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Abstract

We consider the asset price as the weak solution to a stochastic differential equation
driven by both a Brownian motion and the counting process martingale whose pre-
dictable compensator follows shot-noise and Hawkes processes. In this framework,
we discuss the Esscher martingale measure where the conditions for its existence are
detailed. This generalizes certain relationships not yet encountered in the literature.
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1. Introduction

We initiate the computation of the Esscher martingale measure for a class of general
semimartingales whose predictable compensators have shot-noise and Hawkes process flavors.

Many different models to describe the evolution of financial assets have been proposed in
the literature. These include the exponential Lévy processes (Merton, 1976; Carr and Geman,
2002) with their complements of stochastic volatility counterparts (cf. e.g. Hull and White,
1987; Barndorff-Nielsen and Shephard, 2001). One approach to modelling the stock price pro-
cess using a class of pure-jump stochastic processes has been launched by Eberlein and Jacod
(1997), with favourable arguments addressing the empirical realities and their implications
of the no-arbitrage principle (Madan et al., 1998). The price process we consider is capable
of capturing contagion and jump clustering, a phenomenon that is empirically relevant when
financial markets are in distress. Under these circumstances, stock price crashes occur more
frequently than predicted by standard stochastic volatility models (Aït-Sahalia et al., 2015).
In particular, asset price crashes tend to cluster over short time spans, and standard models
are unable to replicate this pattern of crash clustering. Therefore, related Hawkes models have
been proposed to better replicate the empirical patterns found in asset returns and lead to an
improved fit for option pricing models (Boswijk and Lalu, 2016).

In particular, we study the Esscher martingale measure when the asset price follows a
stochastic differential equation driven by both a Brownian motion and the counting pro-
cess martingale whose predictable compensator follows shot-noise and Hawkes processes
(Brémaud and Massoulié, 2002; Dassios and Zhao, 2011; Boumezoued, 2016). Such mod-
els typically generate markets which are incomplete, wherein there exist infinitely many
martingale measures which are equivalent to the physical measure describing the evolution
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On the cumulant transforms for Hawkes processes 529

of the underlying stock price process. Each equivalent martingale measure corresponds to a set
of derivative prices respecting the no-arbitrage principle. The Esscher martingale measure for
Lévy processes and stochastic volatility models is well studied (Hubalek and Sgarra, 2009). On
another spectrum, Dassios and Zhao (2012) discussed the Esscher transform for a generalized
contagion model for the purpose of importance sampling and ruin probability computations.
The authors showed that under the Esscher transform, ruin becomes certain, and this facilitates
simulation more efficiently than under the original measure, where the ruin is not certain and
is even rare. Similar ideas for improving the simulation of rare events in the spirit of measure
changes can be found in Asmussen (1985).

However, the Esscher martingale measure for a new class of compound shot-noise and
Hawkes point processes has not been examined. Augmented with a Brownian component
in a stochastic logarithm framework, we formulate the asset price as a general semimartin-
gale whose drift is modulated by a one-layer neural network (Schmidhuber, 2015). This model
may introduce flexibility and extend the standard log-Brownian paradigm behaviour, capturing
unusual business cycles or other economic benchmarks. We determine the Esscher martingale
measure in concert with the procedures outlined in Kallsen and Shiryaev (2002).

Section 2 summarizes the basic definitions and main results concerning that of shot-noise
and Hawkes processes. In Section 3, we present our asset model as well as the basic proper-
ties of cumulant processes. In Section 4 we explicate our martingale approach to uncover the
Esscher martingale measure. The conditions for absence of arbitrage and existence of solutions
are discussed. Finally, the no-arbitrage valuation of derivatives is detailed in Section 5. We
give some concluding remarks in Section 6. In the present text, we generally use the notation
of Jacod and Shiryaev (2003), where μN and νN(dx, dt) respectively denote the jump measure
associated to N and its compensator.

