We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vascular obstruction is one of the complications of radiofrequency ablation. Following our previous report on the use of radiofrequency energy for vascular closure in an animal model in this journal, we herein present the first ever in-human report.
Patient and method
The patient was a 3-year-old boy, who received a permanent endocardial pacemaker for congenital complete heart block. He also had a conical patent ductus arteriosus. The ductus was occluded with radiofrequency energy on the arterial side with no complications.
Conclusion
Closure of patent ductus arteriosus and probably other problematic small vessels could be achieved with radiofrequency energy. Further experience will elucidate the future scope of this novel technique.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.