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In this paper, we consider an initial-boundary value problem of Hsieh’s equation
with conservative nonlinearity. The global unique solvability in the framework of
Sobolev is established. In particular, one of our main motivations is to investigate
the boundary layer (BL) effect and the convergence rates as the diffusion parameter
B goes zero. It is shown that the BL-thickness is of the order O(87) with 0 < v < %
We need to point out that, different from the previous work on nonconservative form
of Hsieh’s equations, the conservative nonlinearity (wﬁoﬁ)z implies that new

nonlinear term 1/)595 needs to be handled. It is important that more regularities on
the solution to the limit problem are required to obtain the convergence rates and
BL-thickness. It is more difficult for initial-boundary problem due to the lack of
boundary conditions (especially, higher-order derivatives) prevents us from applying
the integration by part to derive the energy estimates directly. Thus it is more
complicated than the case of nonconservative form. Consequently more subtle
mathematical analysis needs to be introduced to overcome the difficulties.
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1. Introduction

The boundary-layer theory has been developed by Ludwig Prandtl in 1904 (see
[17]). Although this theory is now more than 110 years old, it is nowadays still
being applied in industry and research, because many important fields of fluid
mechanics (i.e. aeronautics, ship hydrodynamics, automobile aerodynamics) refer
to flows at high Reynolds numbers. Mathematical analysis on the boundary layer
(BL) theory has been extensively studied in different contexts. In particular, when
parabolic equations with small viscosity are applied as perturbations, the question
of boundary layer problem also arises in the theory of hyperbolic systems. Gisclon
and Serre in [8] developed a method to detect the boundary layer effect for a
viscous perturbation of some class of quasi-linear hyperbolic systems in one space
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dimension, which was also generalized to the multi-dimensional case by Grenier and
Gues in [9].

In this paper, we consider a boundary layer problem between two horizontal
parallel plates. Such kinds of boundary layer problems were also studied in [6,
12-14, 26]. Precisely speaking, we consider the following initial-boundary value
problem of Hsieh’s equation with conservative nonlinearity related to Lorenz system
on the strip [0, 1] x [0, o0)

W=—(c—a)l —obl +ayl, 0O<z<1, t>0,
{ef =—(1—3)0° + vl + (vP0°) + 802, 0<a<1,t>0 o
with initial data
(¥7,07) (2,0) = (0,00)(z), 0<z<1 (1.2)
and the Dirichlet boundary conditions
(v”,0°) (0,t) = (¥”,0°) (1,¢) = (0,0), ¢=>0, (1.3)
which implies
(v7.07) 0.0) = (.6)) (1,) = (0,0), t>0. (1.4)

Here both 9? and #” are unknown. The parameters «, 3, o and v are all positive
constants satisfying the relation o < o and 0 < § < 1. We can refer to [11, 21] for
the physical background of the system (1.1).

We expect to prove that as the diffusion parameter 8 — 07, the solution
sequences {(¢”, 67)} of the initial-boundary value problem (1.1)~(1.3) with v =
o(v/B) converge to the solution (¢°, 8°) of the following formal limit problem
(1.5)—(1.7) (at least formally; this will be made precisely below.)

{w? = (o =)’ — ot +avy,, 15)
00 = —0° + (990%),, 0<xz<1,t>0
with initial data
(¥°,6°)(2,0) = (Yo(2), 6o(2)), 0<2<1 (1.6)
and the boundary conditions
$(0,t) =°(1,8) =0, t=>=0. (1.7)

Note that one can get the following additional boundary conditions from (1.5)
and (1.7):

UP(0,1) = v (1,t) =0,
w?t(07t) = w?t(Lt) = 07 (18)
(003 — av2,)(0,t) = (003 — vl )(1,¢) =0, t >0,

which will be frequently used to handle the boundary term later.
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(z.f), a=0.7, J=01 #rt), a=07, 4=l

conservative form of ¢(x, t) conservative form of 8(x,t)

Figure 1. Conservative form of ¢ (x, t) and conservative form of 0(x, t).

In addition, the initial data (g, 0y) satisfies the compatibility conditions:
(10, 00) (0) = (40, 00) (1) = (0,0). (1.9)

The nonconservative form of the system (1.1) with @ =0 was originally pro-
posed by Hsieh in [11] to observe the nonlinear interaction between ellipticity and
dissipation. Both conservative form and nonconservative form of the system (1.1)
were studied in Tang’s Ph.D. thesis [21] to understand chaos phenomenon. The
nonconservative form corresponding to the system (1.1) reads as follows:

W) = —(0 — ) — 00f + al,,
0] = —(1— B)0° + vl + 20708 + 307,

Numerical experiments demonstrated and found drastically different behaviour
between conservative form and nonconservative form of Hsieh’s equations. One
of our motivations is that it will become clear how the behaviour of conservative
form, sometimes consistent with the behaviour of nonconservative form and some-
times utterly different, can be explained. Boundary layer theory studied in [19] for
nonconservative form continues to be considered for conservative form in present
paper (figures 1 and 2).
For latter presentation, we state function spaces and the notations as follows.

NOTATION 1.1. Throughout this paper, we denote positive constants independent of
B3 by C. And the character ‘C’° may differ in different places. L*> = L*([0, 1]) and
L> = L>([0, 1]) denote the usual LP space on [0, 1] with its norm || f|[2(0,1]) =

171 = (fy 1£@)[2 da)'/2 and ||f|s= = sup |f(x)|. HU(0, 1]) denotes the usual

z€[0,1
I-th order Sobolev space with its norm || f| g0y = IIfIli = (Zé:o 105 FII2)Y/2. For

simplicity, || f(-, )z, 1fCy )|lpee and ||f (-, ©)|; are denoted by || f ()|, ||f(&)|lL
and || f(t)||; respectively.

In order to state the main results, let us describe the definition of BL-thickness,
which is borrowed from [6, 20].
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elr,t), a=07, =01 f(x 1), a=07, F=0.1

nonconservative form of ¥:(x,t) nonconservative form of 6(x,t)

Figure 2. Nonconservative form of ¥ (x, t) and nonconservative form of 0(zx, t).

