +

∫ 2π

0

(
1− cos(f̂(R, θ))

)
dθ

)
.

From the previous lemma, we have limR→+∞
∫ 2π

0

(
1− cos(f̂(R, θ))

)
dθ = 0, so

Q(uf ) = − 1

4π
lim
r→0

∫ 2π

0

(
1− cos(f̂(r, θ))

)
dθ = − 1

4π
(2π − `).

Since ` ∈ [−2π, 2π] and Q(uf ) ∈ Z, we have ` = 2π or ` = −2π, so that Q(uf ) = 0 or
Q(uf ) = −1, and the lemma follows. �

In the following lemma, we show that a function f ∈ X can be replaced with a function
g ∈ X such that 0 ≤ g(x) ≤ π, leaving the energy and the topological charge unchanged.

Lemma 3. Under the assumptions ( 1.5)–( 1.7), for every f ∈ X, there exists g ∈ X
such that 0 ≤ g(x) ≤ π a.e. in R2, E(g) = E(f) and Q(ug) = Q(uf ).

Proof. Let f ∈ X and set g(x) = h(f(x)), where h(s) = arccos(cos(s)). Clearly,
0 ≤ g(x) ≤ π a.e. in R2, and sin2(g(x)) = sin2(f(x)), cos(g(x)) = cos(f(x)); moreover,
g ∈ L2(R2,R), in fact, since s2 ≤ π2(1− cos s)/2 ≤ π2s2/4 for s ∈ [0, π], we have∫

R2
g(x)2 dx ≤ π2

2

∫
R2

(1− cos(g(x))) dx =

π2

2

∫
R2

(1− cos(f(x))) dx ≤ π2

4

∫
R2
f(x)2 dx < +∞.

Since h is Lipschitz, g is weakly derivable, and the chain rule holds true, so that ∇g(x) =
h′(f(x))∇f(x) if h is derivable at f (x ), and ∇g(x) = 0 if h is not derivable at f (x )
(see, for instance [12], Theorem 7.8). But h(s) is not derivable at s = mπ, m ∈ Z,
whereas h′(s) = ±1 for s 6= mπ; set Am = {x ∈ R2 | f(x) = mπ}. Since f (x ) is constant
on each Am , we have ∇f(x) = 0 a.e. on A ≡ ∪Am (see [12], Lemma 7.7), so that∫

R2
|∇g|2 dx =

∫
R2\A

|∇g|2 dx =

∫
R2\A

|∇f |2 dx =

∫
R2

|∇f |2 dx.

Next we observe that − sin(g(x))x · ∇g(x)/|x|2 = − sin(f(x))x · ∇f(x)/|x|2 a.e. on
R2; in fact, both sides of the equation vanish on A, whereas for x ∈ R2 \ A, we have
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106 C. Greco

∇g(x) = ±∇f(x) and, respectively, sin(g(x)) = ± sin(f(x)), so the equality holds true.
Then ωf = ωg so that g ∈ X, and moreover Q(ug) = Q(uf ). Finally, by assumption
(1.7), we have

V (ug(x)) = V (sin(g(x)) cos(ϕ), sin(g(x)) sin(ϕ), cos(g(x)))

= V (± sin(f(x)) cos(ϕ),± sin(f(x)) sin(ϕ), cos(f(x))) = V (uf (x)),

so that E(g) = E(f). �

Notice that we require V (y) ≥ a0|y−e3|2 only for y3 > t, where 0 < t < 1 (see assump-
tion (1.6)), in order to include in Theorem 1 the ‘multiple vacuum’ case. Nevertheless,
the energy functional E (f ) is coercive in the sense of Remark 2, as shown in the following
two lemmas.
We denote by C∞

c (R2, S2) the set of smooth functions from R2 to R3 such that |u(x)| =
1 for every x ∈ R2, and u−e3 has compact support; moreover, |·| is the Lebesgue measure
on R2.

Lemma 4. There exist c1 > 0 such that, for every u = (u1, u2, u3) ∈ C∞
c (R2, S2), we

have

|A| ≤ c1

(∫
R2

(
|∇u|2 + V (u)

)
dx

)2

,

where A = {x ∈ R2 | u3(x) < t}.