2. Preliminaries and point processes

Let (�, G, P) be a probability space. We fix a finite time horizon T , and all stochastic
processes are defined on [0, T]. Let N be a simple point process on R, that is, a family
{N(W)}W∈B(R) of random variables with values in {0, 1, 2, . . .} ∪ {∞} indexed by the Borel
σ -algebra B(R) of the real line R, where N(W) =∑

n∈Z 1W (τn) and (τn)n∈Z is a sequence of
extended real-valued random variables such that almost surely (a.s.) τ0 ≤ 0< τ1 and τn < τn+1
on {τn <∞} ∩ {τn+1 >−∞} for every n ∈Z. We further assume that it is nonexplosive,
wherein τn → ∞ a.s. as n → ∞ (see p. 47 of Daley and Vere-Jones, 2003 and p. 8 of Last and
Brandt, 1995, respectively). Let Ht = σ (N(W), W ∈B(R), W ⊂ (−∞, t)). We also assume
that our probability space supports a Brownian motion B, and denote its P-augmented natu-
ral filtration by (Ft). Let (Gt) = (Ht) ∨ (Ft). We assume the following martingale invariance
property: all (Ft)- and (Ht)-martingales remain martingales in the larger filtration (Gt).

The process λt is called the Gt-conditional intensity of N if for all intervals (s,t], we have

E[N((s, t]) | Gs] =E

[∫ t

s
λu du

∣∣∣ Gs

]
, a.s. (2.1)

We use the notation Nt := N(0, t] to denote the number of points in the interval (0, t].
The linear Hawkes process with levels of excitation h : R+ �→R+ is a simple point process N
admitting the Gt-intensity

λt = λ̄t +
∫ t−

−∞
h(t − u)dNu +

∫ t−

−∞
h̆(t − ŭ)dN̆ŭ, (2.2)
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530 Y. LEE AND T. RHEINLÄNDER

where λ̄t > 0, h (resp. h̆) is such that h(·) : R+ →R+, and we always assume that ‖h‖L1 =∫∞
0 h(t)dt<∞, which ensures stationarity in the point process N (Daley and Vere-Jones,

2003). N̆ is an inhomogeneous Poisson process with non-random and bounded intensity σ .
The sequence of event times u gives the jump times of N, and this models the Hawkes or self-
exciting property; they are endogenous by construction. By the same token, exogenous events
occur at times ŭ; this is known as the shot-noise or commonly referred to as the ‘Cox compo-
nent’ (Cox and Isham, 1980). Furthermore, the point process martingale Ñ associated with the
Hawkes process is given by

Ñ· := N· −
∫ ·

0
λu du. (2.3)

Characterizations of h and h̆. One such function for h (and that of h̆) takes the following
form: h(t) = αe−δt, t ∈ [0, T], where α > 0 and δ > 0. Furthermore, we assume that δ > α (resp.
ᾰ), thus guaranteeing stationarity of N (Brémaud and Massoulié, 2002; Dassios and Zhao,
2011). In the case of

λ̄t = λ	 + (λ0 − λ	)e−δt, (2.4)

where λ0 > 0 is the initial intensity at time t = 0, and λ	 ≥ 0 is a constant with λ	 < λ0, we
remark that λt is Markovian and the pair (Nt, λt)t∈[0,T] forms a Markov process (Oakes, 1975).
Another widely used function is the so-called power decay function, which is particularly used
in the field of seismology; it takes the form h(t) = β(t + γ )−η−1, where β ≥ 0, γ > 0, η > 0,
and ηγ η > β for stationary of the point process to hold. When η= 0, we recover the Omori
formula (Omori, 1894). When no constraints are placed on η, we obtain the modified Omori
formula (Utsu et al., 1995). For further discussion of this type of function, we refer the reader
to Ogata (1998).

3. Structure condition and cumulant processes

We choose the money market account as numéraire, and the interest rate is taken to be null.
We assume that the asset price dynamics S̃ under P is given by

P :
dS̃t

S̃t
= aθ

t dt + bt dBt + d(f H
t (x) ∗ (μN − νN))t := dSt, (3.1)

where μN denotes the jump measure of N while νN denotes its predictable compensator. In
our framework of compound shot-noise and Hawkes point processes, we no end have

νN := νN(dx, dt) = ν(dx)λt dt. (3.2)

The deterministic function aθ
t , representing the drift of the stock price process, is formulated

to be a flexible family of functions in the form of a one-layer neural network,

aθ
t := a(t, θ) = g1

(
α+

K∑
k=1

βk · g2(γk · t + πk)