DEFINITION 1.2 (BL-thickness). A function §(3) is called a BL-thickness for the
problem (1.1)—(1.3) with vanishing diffusion (3, if 6(3) 1 0 as 8] 0, and

éli% HZ/JQ o wOHLm(o,T;Lm[oJ]) =0, (1.10)

éii% 107 — HOHLoo(o,T;Loo[a,pa]) =0, (1.11)

0, (1.12)

hgﬂ{ﬁ H9ﬁ - HOHLw(o,T;Lw[o,l]) >

where 0 < § = 6(3) < 1, and (VP 6°) (rep. (¢°, 6°)) is the solution to the problem
(1.1)~(1.3) (resp. to the limit problem (1.5)—(1.7)).

Clearly, this definition does not determine the BL-thickness uniquely, since any
function 0. (8) with §.(5) | 0 as 8 | 0 satisfying the inequality d.(5) > 6(f) is also
a BL-thickness if §(/3) is a BL-thickness.

The main results can be stated as follows.

THEOREM 1.3. Assume that the initial data (1o, 0p) € H* and ||1oll1 + [|60]l1 be
sufficiently small. Then we have

(i) There exist a unique solution (y°, 6%) to the initial-boundary value problem
(1.1)~(1.3) satisfying

P e L>(0,T;HY) N L*(0,T; H?), 6° € L>(0,T;H") N L?(0,T;H"),
VB2 € L (0,T; H').

(ii) Further assume the initial data be imposed on more reqularity (g, o) € H?.
Then more regularities on solution (Y7, °) to the initial-boundary value problem
(1.1)~(1.3) are obtained to satisfy

P e L>(0,T;H*) N L? (0,T; H?), 6° € L>(0,T;H")L?(0,T;H'),
@) € L= (0,T; L) L2 (0, T; HY), 6] € L (0,T;L*) L2 (0,T; L?),
VBOZ € L (0,T; HY), /BOS, € L?(0,T;L?), 862, € L (0,T;L?).

Here the norms are all uniform in (3.
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THEOREM 1.4. Assume that the initial data (1o, 60) € H' and |[voll1 + [|60ll1 be

sufficiently small. Then we have

(i) There exists a unique solution (¢°, 6°) to the limit problem (1.5)—(1.7)

satisfying
Y0 e L (0,T;HY) N L? (0,T; H?) ,
0% € L> (0, T; H') N L? (0, T; H) .

(ii) Further assume the initial data be imposed on more regularity g € H?.
Then more regularities on solution (%, 6°) to the initial-boundary value problem
(1.5)—(1.7) are obtained to satisfy

Y0 e L (0,T; H?) N L? (0,T; H?), ¢°e L> (0,T;H")L*(0,T;H")
e L (0,T; L)L (0,T; HY), 69 € L> (0,T;L*) N L*(0,T;L?).

(iii) Further assume the initial data be imposed on more reqularity (1o, 0o) € H?
and ||1o|2 + ||0ol2 be sufficiently small. Then more regularities on solution (°, 6°)
to the initial-boundary value problem (1.5)—(1.7) are obtained to satisfy

Y0 e L™ (0,T; H*) N L* (0, T; H?), 6 € L>(0,T;H*) (N L*(0,T; H?)

W e 1 (0,75 12) (V12 (0.T: H?), 60 € L (0,75 12) (L2 (0.T; HY).
THEOREM 1.5. Under the same conditions of theorem 1.4, any function 6((3) sat-
isfying the conditions 6(3) — 0 and $/?/6(3) — 0 as B — 0%, is a BL-thickness

such that
||¢ﬁ - ¢0||Loo(o,T;Loc[0,1]) S 053/8’
167 = 0°) 1w 0,71 -y < C(B2/3(B)2,
i inf (|67 = 6° o o 7o 0,17 > O
Consequently,

gig}) ||1/’B - wOHLOO(O,T;LOO[O,l]) =0,

QOHLOO(O,T;L“’[&I*N) =0

lim ||95 —

B8—0
REMARK 1.6. It is reasonable that our results show that boundary layer phe-
nomenon only occur for #%, but not for ¢%. The limit of ¥ is really passed as
the diffusion [ goes zero.

We need to point out that, different from the previous work on nonconservative
form of Hsieh’s equations in [19], the conservative nonlinearity (1/°0%), implies
that new nonlinear term 1?0 need to be handled. Part (iii) of theorem 1.4 will
play important roles to obtain the convergence rates and boundary layer thickness.
That is, more regularities on the solution to the limit problem are required. Gen-
erally speaking, it is more difficult for initial-boundary problem due to the lack
of boundary conditions on higher-order derivatives. In addition, lack of boundary
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conditions on ° prevents us from applying the integration by part to derive the
energy estimates directly. Thus it is more complicated than the case of nonconserva-
tive form. Consequently more subtle mathematical analysis need to be introduced
to overcome the difficulties.

We now review some related work to the problem studied in this paper. There
have been several mathematical studies of various aspects of the system (1.1) or
some slightly modified systems. In the case that all parameters are fixed constants,
the reader is referred, for example, to [1, 3-5, 10, 15, 18, 22-25, 27].

An interesting problem mentioned as before is the zero diffusion limit, i.e. consider
the limit problem of solution consequences when one or more of parameters vanishes
for the corresponding Cauchy problem or initial-boundary value problem. Chen
and Zhu in [2] considered the Cauchy problem of nonconservative form of Hsieh’s
equation

{"/’t =—(0—a)p — b, + sy, (1.13)

at = _(1 - ﬁ)@ + Vd)x + 2¢0x + ﬁeafx

with initial data

(¥,0)(x,0) = (Y0, 00)(x) = (¢, 0+) as x — +oo. (1.14)

It was proved that the solution sequences {(¥®, 6%)} of the Cauchy problem (1.13),
(1.14) with 0 =1, a = 8 and v < 0 converge to the corresponding limit system
with « =0 as @ — 07. In [18], the global unique solvability on C*°-solution to
the Cauchy problem of equations (1.13) for the cases of « = 8 and « # 3 was
established. Furthermore, the convergence rates as the diffusion parameter § goes
zero is also obtained.