Proof. Set

c1 =
1

4π

1

(1− t)3
9

16
max

(
1

4a20
, 1

)
,

where a0 and t ∈]0, 1[ are as in assumption (1.6). Let u = (u1, u2, u3) ∈ C∞
c (R2, S2), and

set A = {x ∈ R2 | u3(x) < t} and B = {x ∈ R2 | u3(x) > t}. Since ∇(1 − u3(x))
3
2 =

− 3
2 (1− u3(x))

1
2∇u3(x), we have

∫
B

|∇(1− u3(x))
3/2| dx ≤ 3

2

(∫
B

(1− u3(x)) dx

) 1
2
(∫

B

|∇u3(x)|2 dx
) 1

2

≤ 3

4

(∫
B

(1− u3(x)) dx+

∫
B

|∇u3(x)|2 dx
)
.

But u3(x) > t, so that, by assumption (1.6), we have V (u(x)) ≥ a0|u(x) − e3|2 =
2a0(1− u3(x)) on B (notice that |u(x)| = 1 implies |u(x)− e3|2 = 2(1− u3(x))), so that∫

B

(1− u3(x)) dx ≤ 1

2a0

∫
B

V (u(x)) dx ≤ 1

2a0

∫
R2
V (u(x)) dx,
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and then ∫
B

|∇(1− u3(x))
3/2|dx ≤ 3

4

(
1

2a0

∫
R2
V (u) dx+

∫
R2

|∇u|2 dx
)
.

On the other hand, since on B we have 0 ≤ 1− u3(x) ≤ 1− t, from the co-area formula,
it follows that

∫ (1−t)3/2

0

H1(Γy) dy =

∫
B

|∇(1− u3(x))
3/2|dx ≤ 3

4

(
1

2a0

∫
R2
V (u) dx+

∫
R2

|∇u|2 dx
)
,

where Γy = {x ∈ R2 | (1 − u3(x))
3/2 = y}. Then, there exists y0 ∈ [0, (1 − t)3/2] such

that

H1(Γy0) ≤
1

(1− t)3/2
3

4

(
1

2a0

∫
R2
V (u) dx+

∫
R2

|∇u|2 dx
)
.

Let C = {x ∈ R2 | u3(x) < 1 − (y0)
2/3}; clearly, x ∈ A implies y0 ≤ (1 − t)3/2 <

(1− u3(x))
3/2, so that A ⊂ C. Moreover, C is an open and bounded subset of R2, with

∂C = Γy0 ; therefore, by the isoperimetric inequality,

|A| ≤ |C| ≤ 1

4π
H1(Γy0)

2 ≤ 1

4π

1

(1− t)3
9

16

(
1

2a0

∫
R2
V (u) dx+

∫
R2

|∇u|2 dx
)2

,

and the lemma is proved. �

Remark 1. Let us consider f ∈ Y and let uf as in (1.3), then uf − e3 ∈
W 1,2(R2,R3), as observed in the Introduction. By virtue of the well-known density the-
orem of [24, Part 4] (see also [5]), there exists a sequence (vn)n ⊂ C∞

c (R2, S2), such that
vn − e3 → uf − e3 in W 1,2(R2,R3). Clearly, we also have, eventually passing to a sub-
sequence,

∫
R2 V (vn) dx →

∫
R2 V (uf ) dx. In fact, since vn − e3 → uf − e3 in L2(R2,R3),

we have (modulo subsequences) vn − e3 → uf − e3 a.e. on R2, and moreover, there exist
h ∈ L2(R2,R3) such that |vn(x)−e3| ≤ h(x) a.e. on R2 (see for instance [4], Theorem 4.9).
Then, V (vn(x)) ≤ a1|vn(x) − e3|2 ≤ a1h(x)

2 because of assumption (1.5), and we can
apply the dominated convergence theorem.

Lemma 5. For every f ∈ Y , we have

∫
R2

|uf − e3|2 dx ≤ 1

a0

∫
R2
V (uf ) dx+ 4c1

(∫
R2

(
|∇uf |2 + V (uf )

)
dx

)2

, (2.1)

where c1 > 0 is the constant in the previous Lemma, and uf is as in formula (1.3).

Proof. Because of the previous Remark, it is enough to demonstrate that for every
v ∈ C∞

c (R2, S2), inequality (2.1) holds true. In fact, fix v ∈ C∞
c (R2, S2) and observe that
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∫
R2

|v − e3|2 dx =

∫
v3(x)≥t

|v − e3|2 dx+

∫
v3(x)<t

|v − e3|2 dx;

since v3(x) ≥ t implies a0|v(x)− e3|2 ≤ V (v(x)), for the first integral, we have∫
v3(x)≥t

|v − e3|2 dx ≤ 1

a0

∫
v3(x)≥t

V (v) dx ≤ 1

a0

∫
R2
V (v) dx.

