Some informal arguments are valid, others are invalid. A core application of logic is to tell us which is which by capturing these validity facts. Philosophers and logicians have explored how well a host of logics carry out this role, familiar examples being propositional, first-order and second-order logic. Since natural language and standard logics are countable, a natural question arises: is there a countable logic guaranteed to capture the validity patterns of any language fragment? That is, is there a countable omega-universal logic? Our article philosophically motivates this question, makes it precise, and then answers it. It is a self-contained, concise sequel to ‘Capturing Consequence’ by A.C. Paseau (RSL vol. 12, 2019).