For the initial-boundary value problem, Ruan and Zhu in [19] considered
equations (1.13) on the strip [0, 1] x [0, co) with the zero Dirichlet boundary
conditions

(1,0) (0,t) = (4,0) (1,1) = (0,0), ¢ =0. (1.15)

It was shown that the solution sequences {(1/?, 6°)} of the initial-boundary value
problem converge to the corresponding limit system with 3 =0 as 8 — 07 in the
framework of Sobolev. The convergence rates and boundary layer thickness were
also obtained. Similar result on the initial-boundary value problem of equations
(1.13) with zero Dirichlet-Neumann boundary conditions was also obtained in [16].

The rest of this paper is arranged as follows. In § 2, a uniform priori estimates on
the initial-boundary value problem (1.1)—(1.3) are derived. Then the global solv-
ability and more regularities on the limit problem (1.5)-(1.7) are established in
§ 3. And in § 4, convergence rates and the BL-thickness as the diffusion parameter
3 — 07T are obtained. Finally, we use a conclusion section to summarize the results
of the paper in § 5.

2. A uniform priori estimates

In this section, we devote ourselves to the a priori estimates of the solution
(P (x, t), 0°(x, t)) to the initial-boundary value problem (1.1)—(1.3) under the a
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priori assumption

Ni(T) = OE?ETH(wB %) (1))} < <3, (2.1)

which implies by Sobolev inequality
1(7,8%) ()|, < Cen, (2.2)

where €1 is a positive constant satisfying 0 < 7 < 1, independent of 5.
From now on we drop the superscript 3 for simplicity of notations. We will derive
uniform-in-g3 estimates on (¢, ) in two lemmas.

LEMMA 2.1. Under the same assumptions of theorem 1.3, the parameters o, o, 3
and v satisfy the relation (04 v)? < da(l — ) with v = o(6Y?), we have the
following estimates:

1
/ (42 + 62) da
0

o (2.3)
+/0/0 [0 4+ 6% + () + .(62)%] dadr < C |40, 00)]

and

[ o + @] o

t 4l (2.4)
+/0/0 [(%) + (02)" + (Y22)” + B (0uz) }dxdf C (o, 00) 17

where C' is a positive constant independent of 3.

Proof. First, we prove (2.3). Integrating equations (1.1); x ¢+ (1.1)2 x 6 over
(0,t) x (0,1) and using integration-by-part, the boundary condition (1.3),
Cauchy—Schwarz inequality and (4.49), we obtain for any A > 0

;/1 (w2+92)dx+/t/l (0 — )i + (1 — B)6%] dadr

+ () 2 dadr + I} 2 dedr
s A

1

:2/0 (¢0+92)dx+(0+u//wzedxd7+ //¢zazdxdT 25)
1 5 ) t

<§/0 (1/J0+90)d33+/0 <|O'+V|+2||9(t)bx,>/0 [1h,0] dzdr

1 t pl
g%/ (¢3+93)dx+A// (t2)” dadr

+(|a+”|+c‘€1 //92dmdr
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which implies (2.3) holds provided A > 0 is chosen to satisfy

(Jo + v| + Cer)?

A, 1—
a > A, 6> o

In fact, A > 0 can be chosen such as

v s o) o)

This proves (2.3).

Next, we turn to prove (2.4). Integrating equations (1.1); X (=) + (1.1)3 x
(—044) over (0, t) x (0, 1), using integration-by-parts and the boundary conditions
(1.3) and (1.4), we arrive at

s [ w0 s [ [ 0@+ -9 007 asar
T / / (bos)? dadr + 3 / / (0,0)? dadr
- / W ) dr o / t / ' anbodadr — v /0 t /0 badadr (28)

//% 1 dxdT+/ / Yz 00 dadr

1
=2/ (g, + 03,) dx+ZI

i=1

Now we estimate I1—I4 term by term as follows.
One has by using the Cauchy inequality

<A/Ot/01 (Vaz) dxdT—i——/ / % dadr (2.9)
Iy < 2,6’/ / () dxdT—i— / / o) 2 dzdr. (2.10)

The constant A in (2.9) is chosen the same as one in (2.6).
For suitably small A\; > 0, we have by using Cauchy—Schwarz inequality, Sobolev
inequality and the a priori assumption (2.1) and (4.49)

/ / (Y20 dzd7+>\1/ / % dadr
<C/ me(T)Hiw/ (6, dde—i—)\l/ / ? dadr (2.11)
< Cef / / (¥2)* + (V) dacdr—i—)q / / 2 Qedr

and
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and

t el
I4<// [1)22,00,| dzdT
0o Jo

t 1
<16l [ [ Ponabildudr (2.12)
0 0

< Cey /Ot /01 [(z/;m)%(amf dzdr.

Substituting (2.9)-(2.12) into (2.8), and using (2.3) with the smallness of ¢; and
A1, we obtain (2.4). This completes the proof of lemma 2.1. O

Now, we can show that the a priori assumption (2.1) can be closed. Since, under
this a priori assumption (2.1), we deduced that (2.3) and (2.4) hold provided
1 is sufficiently small. Therefore the assumption (2.1) is always true provided
|(¥0, B0)|l; is sufficiently small.

In order to obtain the boundary layer thickness and the convergence rates in
next section, it is required to derive the desired estimates on ||(¥zz, 022)(t)|| in the
following lemma.

LEMMA 2.2. Under the same assumptions of theorem 1.3, we have the following
estimates:

/0 [(%)2 + (Qt)g} dz

(2.13)
t ol
[ T+ 00+ () + 6600 dadr < € 0]
0o Jo
and
! 2 2 2
| ) + (3620 do < €l o003 (214)
0
where C' is a positive constant independent of [3.
Proof. Differentiating (1.1) with respect to ¢, we get
= - - - 9:1: + zxt)
(o (0 — )y — 00z + Aa (2.15)
Orp = —(1 — B)0s + vibar + (V0),; + BOrat-
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Integrating equations (2.15)1 X ¢ + (2.15)3 x 6; over (0, t) x (0, 1), using
integration-by-parts and the boundary conditions (1.4), we arrive at

;/01 {(%)2 + (at)ﬂ dx
# [ o) + (- 9) 007 asar

cof [ warastrs [ / ppasar
2/ () + (01 L_ dx+ZL,
where
= (0 +v) /0 t /0 abidadr,
-
Is = A [ pbubidzar, .