)
, (3.3)

where g1(·), g2(·) are bounded activation functions, and K is some number of hidden units
(Zell, 1997). The quantity θ denotes the set of parameters {α, (βk, γk, πk)K

k=1}, which mod-
ulate the drift of the stock price process. Each term g2(γk · t + πk) may be seen as a hidden
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representation of the input time. By choosing K sufficiently large, we can model complex
nonlinear drift of the stock price process. Some choices of activation functions include the
sigmoid g2(z) = (1 + e−z)−1, the inverse square g2(z) = (1 + z2)−1, the hyperbolic tangent
g2(z) = tanh(z), and the bounded rectified linear activation function (or ReLU for short), given
by g2(z) = min(max(0, z),D) for some predetermined D> 0 that defines the maximal output
value that this function could produce (Schmidhuber, 2015). Furthermore, we assume that
b> ε and f H >−1 are deterministic and bounded.

To sum up, we work with the following restrictions on the parameters (aθ , b, f H).

Assumption 1. The quantities at, bt > ε and f H
t are deterministic, bounded functions with∫

(f H
t (x))2ν(dx)<∞. (3.4)

We often suppress the time variable in the notation, in accordance with convention. Note
that S̃ is the stochastic exponential of S, and thus solving the differential equation yields

S̃t =E
(∫ ·

0
aθ ds + b dB + d(f H(x) ∗ (μN − νN))

)
t
, (3.5)

whereE is the Doléans-Dade exponential. Our main goal in this manuscript is to calculate
as explicitly as possible the Esscher martingale measure in the sense of Kallsen and Shiryaev
(2002) for the stochastic logarithm S = ∫

dS̃/S̃−, with probability measures Q such that S is
a local Q-martingale. By Theorem III.33 of Protter (2005), the price process S̃ = ∫

S̃−dS is
a local Q-martingale as well. Moreover we assume that the asset price process S satisfies the
following structure condition: the decomposition of S can be uniquely written in the form
S = M + A, where

A =
∫
ρ d〈M,M〉 (3.6)

and ρ is a predictable process satisfying KT := ∫ T
0 ρ

2
t d〈M,M〉t <∞, P-a.s. (Ansel and

Stricker, 1992). The notation 〈M,M〉 denotes the predictable compensator of the quadratic
variation process [M, M]. In our Hawkes–Cox-driven price process from Equation (3.1), it is
readily computed that

ρ = aθ

b2 + λ−
∫
R

(f H(x))2ν(dx)
(3.7)

as well as that

KT =
∫ T

0

(aθ
t )2

b2
t + λt

∫
R

(f H
t (x))2ν(dx)

dt<∞, (3.8)

since both the point processes N and N̆ are nonexplosive and λt is finite for t ∈ [0, T]. Hence S
is a special semimartingale (see p. 209 in He et al. (1998)).

One potential approach for the evaluation of a pricing measure is related to the Esscher mar-
tingale measure (Madan and Milne, 1991; Gerber and Shiu, 1994; Eberlein and Keller, 1995;
Chan, 1999). In this section, we recall some definitions from Kallsen and Shiryaev (2002),
which lays out an extended abstract theory for Esscher martingale transforms for general
semimartingales.
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We remark that if X is a semimartingale, then L(X) denotes the set of predictable X-
integrable processes. Recall that a semimartingale X is called special if it can be decomposed
as X = X0 + M + A for some local martingale M and some predictable process A of finite
variation, null at 0. We denote by Mloc the class of all local martingales.

Definition 1. Let X be a real-valued semimartingale. X is called exponentially special if
exp(X − X0) is a special semimartingale. A predictable process A is called the exponential
compensator of X if exp(X − X0 − A) ∈Mloc.

Definition 2. The modified Laplace cumulant process KX(ϑ) of X in ϑ is defined to be the
exponential compensator of

∫
ϑdX.