Moreover, if we set A = {x ∈ R2 | v3(x) < t}, since |v(x) − e3| ≤ 2, from the previous
lemma, we get∫

v3(x)<t

|v − e3|2 dx ≤ 4|A| ≤ 4c1

(∫
R2

(
|∇v|2 + V (v)

)
dx

)2

,

so inequality (2.1) is proved. �

Remark 2. If f ∈ X and 0 ≤ f(x) ≤ π a.e. on R2, since s2 ≤ π2(1 − cos s)/2 for
s ∈ [0, π], inequality (2.1) implies

∫
R2

|f(x)|2 dx ≤ π2

2

∫
R2

(1− cos(f(x))) dx =
π2

4

∫
R2

|uf − e3|2 dx

≤ π2

4

(
1

a0

∫
R2
V (uf ) dx+ 4c1

(∫
R2

(
|∇uf |2 + V (uf )

)
dx

)2
)
.

In particular, if (fn)n ⊂ X is a sequence such that 0 ≤ fn(x) ≤ π and (E(fn))n is
bounded, then (fn)n is bounded in W 1,2(R2,R).

We consider now a family of functions obtained by truncation and rescaling from a
function like log|log x| as described in the following lemma. We denote by C∞

c (R2,R) the
set of smooth functions from R2 to R with compact support, by ‖ · ‖W1,2 the norm on
the Sobolev space W 1,2(R2,R) and by ‖ · ‖∞ the norm on L∞(R2,R).

Lemma 6. There exists C∗ > 0 and a family of functions (ψn,λ)n,λ ⊂ C∞
c (R2,R),

with n ∈ N and λ ∈ [1,+∞[, such that for every n ∈ N and every λ ≥ 1,

‖ψn,λ‖W1,2 < C∗; ‖ψn,λ‖∞ ≤ n+ 1; ψn,λ(0) = n; supp(ψn,λ) ⊂ B 2
λ
(0).

Proof. Let g(x) = log(1 − log|x|) if |x| ≤ 1, g(x) = 0 if |x| > 1 and set
gn(x) = min(g(x), n); clearly, g, gn ∈W 1,2(R2,R) and ‖gn‖W1,2 < ‖g‖W1,2 , ‖gn‖∞ = n;
moreover, supp(gn) = B1(0).
For every n ∈ N, there exists a mollification ψn ∈ C∞

c (R2,R) of gn such that
‖ψn‖W1,2 < ‖g‖W1,2 , ‖ψn‖∞ ≤ n + 1, ψn(x) = n in a neighborhood of zero and
supp(ψn) ⊂ B2(0).
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Finally, for every n ∈ N and every λ ≥ 1, let ψn,λ(x) = ψn(λx); clearly, setting
C∗ = ‖g‖W1,2 and observing that λ → ‖ψn,λ‖W1,2 is decreasing, we see immediately
that the family (ψn,λ)n,λ ⊂ C∞

c (R2,R) of functions verify the lemma. �

Remark 3. Let f ∈ Y , then there exists lim
r→0

∫ 2π

0
cos(f̂(r, θ)) dθ = ±2π (see Lemma 2).

Now, let ϕ ∈ C∞
c (R2,R); setting Ωr,R = {x ∈ R2 | r < |x| < R}, we have, for R large

enough,

∫
Ωr,R

sin(f(x))
x

|x|2
· ∇f(x)ϕ(x) dx

=

∫
Ωr,R

cos(f(x))

|x|2
x · ∇ϕ(x) dx−

∫
Ωr,R

div

(
cos(f(x))

|x|2
ϕ(x)x

)
dx

=

∫
Ωr,R

cos(f(x))

|x|2
x · ∇ϕ(x) dx+

∫ 2π

0

ϕ̂(r, θ) cos(f̂(r, θ)) dθ,

so that we obtain, for r → 0 and R→ +∞,

∫
R2

sin(f(x))
x

|x|2
· ∇f(x)ϕ(x) dx

=

∫
R2

x

|x|2
· ∇ϕ(x) cos(f(x)) dx+ ϕ(0) lim

r→0

∫ 2π

0

cos(f̂(r, θ)) dθ.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let (fn)n ⊂ X−1 be a minimizing sequence for E (f ), so that
E(fn) → E−1 = inf{E(f) | f ∈ X−1}. Recall that Q(ufn) = −1 and that