1 t 1
Iy == / / Uy (6;)° dadr,
2 0 JO
t 1
Iy = / / V00, dadr.
0 JO

I5—Ig are estimated term by term as follows.
By using Cauchy—-Schwarz inequality, Sobolev inequality and the a priori
assumption (2.1) and (4.49), we have

<)\/Ot /01 (wmt)zdxdT—l—(UI)\y)Q/Ot /01 (6,)° dzdr, (2.18)
l/t/1 (wt91)2dxd7'+1/t/1 (6,)° dzdr

(2.19)
<ce? / / () + (ar)?] dadr + / / (0,)? dadr,
f/ / (”Q/Jzﬂt)dedT—kZ/o /0 (6,)* dazdr
2.20
C// ()2 %mc)}d$/01(9t)2dxd7+i/ot/ol(t%)zdxdr o
and
h<wmg[43%@mm7 -

t 1 t 1
< Cey / / (gt )? dadr + Cey / / (6,)% dzdr.
0 JO 0 JO
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Substituting (2.18)—(2.21) into (2.16), we have from (1.1)

/ [( +(6,) da:+ / / wt d:vdT
+ /0 /0 (tur)? dadr + 3 /0 /0 (00)? dadr

€ [ [0+ (600" + (0 + (B + (tn)? + (Bur)?]

+C// wx + (Vae) dx/ol(et)zdxdﬂ

which implies

(2.22)

1 1
/0 (6)%dz < C / (60)% + (60)° + (Y0r)* + (Boa)? + (osa)? + (owa)?] da

+c// (1he)? + (thaa) dm/ol(ﬁt)gdxdr

Using Gronwall’s inequality and (2.4) in lemma 2.1, one has

007 < [ [0+ 00+ or) + (B0e)® + (ar)? + Bor)?]

X exp (2)* + (Ve) dxdT
{e // |

<O [ [0+ 00+ G+ 00 + (e + o]
X exp {C” 'I/J(),GO ||1}
<O

Substituting the above inequality into (2.22) and using (2.4) in lemma 2.1 once

again
/ [( +(6,)? dx+ / / (1) dxdT
+/ / (%t)“'dxdwﬂ/o/o (02¢)° dzdr

< C/ 1/}0 (¢Oz) (901’)2 + (¢Omm)2 + (9011)2 dx

+C / / ww + (Van)’ dxdT
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< C/O1 [(60)° + (B0 + (Woo)? + (B0 + (ore)? + (B0)?]

+ C‘|(1/}0a 00) ||%7
which implies (2.13).
Tt directly follows from (1.1)
1
() = — [ + (0 — ) + 0],
(B822)” = 6+ (1= B)0 — vipy — 16, — 6]

Integrating (2.23) over (0,1) and using Cauchy—Schwarz inequality, (4.49), (2.13)
with lemma 2.1, we obtain

(2.23)

[ [0 + 80207 a

1 1
=— [ [+ (o—a)y+o0,)"dx
a” Jo
! 2.24
+/ [9t+ (1 —5)9—V¢z _71)91 _wx9]2dx ( )
0
1
SO [(he)* + 92+ (02)* + (0:)* + 6% + (¢)%] da
0
< Cll(%o, 60)ll3 -
This completes the proof of lemma 2.2. O

3. More regularities on the limit problem

In this section, we will establish the a priori estimates of the solution (/°, %) to
initial-boundary value problem (1.5)—(1.7). In particular, the more regularities on
the solutions will be obtained provided the initial data is more regular. This will
play an important role in proving boundary layer thickness and convergence rates
in next section. It is required on the a priori assumption

No(T) = sup_[|(4°,6°) (1)||; < &3, (3.1)
0<t<T

which implies by Sobolev inequality

1(#°,6°) (D)|| . < Ce2, (3.2)

where 0 < €5 < 1. From now on we drop the superscript 0 for simplicity of notations
and denote (1, #) instead of (¢°, 69).

LEMMA 3.1. Assume that the initial data satisfy the conditions: (1o, 09) € H' and
[oll1 + [|6oll1 is sufficiently small. The parameters o and o satisfy the relation
%2 <a<o.
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(i) Then there exists a unique solutions (v, 0) to the initial-boundary value
problem (1.5)—(1.7) satisfying

1
/ (v +6%) da
0

. (3.3)
w [ ] e+ ] e < ol
and
1

/ [(2) + (990)2} da

(3.4)
b [ [0 + @+ ] e < Ol )1
(i) Furthermore assume that 1o € H?, we have:
[ o0 wmﬂ o

0 (3.5)

b [ [+ 00 + @] dndr < (hul + leul)

(iii) Furthermore assume that (o, o) € H* and ||[¢oll2 + ||6oll2 is sufficiently
small, more regularity on the solution (v, 0) is obtained as follows:

/ Pt [ / 0us)? + (awa)? ] dadr < O (o3 + 60]2)

(3.6)
t 1
/0 / (6.)* dadr < C (I¥oll3 + 166]13) (3.7)
t 1
| [ rae)® dadr < € (junll + 16013) (33)
0 0

1 t 1
| et [ [ Ora dsar < (ol +160013) . @9)
0 0 JO

Proof. Proof of (3.3).