Lemma 1. Let ϑ ∈ L(S) be such that
∫
ϑdS is exponentially special. Then the modified Laplace

cumulant process of S in ϑ is given by

KS(ϑ)t =
∫ t

0
κ̃(ϑ)s ds, (3.9)

where

κ̃(ϑ)t =
(

aθ
t − λt

∫
R

f H
t (x)ν(dx)

)
ϑt + 1

2
b2

t ϑ
2
t + (e

∫
Rf H

t (x)ν(dx)ϑt − 1)λt. (3.10)

Proof. This follows immediately from Theorem 2.18 of Kallsen and Shiryaev (2002)
following the semimartingale characteristics. �

The derivative of the cumulant process DKS(ϑ) = ∫
Dκ̃S(ϑ)λdt in the sense of Definition

2.22 in Kallsen and Shiryaev (2002) is given by

Dκ̃S(ϑ) = aθ − λ

∫
R

f H(x)ν(dx) + b2ϑ + f H(x)λeϑ f H (x). (3.11)

Assume that there exists a solution ϑ� to the martingale equation

DKS(ϑ) = 0. (3.12)

In the case when

G�t := exp

(∫ t

0+
ϑ�s dSs − KS(ϑ�)t

)
(3.13)

is a martingale, we can then define a probability measure Q� by

dQ�

dP
= exp

(∫ T

0+
ϑ
�
t dSt − KS(ϑ�)T

)
. (3.14)

The density process (G�t )t∈[0,T] now defines a unique equivalent martingale measure Q� for S,
known as the Esscher martingale measure for the process S (Theorems 4.4 and 4.5 in Kallsen
and Shiryaev, 2002).
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4. Esscher martingale measure

In this section, we spell out the necessary and sufficient conditions for (G�t )t∈[0,T] to be an
Esscher martingale measure.

Lemma 2. Define the following functions:

m1(ϑ) = aθ , m2(ϑ) = λ

∫
R

f H(x)ν(dx) − b2ϑ − λ

∫
R

f H(x)eϑ f H (x)ν(dx). (4.1)

Then there exists a bounded function ϑ�t : [0, T] →R solving m1(ϑ�t ) = m2(ϑ�t ) for all t ∈ [0, T]
and hence Equation (3.12).

Proof. Observe that for a fixed t ∈ [0, T], m2 is decreasing in ϑ , since

m′
2(ϑ) = −b2 − λ

∫
R

(f H(x))2eϑ f H (x)ν(dx)< 0, (4.2)

using the fact that λ> 0 is well defined for each t ∈ [0, T] and b is bounded. Also, note
that m2(−∞) = ∞, m2(∞) = −∞. Moreover, m1 is bounded since aθ is bounded. Hence
we conclude by the mean value theorem that there exists for all t ∈ [0, T] a number ϑ�t such
that m1(ϑ�t ) = m2(ϑ�t ). Note that (m2)−1(sup aθ ) ≤ ϑ� ≤ (m2)−1(inf aθ ), where (m2)−1 is the
inverse function of m2; hence t �→ ϑ

�
t is a bounded function on [0, T]. �

We now turn our attention to proving that the process G� is a martingale. For this we will
need the following criterion, due to the criterion of Theorem 9 in Protter and Shimbo (2008).

Proposition 1. Let M̃ be a locally square-integrable martingale such that �M̃ >−1. If

E

[
exp

(
1

2
〈M̃c, M̃c〉T + 〈M̃d, M̃d〉T

)]
<∞, (4.3)

where M̃c and M̃d are the continuous and purely discontinuous martingale parts of M̃, then
the Doléans-DadeE (M̃) is a strictly positive martingale on [0, T].

Lemma 3. Define the following processes:

G� =E (R�) (4.4)

with

R� =
∫

bϑ� dB +
(

eϑ
�(ef H (x)−1) − 1

)
∗ (μN − νN). (4.5)

Then G� is a martingale.

Proof. We proceed to evaluate the following quantity:

1

2
〈R�, R�〉c

T + 〈R�, R�〉d
T = 1

2

∫ T

0
b2

t (ϑ�t )2 dt +
∫ T

0

(∫
R

eϑ
�
t (ef H

t (x)−1)ν(dx) − 1

)2

λt dt<∞

with probability 1, by the boundedness of the coefficients and that of ϑ�, and using the fact
that our point processes are nonexplosive. It follows that E[exp ( 1

2 〈N,N〉c
T + 〈N,N〉d

T )]<∞.
Hence the assertion follows from Proposition 1. �
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Following the existence of solutions with the martingale property ensured, we state the main
result with regard to the Esscher measure.

