We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Traumatic Brain Injury (TBI) often leads to cognitive impairments, particularly regarding working memory (WM). This meta-analysis aims to examine the impact of TBI on WM, taking into account moderating factors which has received little attention in previous research, such as severity of injury, the different domains of Baddeley’s multi-component model, and the interaction between these two factors, as well as the interaction with other domains of executive functions.
Method:
Following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, a systematic review and meta-analysis searched Google Scholar, PubMed, and PsycNET for studies with objective WM measures. Multiple meta-analyses were performed to compare the effects of TBI severity on different WM components. Twenty-four English, peer-reviewed articles, mostly cross-sectional were included.
Results:
TBI significantly impairs general WM and all Baddeley’s model components, most notably the Central Executive (d’ = 0.74). Severity categories, mild-moderate and moderate-severe, were identified. Impairment was found across severities, with “moderate-severe” demonstrating the largest effect size (d’ = 0.81). Individuals with moderate-severe TBI showed greater impairments in the Central Executive and Episodic Buffer compared to those with mild-moderate injury, whereas no such differences were found for the Phonological Loop and Visuospatial Sketchpad.
Conclusions:
These findings enhance our understanding of WM deficits in varying severities of TBI, highlighting the importance of assessing and treating WM in clinical practice and intervention planning.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.