lim
r→0

∫ 2π

0

cos(f̂n(r, θ)) dθ = −2π

(see Lemma 2). Because of Lemma 3, we can assume that 0 ≤ fn(x) ≤ π a.e. on R2.
Since (E(fn))n is bounded, (fn)n is bounded in W 1,2(R2,R) (see Remark 2), so fn →
f ∈W 1,2(R2,R) weakly (up subsequences). We can also suppose that fn → f a.e. on R2.
Clearly, by the Fatou lemma

∫
R2

sin2(f(x))

|x|2
dx ≤ lim inf

n→+∞

∫
R2

sin2(fn(x))

|x|2
dx < +∞, (2.2)

so that f ∈ Y . We will prove that f ∈ X−1 and that E(f) ≤ lim inf
n→+∞

E(fn) = E−1, and

therefore E(f) = E−1, namely E−1 is attained on X−1.
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For every n ∈ N, let ωn ∈W 1,2(R2,R) be the weak solution of the equation

∆ωn − ωn = − 1

|x|2
sin(fn(x))x · ∇fn(x).

Multiplying by ϕ ∈ C∞
c (R2,R) and integrating, we have (see Remark 3)∫

R2
∇ωn∇ϕdx+

∫
R2
ωnϕdx =

∫
R2

x

|x|2
· ∇ϕ(x) cos(fn(x)) dx− 2πϕ(0). (2.3)

Since (E(fn))n is bounded, (ωn)n is bounded in W 1,2(R2,R) so that ωn → ω ∈
W 1,2(R2,R) weakly (up subsequences). Moreover,∫

R2

x

|x|2
· ∇ϕ(x) cos(fn(x)) dx→

∫
R2

x

|x|2
· ∇ϕ(x) cos(f(x)) dx

by the dominated convergence theorem, so that passing to the limit in Equation (2.3),
we get ∫

R2
∇ω∇ϕdx+

∫
R2
ωϕ dx =

∫
R2

x

|x|2
· ∇ϕ(x) cos(f(x)) dx− 2πϕ(0). (2.4)

On the other hand, from Remark 3, setting limr→0

∫ 2π

0
cos(f̂(r, θ)) dθ = `, we also have∫

R2
sin(f(x))

x

|x|2
· ∇f(x)ϕ(x) dx =

∫
R2

x

|x|2
· ∇ϕ(x) cos(f(x)) dx+ `ϕ(0),

so that we can recast Equation (2.4) in the form∫
R2

∇ω∇ϕdx+

∫
R2
ωϕ dx =

∫
R2

sin(f(x))
x

|x|2
· ∇f(x)ϕ(x) dx− (2π + `)ϕ(0). (2.5)

We claim now that 2π + ` = 0, namely ` = −2π. In fact, let us consider the family
(ψn,λ)n,λ ⊂ C∞

c (R2,R) as in Lemma 6; from Equation (2.5), we get∫
R2

∇ω∇ψn,λ dx+

∫
R2
ωψn,λ dx =

∫
R2

sin(f(x))
x

|x|2
· ∇f(x)ψn,λ(x) dx− (2π + `)n,

so that

(2π + `)n ≤ ‖ω‖W1,2‖ψn,λ‖W1,2 +

∣∣∣∣∫
R2

sin(f(x))
x

|x|2
· ∇f(x)ψn,λ(x) dx

∣∣∣∣ ,
and then

(2π + `)n ≤ C∗‖ω‖W1,2 + (n+ 1)

∫
B2/λ(0)

∣∣∣∣sin(f(x)) x

|x|2
· ∇f(x)

∣∣∣∣ dx. (2.6)
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If 2π + ` 6= 0, there exists n0 ∈ N such that (2π + `)n0 > C∗‖ω‖W1,2 + 1. Then, we can
choose λ0 ≥ 1 large enough that

∫
B2/λ0

(0)
|sin(f(x)) x

|x|2 · ∇f(x)|dx < 1/(n0 +1), so that

from inequality (2.6), we get C∗‖ω‖W1,2 + 1 < C∗‖ω‖W1,2 + 1, which is impossible, and
the claim is proved. So, Equation (2.5) becomes∫