Theorem 2. Let the conditions of Assumption 1 hold. Then there exists a function ϑ� : [0, T] →
R with ϑ�t := ϑ�(t) which solves the martingale equation (3.12) for any t ∈ [0, T], i.e.

aθ − λ

∫
R

f H(x)ν(dx) + b2ϑ + f H(x)λeϑ f H (x) = 0.

Furthermore, the derivative

dQ�

dP
=E

(∫ ·

0
ϑtbt dBt +

(
eϑ

�
t (ef H

t (x)−1) − 1

)
∗ (μN − νN)

)
T

(4.6)

defines a probability measure Q� ∼ P on GT , which is called the Esscher martingale measure
for S. Moreover, under Q�, we have that

BQ�

t := Bt −
∫ t

0
ϑ�s bsds (4.7)

is a Q�-Brownian motion, and the predictable compensator ν�N under Q� is given by

ν
�
N := ν

�
N(dx, dt) = eϑ

�
t (ef H

t (x)−1)ν(dx)λt dt. (4.8)

Proof. From Lemma 2, there exists a function ϑ� solving Equation (3.12). To complete the
proof, we apply Theorem 4.4 in Kallsen and Shiryaev (2002) to conclude that the density in
Equation (4.6) defines an equivalent local martingale measure forE (S). By Lemma 3, we have
that G� is a proper martingale and thus defines a density process. They dynamics under Q�

follows from Girsanov’s theorem (cf. Theorem III.40 in Protter (2005)). �

Remark 1. (1) The role of ϑ� and aθ . For the Esscher martingale measure to exist, the choice
of θ and the concrete specification of the drift aθ must be such that there exists a solution
ϑ� that solves the martingale equation (3.12); otherwise we say that the Esscher martingale
measure does not exist.

(2) Family of drifts and existence of ϑ�. It is well known that the dynamics of asset returns
cannot be adequately described with constant drift and volatility (Mandelbrot and Taylor, 1967;
Clark, 1973). There have been many attempts to extend the model by describing the evolution
of drift and volatility beyond constants (cf. e.g. Masi et al., 1995, and references therein).

(3) Special cases. In our case, the formulation of the flexible family of drifts in Equation
(3.1) is an interesting one provided that ϑ� exists. This one-layer neural network drift naturally
subsumes the standard constant drift as a special case if we let βk = γk = πk = 0. Second, for
identity activation of g1(·) and g2(·) a suitable indicator function, we get an aθ

t that is piecewise
constant on intervals and could be utilized as part of modelling a regime switching; see for
example Çetin and Verschuere (2009) and Elliott and Siu (2010).

Example (Hawkes with neural network drift). Suppose the stock price process takes the
form

P :
dS̃t

S̃t
= aθ

t dt + b dBt + d(f H(x) ∗ (μN − νN))t, t ∈ [0, T], (4.9)
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FIGURE 1. An illustration of the existence of ϑ� solving Equation (4.11), where m1 and m2 are given in
Equations (4.12) and (4.13), respectively.

where f is a bounded function independent of time t and b is a constant. We set aθ
t to be

aθ
t = α + β1

1 + e−(γ1t+π1)
+ β2

1 + e−(γ2t+π2)
, t ∈ [0, T], (4.10)

where θ = (α, β1, β2, γ1, γ2, π1, π2), all of which are taken to be positive constants. We
remark that Assumption 1 is satisfied for these choices of aθ , b, and f . We set g1(·) and g2(·) to
be the identity and the sigmoid activation functions, respectively, while setting the number of
hidden units to K = 2. We first check for existence of a solution ϑ� to the martingale equation
(3.12), which in this example returns

α + β1

1 + e−(γ1t+π1)
+ β2

1 + e−(γ2t+π2)
− λ

∫
R

f H(x)ν(dx) + b2ϑ + f H(x)λeϑ f H (x) = 0. (4.11)

Define the quantities

m1 = α + β1

1 + e−(γ1t+π1)
+ β2

1 + e−(γ2t+π2)
, (4.12)

m2 = λ

∫
R

f H(x)ν(dx) − b2ϑ − f H(x)λeϑ f H (x). (4.13)

Invoke Lemma 2 to ensure the existence of a solution ϑ� to Equation (4.11). An illustration is
given in Figure 1.