Integrating the resulting equations (1.5); x ¢ + (1.5)2 x 6 over (0, t) x (0, 1),
using integration-by-parts and the boundary conditions (1.7), Cauchy—Schwarz
inequality and (3.1), we obtain for A > 0 taken in lemma 2.1

1

2/01 (¢2+92)01:c+/0t/01 (0 — a)y® + 6°] dadr

+a/0t/01 (1h,)? dzdr
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B /(¢O+eo dx+a//¢w9dmd7+ //%9 dedr  (3.10)
;/O (¢o+90)dx+/ <a+ 6(t) |Lm>/ |tho 0| dzdr
% /0 (45 +65) dz + A /0 /0 (12)? dadr

2 t 1
+% / / 6%dwdr, (3.1)
0 0

Then we will deduce

1
/ (1/12 + 02) dx
0

//\

N

. (3.11)
[ [ 6 4 ] dadr < C o0
0o Jo
Proof of (3.4). Differentiating (1.5) with respect to z, we get
xt = (0 — Q& w_o-ea:w'i_a TTTH
Yt ( ¥ (3 (3.12)

Integrating equation (3.12); X ¢, + (3.12)3 x 0, over (0, t) x (0, 1), using
integration-by-parts and the boundary conditions (1.7) and (1.8), we arrive at

;/l[(%) dx+// (0~ 0) (6)* + (60.)?] dadr
+a/0 /0 (tge)” dzdT (3.13)

1 1
:7/ (Vo, + 05,) da + J1 + Jo + J3,
0

2
t 1
Ji 20/ / Yppbedadr,
0o Jo
3 t 1
=5 | [ 0. asar, (3.14)
2Jo Jo
t 1
= / / V300, dxdT.
o Jo

We have by using Cauchy—-Schwarz inequality, Sobolev inequality and the a priori
assumptions (3.1)—(3.2)

t 1
Jp < )\/ / (wm )" dedr + —/ / dxdT (3.15)
0o Jo

where

https://doi.org/10.1017/prm.2022.40 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.40

Boundary layer of Hsieh’s equation 1181

3\
Jg\@//wwﬂC ) dadr + — // 2 dzdr
062// ¢x wm) d:l:d +7// 2 dedr
o Jo

J3 < Cey /Ot /01 [(1/1901)2 + (990)2} dzdr. (3.17)

Substituting (3.15)—(3.17) into (3.13), and using the smallness of g5 and A1, we
deduce (3.4). This completes the proof of lemma 3.1(i).

Now, by the similar argument to those in § 2, we can show that the a priori
assumption (3.1) is closed.

Proof of (3.5). Differentiating (1.5); with respect to ¢, we get

(3.16)

and

Yo = —(0 — @)ty — 00z + Aty (3.18)

Integrating equation (3.18) X 1: + (1.5)2 x 6; over (0, t) x (0, 1), using integration-
by-parts, the boundary conditions (1.8) and equation (1.5);, we have

s [ et [ o @@ e + 007 arar
- ;/01 (1) (x70)dx+;/01 [(90)2—92} d:c+o/0t /O1 Vpibpdadr
+ /Ot /01 0,0 dxdT + /Ot /01 00 dxdT + U/Ot /01 V0 dxdr
1 t 1
<c [ @i+ttt vd)dorn [ [ doar
"z/t/l (0,)% dzdr 4 Cey /Ot/ol (6,)% dzdr
+C/ / 1/)1c }dxdT

which implies due to the smallness of e and \;

/ () dx+// (00 + (ar)? + (00)°] dadr 520,

C (Iwol3 + [16o]13) -

(3.19)

From (1.5)2, we have

(00)* = (=0 + v + ¥0,)° . (3.21)
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Integrating (3.21) over (0, 1), we obtain by Cauchy-Schwarz inequality and

(3.2)—(3.4)
1 1
[ otz <e [ [+ @+ wor]a
0 0
1 1 1
< c/ 92dx+053/ (Gx)zdx—i—CE%/ (1he)? da
0 0 0
1
<C [ (vh+ 6+ vh, + 68, do
0
From (1.5)1, (3.3) and (3.4), one easily gets by Cauchy inequality
1 1
| s <e [+ o+ 0] ar
0 0

1
< C/ (Vg + 03 + ¥5, + 05, + i,,) dz
0

(3.22) and (3.23) imply (3.5). This completes the proof of lemma 3.1(ii).

Next, we prove (iii) of lemma 3.1 under the a priori assumption

N3(T) = JSup 1, 6) (1)1I5 < €3,

which implies by Sobolev inequality

[P lw1.0e +10@) 1.0 < Ces,

where 0 < g3 < 1.
Proof of (3.6). Differentiating (1.5) with respect to = twice, we get

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Integrating equation (3.26) x 6, over (0, t) x (0, 1), using integration-by-parts and

the boundary conditions (1.7), we arrive at

1 1 t 1
5/ (am)QdH/ / (042)° dadr
0

1
:5/ (90m) da:—l-S/ / VyzbpOppdrdr + = //ww ) 2 dedr

/ / Vpzr00pdrdT

25/ (Boze)’ dz + Jy + J5 + J.
0

Here J4—Jg are estimated term by term as follows.
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One has from Cauchy—Schwarz inequality and (3.25)

Ju < Cey /0 t /0 1 [wm)ﬁ(am)z’ dedr (3.28)

and

t 1
Js < Ces / / (022)? dzdr. (3.29)
0 JO

In order to estimate Js—J7, let’s differentiate (1.5); with respect to x

g = Yot + (0 — )Py + 004y (3.30)

Substituting (3.30) into Jg, we get by (3.2) and Cauchy—Schwarz inequality

1 t 1
Jo= o [ [ 00ea i+ o = )i + 0] daar
t 1
L / 10(r) / O oot + (0 — )by + 00,0]| dadr (3.31)
082/ / Ope)? + (Vor)? + (1/11)2] dzxdr.

Collecting the estimates (3.27)—(3.31) and using (3.4) with (3.5), we derive

1 t 1
/ (Bu0)?dz + / / (6r0)? dadr < C ([0l + 1100]2) . (332)
0 0 0

Finally, integrating (3.30) over (0, ¢) x (0, 1) and using Cauchy inequality, we get

/ / (thone)? dadr < C / / [0 + (o) + (0] dadr. (333)

(3.4), (3.5), (3.32) with (3.33) imply (3.6).

Now, we can show that the a priori assumption (3.24) can be closed. Since,
under this a priori assumption (3.24), we have deduced that (3.5) and (3.6) hold
provided e3 is sufficiently small. Therefore the assumption (3.24) is always true
provided v € H?, 0y € H' and ||1o]2 + [|0o]|1 is sufficiently small.

Next, let’s continue to the proof of the rest estimates one by one under the
additional regularity on initial data.