R2
∇ω∇ϕdx+

∫
R2
ωϕ dx =

∫
R2

sin(f(x))
x

|x|2
· ∇f(x)ϕ(x) dx,

and since ϕ was arbitrary, this show that ω ∈ W 1,2(R2,R) is a weak solution of the
equation ∆ω − ω = − sin(f(x))x · ∇f(x)/|x|2, so that f ∈ X; moreover, since ` = −2π,
we have f ∈ X−1, namely uf is topologically nontrivial.
Finally, we have, by inequality (2.2), the weak lower semicontinuity of the norm and

the fact that
∫
R2 V (uf ) dx ≤ lim infn→+∞

∫
R2 V (ufn) dx (by the Fatou lemma), that

E(f) ≤ lim infn→+∞E(fn), so that E(f) = E−1, and Theorem 1 is proved. �

3. The axially symmetric case

In this section, we study the functional (1.1) by using the Skyrme ansatz, namely E (u)
is restricted to maps uf of the form (1.8).
Let us denote by X r the set of the functions f : ]0,+∞[→ R absolutely continuous on

every compact subinterval of ]0,+∞[, such that

∫ +∞

0

(
sin2(f(r))

r
+ f ′(r)2r + f(r)2r

)
dr < +∞.

It is easy to verify that f ∈ Xr implies that there exist the limits of f (r) for r → 0 and
for r → +∞, and f(0) = mπ (m ∈ Z), f(+∞) = 0, so that we can assume f continuous
on [0,+∞[. Moreover,

Q(uf ) =
1

2

∫ +∞

0

k sin(f(r))f ′(r) dr = −k
2
(1− cos(mπ))

is equal to zero or −k. Now, suppose that k 6=0 and set Xr
−k = {f ∈ Xr | Q(uf ) = −k}.

Then, we have the following theorem, which is analogous to Theorem 1 (we set, for
simplicity, E(uf ) = E(f)).

Theorem 2. Assume that V satisfies assumptions (1.5)–( 1.7). Then, for every k ∈ Z,
k 6= 0, there exists f ∈ Xr

−k such that 0 ≤ f(r) ≤ π, f(0) = π, f(+∞) = 0 and E(f) =
inf{E(f) | f ∈ Xr

−k}.

As in the previous section, we assume for simplicity, and without loss of generality,
that M =1, g = 4π and k =1. The coupling equation (1.4) becomes

r ω′′
f (r) + ω′

f (r)− r ωf (r) = − sin(f(r))f ′(r). (3.1)
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For every f ∈ Xr, Equation (3.1) has a unique solution ωf such that∫ +∞

0

(
ωf (r)

2 + ω′
f (r)

2
)
r dr < +∞

(see Remark 4); so by multiplying Equation (3.1) by ωf and integrating, we can write
the functional (1.1) in the form

E(f) = 2π

∫ +∞

0

(
1

2

(
sin2(f(r))

r
+ f ′(r)2r

)
+

1

2

(
ω′
f (r)

2 + ωf (r)
2
)
r + V (uf (r))r

)
dr.

Notice that if f ∈ Xr, then ωf (r) can be expressed in terms of the Green’s function

G(r, s) =

I0(s)K0(r) s ≤ r

I0(r)K0(s) s > r

as ωf (r) =
∫ +∞
0

sin(f(s))f ′(s)G(r, s) ds, where I0(r) and K0(r) are the modified Bessel
functions of the first and second kind, respectively. Clearly, ωf ∈ C1 (]0,+∞[); moreover,
if we set

H(r, s) =

(I0(s)− 1)K0(r) s ≤ r

I0(r)K0(s) s > r
, Hr(r, s) =

−(I0(s)− 1)K1(r) s ≤ r

I1(r)K0(s) s > r

where I1(r) = I ′0(r) and K1(r) = −K ′
0(r), we have

ωf (r) = −K0(r)(cos(f(r))− cos(f(0))) +

∫ +∞

0

sin(f(s))f ′(s)H(r, s) ds, (3.2)

ω′
f (r) = K1(r)(cos(f(r))− cos(f(0))) +

∫ +∞

0

sin(f(s))f ′(s)Hr(r, s) ds. (3.3)

We have now the following lemma.

