We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Imaging biomarkers are important in the diagnosis and evaluation of treatment effect in AD. The “A/T/N” (amyloid/tau/neurodegeneration) classification notably focused on disease characteristics measurable using imaging or CSF biomarkers. Information obtained with imaging biomarkers can address several challenges in AD trials, by confirming pathology for patient inclusion and target engagement, enabling stratification for analysis based on likely rate of clinical decline, and detecting treatment effect with fewer subjects; it also help to characterize treatment responders and to better understand the neurological basis for clinical response. This chapter discusses how imaging data are generated, the applicability of various imaging endpoints within the overall AD progression pathway, technical issues influencing the reliability and interpretability of the data, and practical steps to incorporate imaging into clinical trials. Applications of volumetric MRI, MRI used in safety assessment, amyloid PET, tau PET, and FDG PET measurement of glucose metabolism are described. Relevant regulatory guidance and the fit of imaging data with blood based or other biomarkers are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.