Proof of (3.7). Differentiating (1.5)s with respect to x, we have

9:1:15 = _ez + W@)m

(3.34)
= Oy + Vual + 20,0, + V0,
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Integrating (3.34) over (0, t) x (0, 1) and using the Cauchy inequality, we get

/t /1 (0,1)% dzdr

2 2 2
C// + (Y220)” + (V202) + (V020)” + (Vz) ]dxdT (3.35)

C/ / § () o ()° + (0,,)7] ddr,

(3.4), (3.6) and (3.35) imply (3.7).
Proof of (3.8). Integrating equation (3.18) X 1.+ over (0, t) x (0, 1), and using
integration-by-parts with the boundary conditions (1.8), we arrive at

//%m )2dadr + o—a//th V2dadr + = /l(%t)?dx

/ (202 i—ode + o / / O thmidadr (3.36)

2 1 gt
<! / (ter)limodz + & / / (tonae)?dadr + L / / (0,0)?dzdr.
2 Jo 2 Jo Jo 2a Jo Jo

From (3.30), we have

wwt - _(U - O‘)'(/JOw - UeOa:x + Oéwoﬂm, (337)

which implies

/01 (wm <¢C 1 1P0x + (Boa)? (waa:w)2:| dx

0 (3.38)

< O (el + fosll}) -

Combining (3.36) and (3.38), we derive (3.8).
Proof of (3.9). Differentiating (1.5) with respect to x three times, we get
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Integrating equation (3.39) X 0., over (0, ) x (0, 1), using integration-by-parts
with the boundary conditions (1.7), we arrive at

1
f/ j— dx+// o 2 dadr
2 0
1
0
+6 / / ralraOmodadr + - / / by (Bry)? dardr (3.40)

10

1
:5/0 (Boue) dz+ 3 J;.

=7

Now we estimate J;—J1o term by term as follows.
It is obvious to get

t 1
Jr < Ces /0 /0 [(wm)2+(em)2 dxdr (3.41)

t 1
Jy < Ces / / (Opne)? dadr, (3.42)
0 0

We have from Cauchy—Schwarz inequality, Sobolev inequality and (3.25)

J<C / t / (an)? (0r0)? drdr 4+ A, / t / (e drr

and

(3.43)
053/ / wzz djmmx) }d-TdT‘i’)\l/ / xzz dxdT
In order to estimate Jyg, let’s differentiate (1.5); with respect to = twice
awzxm’x = wxmt + (U - a)wa::r + Uexmar (344)

Substituting (3.44) into Jip, using (3.2) and Cauchy—Schwarz inequality, we have

t 1
JlO :/ / wxzmzaemmrdxd’r

052/ / Orea)’ + (Vuut)’ (¢xx)2] dzdr.
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Substituting the estimates on J;—Jyo into (3.40), and using (3.4), (3.6), (3.8), we

obtain
1 1 t 1
1 / (Oe)? da + / / (Or0e)? dadr
2 0 0 0
1

(3.46)
1 2 2 2
<5 [ Goaa)* o0 (Il + 16013)
0
which implies (3.9).
This completes the proof of lemma 3.1. g

By the derived a priori estimates and the local existence of the solutions which
can be proved by the slightly standard iteration method, we can get the global exis-
tence of the solutions to (1.1)—(1.3) and (1.5)—(1.7) by extending the local solution
to the time ¢ = 4+00. This completes the proof of theorem 1.3.

For readers’ convenience, we give the proof of the local existence. For the short-
ness, we take the initial-boundary value problem (1.5)—(1.7) as an example to sketch
the main idea of the proof. In fact, we construct the approximate solution sequences
(2 115 00 +1), n = 0 by induction. Precisely, suppose that the n-th order approx-
imate solution (9, %), n >0 is obtained for some time 0 < T,, < T, we define
(¥0 .1, 69, 1) by solving the following linear initial-boundary value problem, i.e.
the iteration scheme

(Woi1)e = =(0 = Sy — 7(69)0 + W0 41) e,
(09 1)e = 0941 + 000041 )e + 0000 1)es O<z <1, >0,
(Y0 ,11,0%,1)(2,0) = (Yo(z),00(x)), 0<z<1,

01(0,t) =00, (1,6) =0, t>0.

Then, the existence of solutions to the above linearized problem is shown in a
time interval ¢ € [0, t,,41] with 0 < Ty, 41 < T),. The rest is to derive the uniform-
in-n estimates of (40, 69, ), which guarantee that the life-span T},11 of the
approximate solution (49, 69 1) has a strictly positive lower bound as n goes
infinity. Finally, the local existence of the nonlinear problem (1.5)—(1.7) follows
from the fixed point theorem.

4. Convergence rates and BL-thickness

In this section, we go back to use the symbol (10, %) and (¢°, 6°) to denote the
solution to the initial-boundary value problems (1.1)—(1.3) and (1.5)—(1.7) respec-
tively. Convergence rates of the vanishing diffusion viscosity and the BL-thickness
will be obtained. That is, we will give the proof of theorem 1.5, and it suffices to
show the following two lemmas.
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LeEMMA 4.1 (Convergence rates). Under the same assumptions of theorem 1.5, we
have the following estimates:

/01 [(wﬂ - ¢0)2 + (07 — 90)2} dz

+ /Ot/o1 (7 = 4)" + (67 - 6)°] dwar + /Ot /01 (4% —¢°) dadr < C
(4.1)
and

/0 (v° — dx—l— / / dasdr<Cﬁ1/2 (4.2)

where C' is a positive constant, independent of 3.
Proof. Set
T R A (4.3)

Then we deduce from (1.1)-(1.3) and (1.5)(1.7) that (u?, v?) satisfy the following
initial-boundary value problem:

= (0 —a)u’ —ov? + aul O<z<l1,t>0,

g

+ T

vf = —(1 = B + vul + PP +uP00 + B (0° + 02,) + vyl (4.4)
+0%ul P 0<z <1, t>0

with initial data
(w”,07) (2,00 = (0,0), 0<z<1 (4.5)

and the boundary conditions

uP(0,t) =uf(1,8) =0, t

WV
L

(4.6)

which implies

Wl (0,8) =ul(1,8) =0, t>0. (4.7)
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Part I. The proof of (4.1).
Integrating equation (4.4); x u” + (4.4)3 x v® over (0, t) x (0, 1), and using the
boundary conditions (1.3) and (4.5), (4.6) we arrive at