Lemma 7. If f ∈ Xr, then∫ +∞

0

(ωf (r)
2 + ω′

f (r)
2)r dr < +∞

and moreover ωf ∈ C
(
[0,+∞[

)
.

Proof. We note that for r → 0, we have I0(r)−1 ' r2 andK0(r) ' |log r|; for r → +∞,
we have I0(r) − 1 ' er/

√
r, K0(r) ' 1/(er

√
r); then, for r → 0 and r → +∞, we also

have, respectively,∫ r

0

(I0(s)− 1)2

s
ds ' r4,

∫ +∞

r

K0(s)
2

s
ds ' |log r|3;
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0

(I0(s)− 1)2

s
ds ' e2r

r2
,

∫ +∞

r

K0(s)
2

s
ds ' 1

e2rr2
.

Since ∫ +∞

0

H(r, s)2

s
ds = K0(r)

2

∫ r

0

(I0(s)− 1)2

s
ds+ I0(r)

2

∫ +∞

r

K0(s)
2

s
ds,∫ +∞

0

Hr(r, s)
2

s
ds = K1(r)

2

∫ r

0

(I0(s)− 1)2

s
ds+ I1(r)

2

∫ +∞

r

K0(s)
2

s
ds,

we get (recalling also that for r → 0, we have I1(r) ' r andK1(r) ' 1/r, and for r → +∞,
we have I1(r) ' er/

√
r and K1(r) ' 1/(er

√
r))

∫ +∞

0

H(r, s)2

s
ds '

log2(r)r4 + |log r|3 r → 0

1
r3

r → +∞,∫ +∞

0

Hr(r, s)
2

s
ds '

r2 + r2|log r|3 r → 0

1
r3

r → +∞.

Then, from formula (3.2), by using the Holder inequality

∣∣∣∣∫ +∞

0

sin(f(s))f ′(s)H(r, s) ds

∣∣∣∣ ≤ (∫ +∞

0

f ′(s)2s ds

) 1
2
(∫ +∞

0

H(r, s)2

s
ds

) 1
2

,

we have

|ωf (r)| .

|log r|+ |log r|r2 + |log r|3/2 r → 0

1
er

√
r
+ 1

r3/2
r → +∞

so that
∫ +∞
0

ωf (r)
2r dr < +∞.

We observe now that f(0) = mπ, with m ∈ Z, and since |cos t− cos(mπ)| ≤ sin2 t for
t ' mπ, we have also |cos(f(r))− cos(f(0))| ≤ sin2(f(r)) for r ' 0. Then, from formula
(3.3), by using again the Holder inequality, we get

|ω′
f (r)| .


sin2(f(r))

r + r2 + r2|log r|3 r → 0

1
er

√
r
+ 1

r3/2
r → +∞,

and since
∫ +∞
0

sin2(f(r))
r dr < +∞ because of f ∈ Xr, we also get

∫ +∞
0

ω′
f (r)

2r dr < +∞.

Finally, from ω′
f ∈ L1 (]0,+∞[), we have ωf ∈ C

(
[0,+∞[

)
, and the lemma is proved. �

Remark 4. The solutions of Equation (3.1) are ω(r) = AK0(r) + B I0(r) + ωf (r),

with A, B ∈ R, so that
∫ +∞
0

(ω(r)2 + ω′(r)2)r dr < +∞ implies A = B = 0, namely
ω = ωf .
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Remark 5. If f ∈ Xr, then f̄ ∈ X, where f̄(x) = f(|x|), and X is defined in § 1,
so that, by Lemma 3, it is easy to see that there exists g ∈ Xr such that 0 ≤ g(r) ≤ π
on [0,+∞[, E(g) = E(f) and Q(ug) = Q(uf ). Moreover, as in Remark 2, if (fn)n ⊂ Xr

is a sequence such that 0 ≤ fn(r) ≤ π and (E(fn))n is bounded, then the sequence(∫ +∞
0

(f ′n(r)
2 + fn(r)

2)r dr
)
n
is bounded.

Now we can prove Theorem 2.

Proof of Theorem 2. Let (fn)n ⊂ Xr
−1 be a minimizing sequence for E (f ), namely

E(fn) → E−1 = inf{E(f) | f ∈ Xr
−1}, then E(fn) ≤ C for some C > 0. Because of the

previous Remark, we can also assume that 0 ≤ fn(r) ≤ π and∫ +∞

0

(
sin2(fn(r))

r
+
(
f ′n(r)

2 + fn(r)
2
)
r

)
dr ≤ C.