From Theorem 2, we see that the process

Bt −
∫ t

0
σ�s ds (4.14)

is a Q�-Brownian motion, where we have defined

σ� := ϑ�b. (4.15)
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Furthermore, the quantity

ν
�
N(dx, dt) = eϑ

�
t (ef H (x)−1)ν(dx)λt dt (4.16)

is the predictable compensator ν�N of μN under Q�. The process σ� represents the risk premium

associated with the continuous martingale part B, and the predictable function eϑ
�
t (ef H (x)−1) − 1

is interpreted as the risk premium associated with the jumps of the discontinuous part of μN

(Theorem III.3.23 in Jacod and Shiryaev, 2003), where ϑ� solves Equation (4.11).

5. Valuation of contingent claims

Having computed the Esscher martingale measure, we now detail the optimal hedging
strategy as well as the differential equations for the prices of derivatives under this measure.

5.1. Mean-variance hedging

One criterion for hedging is mean-variance hedging (Bouleau and Lamberton, 1989).
Consider a contingent claim with maturity T > 0, defined by a GT -measurable random vari-
able H. Define the initial capital V0 and a trading strategy which will be defined by a portfolio
(ψ0

t , ψt)t∈[0,T] taking values in R2. As before, we choose the savings account as numéraire and
work with a zero interest rate. In mean-variance hedging, we look for a self-financing trading
strategy given by an initial capital V0 and a portfolio over the lifetime of the contingent claim
which minimizes the shortfall at the terminal date T in a mean square sense:

inf
ψ,V0

EQ� |H − VT |2, VT = V0 +
∫ T

0
ψdS̃t

where

H − VT = H − V0 −
∫ T

0
ψtdS̃t.

In particular, we have chosen a pricing rule given by the Esscher martingale measure Q�. Let
H ∈L2(�,G,Q�); H has finite variance and (S̃t)t∈[0,T] is a square-integrable Q�-martingale.
Let us consider those (ψt)t∈[0,T] whose terminal values satisfy

X :=
{
ψ : EQ�

(∫ T

0
ψ2

t d[S̃, S̃]t

)
<∞

}
. (5.1)

Define L2(S̃) as the set of portfolios ψ satisfying (5.1). Since ψ ∈L2(S̃), and using the fact
that S̃ is a martingale under Q�, the gains process G(ψ) = ∫ ·

0 ψdS̃ is also a square-integrable
martingale. The mean-variance hedging problem can now be recast as

inf
ψ∈L2(S̃),V0

EQ�

∣∣∣∣H − V0 −
∫ T

0
ψtdS̃t

∣∣∣∣2 ,
or equivalently

inf
ψ∈L2(S̃),V0

EQ� |H − V0 − GT (ψ)|2 .
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The condition (5.1) implies that the value process V is a square-integrable martingale, and
we have EQ�[VT ] = V0. Applying the identity E(Z2) = (E(Z))2 +V(Z) to the random variable
Z := H − V0 − GT (ψ), we obtain

J0(V0, ψ) :=EQ�

∣∣∣∣H − V0 −
∫ T

0
ψtdS̃t

∣∣∣∣2
= |EQ�[H] − V0|2 +V(H − V0 − GT (ψ)).

If the writer of the contingent claim tries to minimize the residual risk J0(V0, ψ), the optimal
value that he/she will ask for is a premium

V0 =EQ�[H].

We see that EQ�[H] is the initial value of any strategy ψ ∈L2(S̃) designed to minimize the
shortfall at maturity, and we take this as the definition of the price associated with our contin-
gent claim H at time 0. By the same token, if the writer sells the option at time t> 0 and intends

to minimize the remaining risk Jt(Vt, ψ) := EQ�

(∣∣∣H − V0 − ∫ T
0 ψtdS̃t

∣∣∣2 ∣∣Gt

)
, he/she will ask

a premium Vt =EQ�(H | Gt). We will take this quantity to define the price of the contingent
claim H at time t under the Esscher measure Q�.