2 [0 )
*‘/t/q (0= a) ()" + (1= 8) (v")" + a (uf)*] dadr
Y T
+/ / ulolfgdedr + / / (86° + 307, + viy) v7dadr
//eﬂ o 'ded7+/ / (PP dedr
:iiK

We can estimate K;-Kg term by term as follows by using Cauchy—Schwarz
inequality, Sobolev inequality and the a priori assumptions (4.49), (3.24) and (3.25):

/ / 2 wdr 4+ OV +” / / ? dzdr, (4.9)

t 1 t 1
Ky <A / ()2 dedr + — / / (20?)? dadr
0 JO 16/\1 0 JO

top1
<)\ / (Uﬁ) ? dadr (4.10)
o Jo

+C/Ot (@I + [2m1°) /01 ()7 dedr,

053// dxdTJrCEg// dsz (4.11)

Ky < OB /t/l (09)° + (62,)° dxd7+2)\1/ / ? dwdr
+ o / / ? dwdr (4.12)
<CB+2\ / / ? dwdr,

(4.8)
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t 1 ) )
Ks < Csy / / () + ()] dear (4.13)
0o Jo
and

t 1
Kg < Ces / / (vﬁ)zdxdr (4.14)
0 0

Plugging (4.9)—(4.14) into (4.8), and using lemmas 2.1, 3.1 and the smallness of
€1, €3 and Ay, we obtain

/01 {(uﬂ)2 - (v5)2] dx+/0t /01 {(uﬂ)g + (07 + (ufﬂ dodr

t X (4.15)
<05+0/0 (||¢5<T>||2+|;¢gw(r)||2)/o (v%)° dedr.

Therefore, Gronwall’s inequality and lemma 2.2 yield (4.1).

Part II. The proof of (4.2).
Integrating equation (4.4); x u? over (0, t) x (0, 1), using integration-by-parts
and the boundary conditions (4.7), we arrive at

;/01 {(U—a) (u5)2 +a (uf)ﬂ dm+/0t/01 (uf)dedT
= U/Ot /01 u? WP dzdr (4.16)
<C </Ot /01 (uft)zdxd7>1/2 </0t/01 (vﬁ)zdxd7)1/2.
From (2.13), (3.5) and (4.3), one has

/Ot /01 (ugt)dedT < C (o, 00)|2, (4.17)

which together with (4.1) implies (4.2). This completes the proof of lemma 4.1. O
The following lemma will greatly contribute to the boundary layer thickness.

LEMMA 4.2. Under the same assumptions of theorem 1.5, we have the following
estimates

1-6
/ (07 = 6°), | da < Co— /2811, (4.18)
g

where C' is a positive constant independent of [3.
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Proof. Differentiating (4.4)s, we have
v = —(1= By + (7], + (u6]),
+ B + (070), + (W007), (4.19)
+ B (02 + 0200) + 02
Denote z = v2, then we deduce that

z=—(1-0)z+ (1/16z)m + (uﬁﬂg)z + B2zs

(4.20)
+ (0%u)e + W20%)0 + B (02 + 000) + v,
As in [6, 12], introduce the functions ¢.(z) = v/22 + &2 and
x, 0<z <,
&s(x) =16, d<x<1l—4, (4.21)

l—z, 1-6<z<1.
Notice ¢.(z) and &5(x) respectlvely satisfy the following properties
(i) be(2) 20, lim ¢ (2) = |2,
e—0
(ii) |¢’ <1, liH(lJ oL(z)z = |2, (4.22)
E—
(iii) ¢%(z) =0, ¢l(2)2?<e¢

and

<1, 0<[€(@)] < 1,65(0) = &(1) = (4.23)
1 < |

{ &s(r) <6
€5(2)¢ wmv|mm<n 1, ¢h(x)] < 6.

Integrating equation (4.20) x &s(z)¢L(z) over (0, t) x (0, 1), we obtain

/ / £5(2)d(2)zedadr
/ / £5(2) 6L (=) 2dwdr + / / &(x)¢L(2) (v7z),, dadr
/ / £3(2)6L(2) (uP60), dudr + 3 / / &5 (2)¢L(2) zpdadr
+g//@mw@@+%aww (4.24)
//ka 9ﬁﬁmw+//sa 8.(2) (000" dadr
e / / £5(2) 6L (2)0f, dadr

= Z K.
=7
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Next, we estimate each term in (4.24) one by one.
First, using the initial data (4.5) and (4.22)(ii), we get

//55 thl’dT—/ s ()@ ( )dxf/ e€s(x)dx
th7 C//§5 )| z|dzdr.

Next, integrating by parts, we have

//65 dﬁdedT*/ / Es(x) ol (2))° 22, dadr

= Kg + K3

Klo——ﬁ/ / Es(x) L (= ZdeCdT—ﬁ/ / &(x )z2dxdT

= Kjo + Kiy.

and

and

Using the property of &s(z), we can rewrite Kd as

t 4 t 1
_ / &) / Ié]
/O /O ¢z (2)Y" zdadr + /O - oL (2)¢P zdadr.

In addition, it is easy to see that

WP (z, t)| </ 190 (y,t)| dy < Cz < C&s(x) for any x € [0, 4],

P (x,t)| WJ’G (y,1)| dy

x

<C(1—x) < C&(x) for any x € [1 — 4, 1].

From (4.29), (4.30) and (4.22), we obtain

t s t ool
1 / /
Kg < C/O /0 &s(x) \¢6(2)z|dxd7+0/0 /1—5 &s() |oL(2)z| dedT
t 1
< C/O /0 &s(x) |oL(2)z] dadT

t 1
lim K3 < C’/ / &s(2)|z|dadr.
€0 0 Jo

and
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By Holder inequality, it follows from (4.21), (4.22), lemmas 2.1 and 3.1

t § t 1
Kiy = —ﬁ/ / ¢5,5(Z)Za;d33d7'+ﬁ/ . 5¢'6(z)zwdxd7-

Cﬂ// |zz|dde+Cﬁ// |22 dzdT
1-46
2 4.33
< Cps'? (// [ dxdT> (439
t el ) 1/2
+ Cps'/2 ( / / 02, — 09, | d:vd7>
0 1-46

< Cﬂ1/261/2.