Clearly, fn(+∞) = 0 and fn(0) = π for every n ∈ N. Since (fn)n is bounded
on W 1,2([a, b]) for every [a, b] ⊂]0,+∞[, a standard diagonal subsequence argument
(see for instance [3]) shows that there exists f ∈ W 1,2

loc

(
]0,+∞[

)
such that we have (up

subsequences) for every [a, b] ⊂]0,+∞[: fn → f weakly in W 1,2([a, b]) and fn → f
uniformly in [a, b]. Clearly, f is absolutely continuous on every compact subinterval
of ]0,+∞[, and, by using in the usual way the Fatou lemma and the weak lower
semicontinuity of the norm, we have

∫ b

a

(
sin2(f(r))

r
+
(
f ′(r)2 + f(r)2

)
r

)
dr

≤ lim inf
n→+∞

∫ b

a

(
sin2(fn(r))

r
+
(
f ′n(r)

2 + fn(r)
2
)
r

)
dr ≤ C,

so that, since a and b are arbitrary, we have f ∈ Xr, and we can consider the function
ωf that we write in the form (see (3.2))

ωf (r) = −K0(r)(cos(f(r))− cos(f(0))) +

∫ +∞

0

sin(f(s))f ′(s)H(r, s) ds.

Of course, 0 ≤ f(r) ≤ π, f(+∞) = 0 and f(0) = 0 or f(0) = π. We will soon see
that, in fact, f(0) = π, and therefore f ∈ Xr

−1. To this end, let us consider the sequence
(ωfn)n ⊂W 1,2

(
]0,+∞[,R

)
; since E(fn) ≤ C, we also have∫ +∞

0

(
ω′
fn(r)

2 + ωfn(r)
2
)
r dr ≤ 2C,

and, arguing as for (fn)n, we get ω ∈ W 1,2
loc

(
]0,+∞[

)
such that, up subsequences, for

every [a, b] ⊂]0,+∞[: ωfn → ω weakly in W 1,2([a, b]), ωfn → ω uniformly in [a, b], and∫ +∞

0

(
ω′(r)2 + ω(r)2

)
r dr ≤ 2C. (3.4)
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By using again formula (3.2) and recalling that fn(0) = π, we can write, for every r > 0,

ωfn(r) = −K0(r)(cos(fn(r)) + 1) +

∫ +∞

0

sin(fn(s))f
′
n(s)

√
s
H(r, s)√

s
ds. (3.5)

Notice that sin(fn(s))f
′
n(s)

√
s → sin(f(s))f ′(s)

√
s weakly in L2

(
]0,+∞[

)
. In fact, the

sequence (sin(fn(s))f
′
n(s)

√
s)n is bounded in L2

(
]0,+∞[

)
, and, on every subinterval

[a, b] ⊂]0,+∞[, we have sin(fn(s)) → sin(f(s)) uniformly in [a, b], and f ′n(s)
√
s →

f ′(s)
√
s weakly in L2([a, b]), so that we get the claim.

Then, passing to the limit in Equation (3.5) and recalling that ωfn(r) → ω(r) for every
r > 0, we have

ω(r) = −K0(r)(cos(f(r)) + 1) +

∫ +∞

0

sin(f(s))f ′(s)H(r, s) ds.

But then we have ω(r) = ωf (r) − K0(r)(cos(f(0)) + 1) and so ω′(r) = ω′
f (r) +

K1(r)(cos(f(0)) + 1); by multiplying for
√
r, we get K1(r)

√
r(cos(f(0)) + 1) =(

ω′(r)− ω′
f (r)

)√
r.

Since ω′(r)
√
r ∈ L2 (]0,+∞[) because of inequality (3.4) and ω′

f (r)
√
r ∈ L2 (]0,+∞[)

for the Lemma 7, we must have K1(r)
√
r(cos(f(0)) + 1) ∈ L2

(
]0,+∞[

)
.

But K1(r)
√
r ' 1/

√
r as r → 0, so we get cos(f(0)) = −1, namely f(0) = π; therefore,

f ∈ Xr
−1, ω = ωf and we have E(f) ≤ lim inf

n→+∞
E(fn) = E−1 so that E(f) = E−1, and the

theorem is proved. �
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