For illustrative purposes, in the framework of pricing and hedging derivatives, we work
with the asset price process in Equation (3.1), setting aθ

t and bt to be constants a> 0 and
b> 0, respectively, and setting f H

t (x) = f H(x) to be a bounded function independent of time.
Furthermore, we assume that h(t) = αe−δt and, without loss of generality, that h̆ = 0 in
Equation (2.2). With this, we see that (N, λ) is jointly Markov and λt can be recorded with
an alternative expression

λ=
∫

−δ(λ− λ	)dt +
∫
αdN (5.2)

to Equation (2.2) when λ̄ takes the form in Equation (2.4). From Theorem 2, the Esscher
martingale measure Q� exists and the dynamics of S̃ takes the form

Q�:
dS̃

S−
= b dBQ� +

∫
f H(x)(μN − ν

�
N), (5.3)

where the quantities Q� and ν� are defined in Theorem 2, and ϑ� solves Equation (3.12).

5.1.1. Pricing. Consider a contingent claim of European type with maturity T and payoff
H(S̃T ). The payoff H is assumed to satisfy

|H(z1) − H(z2)| ≤ k|z1 − z2| (5.4)

for some k> 0. For put and call options, this assumption is satisfied with the choice of k = 1.
The value Ct of such a derivative claim is given by Ct = C(t, S̃t, λt), where

C(t, s, λ) = e−r(T−t)E[H(S̃T ) | S̃t = s, λt = λ].
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Let H be a contingent claim with terminal payoff H = H(S̃T ). Then the price of H at time t is
given by C(t, s, λ) where

C : [0, T] × [0,∞) × (0,∞) → R,

(t, s, λ) �→ C(t, s, λ) =EQ�

[
H(S̃T ) | S̃t = s, λt = λ

]
.

Assume that C ∈ C1,2, i.e., the functions (t, s, λ) �→ C(t, S̃, λ) are continuously differen-
tiable with respect to t and twice continuously differentiable with respect to s. Hence the Itô
formula can be applied to Ct = C(t, S̃t, λt) between 0 and T . Define

C̃Q�,∗
t := sup

t∈[0,T]
|Ct| = sup

t∈[0,T]
Ct,

since H ≥ 0. Applying the Doob inequality to the martingale C yields

EQ� (C̃
Q�,∗
t )2 ≤ 4EQ�H

2 <∞
since H has finite variance. By the Burkholder–Davis–Gundy inequality, there exists a constant
c> 0 such that

cEQ�{[C,C]T} ≤EQ� (C̃
Q�,∗
T )2 <∞.

Hence we obtain
EQ�{[C,C]T}<∞.

This implies that C is a square-integrable Q�-martingale. With the expression of (5.2) and
by Corollary I-3.16 of Jacod and Shiryaev (2003), we conclude that the finite-variation term
vanishes, giving us the PDE

∂C

∂t
− sλ

∫
R

f H(x)eϑ
�(ef H (x)−1)ν(dx)

∂C

∂s
+ 1

2
s2b2 ∂

2C

∂s2
− δ(λ− a)

∂C

∂λ

+ λ

∫
R

(C(t, s(1 + f H(x)), λ+ α) − C(t, s, λ))eϑ
�(ef H (x)−1)ν(dx) = 0 (5.5)

with terminal condition
C(T, s, λ) = H(s), λ > 0, s ≥ 0. (5.6)

Having derived the Esscher price for European-type contracts, we now characterize the
optimal hedging strategy.

5.1.2. Optimal hedging strategy. Recall that under Q�, the stock price process S̃ is a square-
integrable martingale. Consider now a self-financing trading strategy with ψ ∈ L2(S̃); the value
process V of the portfolio is also a martingale whose value at maturity T > 0 is

Q� : VT = V0 +
∫ T

0
ψtdS̃t = V0 + GT (ψ).