By the key property (4.22)(iii) of ¢.(2) and Cauchy inequality, K3 and K%, can be
bounded as follows:

K$ + Ky
5//5 2d$dT+—//§ 2 dadr
[ [ awtierztan »
5/t i@l dedTJr—//g .
2@/ / &5(w)¢! (2)22 ()2 dadr — 0, as & — 0.

Direct calculations with lemmas 2.1, 3.1, (4.22) and (4.23) show

Ko = //g ﬁﬁodasz—i—/ / &s(x Yl dzdr

2

< (/ / dxdT) : (/0 /0 (02)2dxd7>1/ (4.35)
+C5 (/ / dxd7> v </0t/01 (ng)dedT>1/2

< Csp32.

Using Holder inequality, (4.22), (4.23) and lemmas 2.1, 3.1, we have

K < cw{/t /1 [0 + (62..)] dxd7}1/2 < Cop. (4.36)
0 0

https://doi.org/10.1017/prm.2022.40 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.40

Boundary layer of Hsieh’s equation 1193
Integrating by parts and using (4.23), we have

K12—/ / &s(2)PL(2)(0°u?) dadr
:/o /o ¢Q(Z)€a(x)95u§dxdr+/ot /01 &L (2)€5 ()02 dwdr (4.37)

= K112 + K%z'
Using (4.22), (4.23) and Hoélder inequality, (2.3), (4.1) we get

/ / 16 (2)65 ()02 | dwdr
<05/0 /O 1077 |dzdr (4.38)
<06 < /O t /O 1(05)2dxdT> ( / / dxdT) :

< CopM2.

From (4.4);, we have

t 1
K3y = é/o /0 oL(2)&s(x)0" [utﬁ + (0 —a)u® + avf} dzdr

L[ seaw
? [ [ soawe i

2,1
_K12 +K12 +K12 .

' (2)€5(2)0PuPdadr

(4.39)
Using (4.22), (4.23), Holder inequality, (2.3) and (4.2), we have

K3 < 05// ‘af’
<Cs </O/O (Gﬁ)dedr>1/2 (/Ot/ol (uf)2dxd7')

< Copt/e.
Using (4.22), (4.23), Holder inequality, (2.3) and (4.1), we have

t 1
K3 <C6 / / 074’ | dadr
0 JO

<C6 </Ot /01 (Gﬁ)zdmd7> (/ / dxd7>1/2 (4.41)

< CopM2.

1/2 (4.40)
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From (4.22), we have

t 1
K <0 [ 100 [ lesod] dodr
0 0
t 1
C’/ / &s(x)|z|dadr.
0 Jo
Substituting (4.40)—(4.42) into (4.39), we get
t el
K} < c/ / &s(x)|zldzdr + C5/2314,
0 Jo
which together with (4.37), (4.38) yields

t el
Kz < C/ / &s(x)|z|dedT + C6Y/2 34,
0 Jo

Direct calculation show

K3 /Ot/olfg(x)(b/s(z 5dxd7+/ / &s(x YOvPdadr

= Ki3 + Kis.

From (4.22), (4.23), Holder inequality, (4.1) and (3.4), we have

05// |12, 07 | dadr
carl[ [ o) ([ [ )

< CopM2.

1/2

From (4.22), we have

¢ 1
Kiy < C/O H@bS(T)HLw/O ’&S(l’)’l)g|d$d7’
t o1
< C/ / &s()|z|dxdr.
o Jo

which together with (4.45), (4.46) yields

t 1
K3 < C/ / &s(x)|z|dedT + C6Y/2 312,
0 Jo

Using v = o(3'/?), we have

¢ 1
Kis < CV5/ / (wfw)dedT < CBY3%s.
o Jo
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Collecting all estimates on K7—Kj4, and letting ¢ — 0 in (4.24), we get

/01 &s(@)]zlde < C/Ot /0155(x)z|dxd7' + 8214, (4.50)

By Gronwall’s inequality, we obtain
/01 &s(x)|z|dz < €82 pY/4, (4.51)
which imply (4.18). This completes the proof of lemma 4.2. O

Finally, based on lemmas 4.1-4.2, we can prove theorem 1.5.

Proof of theorem 1.5. First, using Holder inequality, we have from lemma 4.1

1/2

/ |(6° — 6°) | de < [/01 (6° — Ho)zdx} < CpY2. (4.52)

Since WH1([§, 1 — §]) < L>=([§, 1 — §]), we have from (4.52) and lemma 4.2

[0 s [0 ),

< Cﬂ1/2 + 0571/251/4 (453)
< 05—1/251/4
C(B2/5(8))"* =0 as B — 0.

N

H (06 - ‘90) (t)HLw([é,lﬂs])

(4.53) imply inequality (1.11).
In addition, using Sobolev inequality, we also have from (4.1)

1/2 1/2
"(wﬁ_¢0) HLOO(Ol]) \CH ¢B ) HL?[o,l] H(d’ﬁ ) HL2[01
<OB/® = 0as f— 0.

(4.54)

(4.54) imply inequality (1.10). As in [6, 7, 12], we observe the inequality (1.12)
holds. This completes the proof of theorem 1.5. (]
5. Conclusion

In summary, three results are obtained in this paper:

e The global unique solvability of the initial-boundary value problem (1.1)—(1.3)
of Hsieh’s equation with conservative nonlinearity is established in the Sobolev
framework presented in theorem 1.3.

e The global unique solvability and more regularities of the corresponding formal
limit problem (1.5)—(1.7) is established in the Sobolev framework presented in
theorem 1.4.
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e Convergence rates and the BL-thickness as the diffusion parameter 3 — 07 are
obtained and this result is stated in theorem 1.5.

We emphasize that the conservative nonlinearity is stronger than the noncon-
servative nonlinearity. Thus more regularities on the solution to the limit problem
presented in part (iii) of theorem 1.4 are required so that the convergence rates
and boundary layer thickness are obtained. However, generally speaking, it is
more difficult for initial-boundary problem due to the lack of boundary condi-
tions on higher-order derivatives. Thus it is more complicated than the case of
nonconservative form.
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