Also, C(T, S̃T , λT ) = H(S̃T ) = H and C(0, S̃0, λ0) =EQ� [H(S̃T )] = V0, so that

H − V0 − GT (ψ) = C(T, S̃T , λT ) − C(0, S̃0, λ0) − GT (ψ).
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Taking into consideration Equation (5.5), we evaluate the quantity

C(T, S̃T , λT ) − C(0, S̃0, λ0) − GT (ψ)

=
∫ T

0

(
ψtS̃t− − S̃t−

∂

∂s
C(t, S̃t−, λt−)

)
b dBt

+
∫ T

0

∫
R

(
ψtS̃t−f H(x) − (C(t, S̃t−(1+f H(x)), λt− + α) − C(t, S̃t−, λt−)

)
(μN − ν

�
N)t,

so that

J0(V0, ψ) =EQ�

[∫ T

0
S̃2

t−
(
ψt − ∂

∂s
(t, S̃t−, λt−)dt

)2

b2dt

]

+EQ�

[∫ T

0

∫
R

(ψtS̃t−f H(x)

∫
− (C(t, S̃t−(1 + f H(x)), λt− + α) − C(t, S̃t−, λt−)2))ν�N(dx, dt)

]
.

To obtain the optimal risk-minimizing hedge, we minimize the above expression with
respect to ψ :

S̃2
t−σ 2

(
ψt − ∂

∂s
(t, S̃t−, λt−)

)
+

λ

∫
R

(S̃t−ψtf
H(x) − (C(t, S̃t−(1 + f H(x)), λt− + α) − C(t, S̃t−, λt−))

· S̃t−f H(x)eϑ
�(ef H (x)−1)ν(dx)

!= 0.

Hence we have that the minimal-risk hedge amounts to holding a position in the underlying
(St)t>0 equal to ψt =�(t, S̃t−, λt−), where

�(t, s, λ)

= b2 ∂
∂s C(t, s, λ) + λ

s

∫
R

(C(t, s(1 + f H(x)), λ+ α) − C(t, s, λ))eϑ
�(ef H (x)−1)ν(dx)

b2 + λ
∫
R

(f H(x))2eϑ�(ef H (x)−1)ν(dx)
.

A sanity check for convexity yields that

S̃2
t−b2 + λt−

∫
R

S̃2
t−(f H(x))2eϑ

�(ef H (x)−1)ν(dx)> 0.

6. Postlude

(1) Integro-differential equations. The assumption that the kernel is of exponential form, i.e.,
h(t) = αe−δt, in Equation (2.2) is instrumental to the results derived in Section 5, owing to
the joint Markovian structure of N and λ. For general kernels h, it is unclear whether explicit
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expressions can be obtained. This is due to the non-Markovian nature of the pair (N, λ) induced
by such kernel functions (cf. discussions in Boumezoued, 2016, and Gao et al., 2018).

Our derivations and heuristics suggest that the same result should hold for a wide class of
parameter specifications satisfying Assumption 1, provided that Lemma 2 is respected, guar-
anteeing the existence of ϑ� to Equation (3.12). In Section 5, we stick to simple specifications
for the sake of illustration. Furthermore, since the payoff functions H satisfy the Lipschitz con-
dition in Equation (5.4), these results hold for put and call options, as well as any combinations
of these, such as butterfly spreads and strangles, to name a few.

(2) Other martingale measures. Given the emergence of new financial markets where an estab-
lished market for exchange-traded derivatives has yet to emerge, it is often not possible to
identify the statistical martingale measure (see Chapter 6 in Schoutens, 2003) for the purpose
of derivative valuation. The statistical martingale measure is a pricing measure ‘chosen by
the market’ through the minimization of some distance between the observed and theoretical
option prices. It may be tricky to compute this measure in the absence of a liquid market with
actively traded vanilla options written on the underlying asset.

To overcome this problem, we propose the use of the Esscher martingale measure, which,
under general conditions, minimizes the entropy-Hellinger distance. This observation has been
documented; see Remark 10 in Hubalek and Sgarra, 2009, which explicates the relationships
(cf. Theorem 4.3 in Choulli and Stricker, 2005, and Theorem 4.4 in Kallsen and Shiryaev,
2002). Other martingale measures, such as the minimal entropy martingale measure (Delbaen
et al., 2002), are often chosen as well. That said, the identification of this measure is quite
involved and goes beyond the scope of this paper, so it is left to future research.

(3) Open problems. We have studied the Esscher martingale measure for a general stochastic
differential equation augmented by a counting process whose predictable compensator has
shot-noise and Hawkes elements. The techniques of proof are fairly general and may be applied
to various extensions of the proposed framework. One possibility may be to generalize the Cox
element N̆ to a Lévy subordinator, which is a.s. increasing.
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